
Deciding satisfiability problems by
 rewrite-based deduction:
Experiments in the theory of arrays

Maria Paola Bonacina, Dept. of Computer Science, U. Iowa, USA
Soon: Dip. Informatica, Università degli Studi di Verona, Italy

Joint work with:
Alessandro Armando, DIST, Università degli Studi di Genova, Italy
Silvio Ranise, LORIA & INRIA-Lorraine, Nancy, France
Michaël Rusinowitch, LORIA & INRIA-Lorraine, Nancy, France
Aditya Kumar Sehgal, Dept. of Computer Science, U. Iowa, USA

Outline

• Introduction

• Background on satisfiability procedures and
rewrite-based deduction

• Synthetic benchmarks in the theory of
arrays

• Experimental results with E and CVC

• Discussion

Motivation

• HW/SW verification requires reasoning with
theories of data types, e.g., integer, real, arrays,
lists, trees, tuples, sets.

• E.g., use arrays to model registers and memories in
formalizing HW verification problems.

• Some of these theories are decidable.

• Built-in theories for verification tools and proof
assistants.

Satisfiability procedures

T : background theory, possibly with intended interpretation
ϕ : quantifier-free formula
ϕ’ : DNF (¬ ϕ)
G : conjunction (set) of ground literals from ϕ’

Sat procedure
 for TG

unsat

sat

Common approach:

Design, prove sound and complete, and implement a satisfiability
 procedure for each decidable theory of interest.

Issues:
• Most problems involve multiple theories: combination of
 theories/procedures [Nelson-Oppen, Shostak, …]
• Abstract frameworks [e.g., Tiwari] or proofs for concrete
 procedures [e.g., Shankar, Stump]
• Implement from scratch data structures and algorithms for
 each procedure: correctness of implementation? SW reuse?

Relation to term rewriting :
These theories involve equality:

• Ground completion and congruence closure to decide
 quantifier-free theory of equality

• Unification theory, reasoning “ modulo” to work with
 a background theory

• Normalization: key notion in satisfiability procedures

• Completion-based, or, more generally, ordering-based
 theorem proving: can it help?

Theorem proving would help:

• Combination of theories: give union of the
axiomatizations in input to the prover

• No need of ad hoc proofs for each procedure

• Reuse code of existing provers

Termination ?

C = < I, Σ > : theorem-proving strategy
I : refutationally complete inference system with superposition/
 paramodulation, simplification, subsumption …
Σ: fair search plan
 is a semi-decision procedure:

T ∪ G

Yes, iff T ∪ G is
unsatisfiable

?

C

Termination results :

Armando, Ranise, Rusinowitch [CSL 2001]:

T: theory of arrays, lists, sets and combinations thereof

flattenG

C
T

unsat

sat

Another way to put it:

CCT T*
T*

G

unsat

 sat

Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving
 [Kounalis & Rusinowitch, CADE 1988]

FO special theories: e.g., T = T* for arrays [ARR, CSL 2001]

How about efficiency ?

A satisfiability procedure with T built-in is expected
to be always much faster than a theorem prover with
T in input !

May not be obvious:
• theory of arrays
• synthetic benchmarks (allow to assess scalability
 by experimental asymptotic analysis)
• comparison of E prover and CVC validity checker
 with theory of arrays built-in

Theory of arrays: the signature

 store : array × index × element → array

 select : array × index → element

Presentation T1

(1) ∀ A, I, E. select (store (A, I, E), I) = E

(2) ∀ A, I, J, E. I ≠ J ⇒
 select (store (A, I, E), J) = select (A, J)

(3) Extensionality: ∀ A, B.
 ∀ I. select (A, I) = select (B, I)
 ⇒
 A = B

Pre-processing extensionality

 t ≠ t’

 select (t, sk (t, t’)) ≠ select (t’ , sk (t, t’))

 select (A, sk (A, B)) ≠ select (B, sk (A, B)) ∨ A = B

Presentation T2

Keep (1) and (2) and replace extensionality (3) by:

(4) ∀ A, I. store (A, I, select (A, I)) = A

(5) ∀ A, I, E, F.
 store (store (A, I, E), I, F) = store (A, I, F)

(6) ∀ A, I, J, E. I ≠ J ⇒
 store (store (A, I, E), J, F) = store (store (A, J, F), I, E)

T1 entails (4) (5) (6)

Use of presentations

• T1 is saturated and application of C to

T1 ∪ G is guaranteed to terminate [ARR2001]:

C acts as decision procedure

• T2 is not saturated (saturation does not halt):

C applied to T2 ∪ G acts as semi-decision

procedure

Two sets of synthetic benchmarks

 storecomm(N): intuition

Storing values at distinct places
in an array is “ commutative”

 storecomm(N) : definition

 k1 … kN : N indices
D : set of 2-combinations over { 1 … N }
Indices must be distinct:

 ∧(p, q) ∈ D kp ≠ kq

 i1 … