Deciding satisfiability problems by rewrite-based deduction: Experiments in the theory of arrays

Maria Paola Bonacina, Dept. of Computer Science, U. Iowa, USA Soon: Dip. Informatica, Università degli Studi di Verona, Italy

Joint work with:

Alessandro Armando, DIST, Università degli Studi di Genova, Italy Silvio Ranise, LORIA & INRIA-Lorraine, Nancy, France Michaël Rusinowitch, LORIA & INRIA-Lorraine, Nancy, France Aditya Kumar Sehgal, Dept. of Computer Science, U. Iowa, USA

Outline

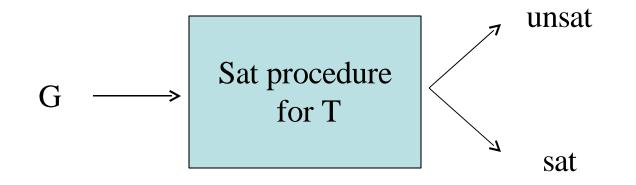
- Introduction
- Background on satisfiability procedures and rewrite-based deduction
- Synthetic benchmarks in the theory of arrays
- Experimental results with E and CVC
- Discussion

Motivation

- HW/SW verification requires reasoning with theories of data types, e.g., integer, real, arrays, lists, trees, tuples, sets.
- E.g., use arrays to model registers and memories in formalizing HW verification problems.
- Some of these theories are decidable.
- Built-in theories for verification tools and proof assistants.

Satisfiability procedures

- T : background theory, possibly with intended interpretation $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$
- ϕ : quantifier-free formula
- ϕ' : DNF ($\neg \phi$)
- $G\,$: conjunction (set) of ground literals from ϕ^{\prime}



Common approach:

Design, prove sound and complete, and implement a satisfiability procedure for each decidable theory of interest.

Issues:

- Most problems involve multiple theories: combination of theories/procedures [Nelson-Oppen, Shostak, ..]
- Abstract frameworks [e.g., Tiwari] or proofs for concrete procedures [e.g., Shankar, Stump]
- Implement from scratch data structures and algorithms for each procedure: correctness of implementation? SW reuse?

Relation to term rewriting :

These theories involve equality:

- Ground completion and congruence closure to decide quantifier-free theory of equality
- Unification theory, reasoning "modulo" to work with a background theory
- Normalization: key notion in satisfiability procedures
- Completion-based, or, more generally, ordering-based theorem proving: can it help?

Theorem proving would help:

- Combination of theories: give union of the axiomatizations in input to the prover
- No need of ad hoc proofs for each procedure
- Reuse code of existing provers

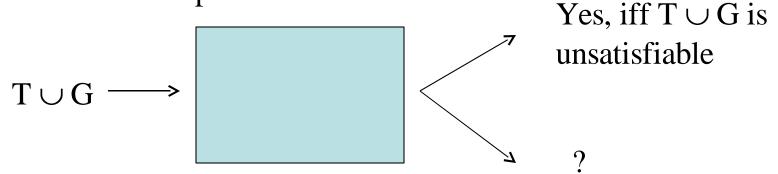
Termination ?

 $C = \langle I, \Sigma \rangle$: theorem-proving strategy

I : refutationally complete inference system with superposition/ paramodulation, simplification, subsumption ...

 Σ : fair search plan

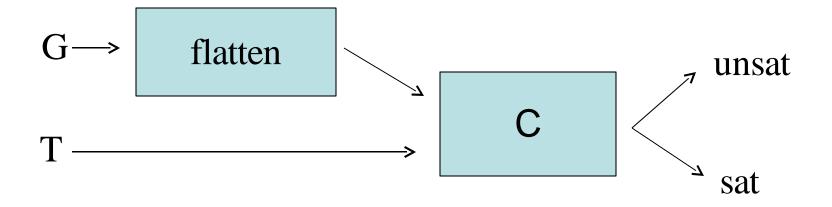
is a semi-decision procedure:



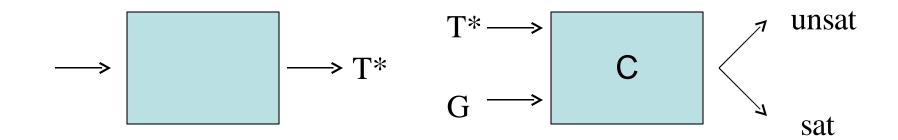
Termination results :

Armando, Ranise, Rusinowitch [CSL 2001]:

T: theory of arrays, lists, sets and combinations thereof



Another way to put it:



Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving [Kounalis & Rusinowitch, CADE 1988]

FO special theories: e.g., $T = T^*$ for arrays [ARR, CSL 2001]

How about efficiency ?

A satisfiability procedure with T built-in is expected to be always much faster than a theorem prover with T in input !

May not be obvious:

- theory of arrays
- synthetic benchmarks (allow to assess scalability by experimental asymptotic analysis)
- comparison of E prover and CVC validity checker with theory of arrays built-in

Theory of arrays: the signature

store : $\operatorname{array} \times \operatorname{index} \times \operatorname{element} \longrightarrow \operatorname{array}$

select : array × index — element

Presentation T₁

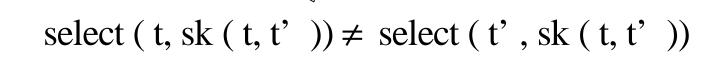
(1) $\forall A, I, E$. select (store (A, I, E), I) = E (2) $\forall A, I, J, E. I \neq J \Rightarrow$ select (store (A, I, E), J) = select (A, J) (3) Extensionality: $\forall A, B$. $\forall I. \text{ select}(A, I) = \text{ select}(B, I)$

 $\mathbf{A} = \mathbf{B}$

Pre-processing extensionality

select (A, sk (A, B)) \neq select (B, sk (A, B)) \vee A = B

t≠t'



Presentation T₂

Keep (1) and (2) and replace extensionality (3) by:

(4) $\forall A, I.$ store (A, I, select (A, I)) = A

(5) $\forall A, I, E, F.$ store (store (A, I, E), I, F) = store (A, I, F)

(6) $\forall A, I, J, E. I \neq J \Rightarrow$ store (store (A, I, E), J, F) = store (store (A, J, F), I, E)

T1 entails (4) (5) (6)

Use of presentations

- T₁ is saturated and application of C to
 T₁ ∪ G is guaranteed to terminate [ARR2001]:
 C acts as decision procedure
- T2 is not saturated (saturation does not halt):
 C applied to T2 ∪ G acts as semi-decision procedure

Two sets of synthetic benchmarks

storecomm(N): intuition

Storing values at distinct places in an array is "commutative"

storecomm(N) : definition

k1..kN : N indicesD : set of 2-combinations over { 1 ...N }Indices must be distinct:

$$\bigwedge (p,q) \in D \quad kp \neq kq$$

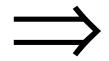
i1...iN, j1...jN : two distinct permutations of 1...N

store (... (store (a, ki1, ei1), ... kin, ein) ...)

store (... (store (a, kj1, ej1), ... kjN, ejN) ...)

storecomm(N) : schema

$$\bigwedge(\mathbf{p},\mathbf{q})\in \mathbf{D}\quad \mathbf{kp}\neq \mathbf{kq}$$



store (...(store (a, ki1, ei1), ...kin, ein) ...)
=
store (...(store (a, kj1, ej1), ...kjn, ejn) ...)

storecomm(N) : instances

Each choice of permutations generates a different instance:

N! permutations of the indices

The number of instances is the number of 2-combinations of N! permutations:

N!(N!-1)/2

Sample 10 permutations: 45 instances for each value of N

swap(N): intuition

Swapping pairs of elements in an array in two different orders yields the same array

swap(N) : definition

Recursively:

Base case: N = 2 elements:

L2 = store (store (a, i1, select (a, i0)), i0, select (a, i1))

R2 = store (store (a, i0, select (a, i1)), i1, select (a, i0))

$$L2 = R2$$

Recursive case: N = k+2 elements:

 $L_{k+2} = \text{store} (\text{store} (L_k, i_{k+1}, \text{select} (L_k, i_k)), i_k, \text{select} (L_k, i_{k+1}))$ $R_{k+2} = \text{store} (\text{store} (R_k, i_k, \text{select} (R_k, i_{k+1})), i_{k+1}, \text{select} (R_k, i_k))$

$$Lk+2 = Rk+2$$

swap(N) : instances

N elements, N/2 pairs to exchange N! permutations of the elements Ci : number of i-combinations over the set of N/2 pairs number of ways of picking i pairs for exchange

 $\Sigma_i C_i = 2^{N/2} - 1$

Number of instances: $1/2 \times N! \times (2^{N/2}) - 1)$ Sample up to 16 permutations and 20 instances for each value of N.

Experiments

Set up of the experiments

- Two tools: CVC validity checker and E theorem prover
- E: auto mode and user-selected strategy
- Performance for N is average over all generated instances for value N
- Comparison of asymptotic behavior of E and CVC as N grows

The CVC validity checker

[Aaron Stump, David L. Dill et al., Stanford U.]

Combines procedures à la Nelson-Oppen (e.g., lists, arrays, records, real arithmetics ...)

Has SAT solver: first GRASP then Chaff

Theory of arrays: ad hoc algorithm based on congruence closure with pre-processing wrt. axioms of T1 and elimination of "store" via partial equations

The E theorem prover

[Stephan Schulz, TU-Muenchen]

Inference system I : o-superposition/paramodulation, reflection, o-factoring, simplification, subsumption

Search plans Σ :

- given-clause loop with clause selection functions and only "already-selected" list inter-reduced
- term orderings: KBO and LPO
- literal selection functions

Strategies in experiments

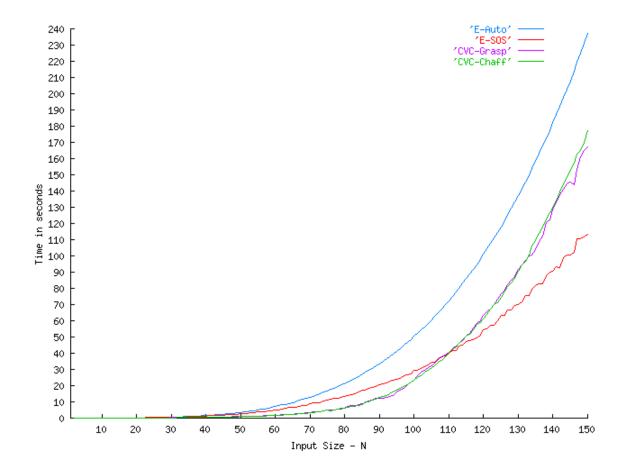
- E-auto: automatic mode
- E-SOS: { problem in form T ∪ G }
 Clause selection: (SimulateSOS,RefinedWeight)
 Term ordering: LPO
- Precedence: select > store > sk > constants

Running CVC and E on storecomm(N)

N ranges from 2 to 150

E takes presentation T1 in input

Behavior on storecomm(N)



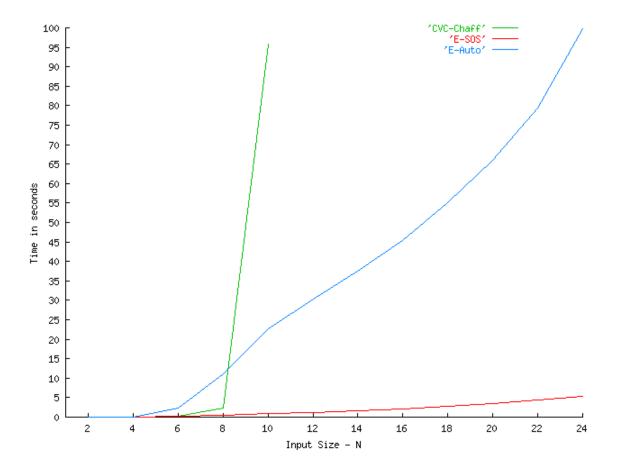
Running CVC and E on swap(N)

CVC: does up to N = 10, runs out of memory on any instance of swap(12)

E with presentation T1: same as above and slower

E with presentation T₂: succeeds also for $N \ge 12$

Behavior on swap(N)



Discussion

- Need more experiments: other synthetic benchmarks, other theories, combination of theories, real-world problems
- Understand role of flattening better
- Other provers, e.g., w. more inter-reduction
- Termination results for other theories?
- Complexity of concrete strategies on specific theories

Discussion

- Theorem proving may help build better satisfiability procedures
- Theorem proving needs more work on auto mode and search plans (search, not blind saturation)
- Proof assistants incorporate satisfiability procedures: integration of automated theorem proving in proof assistants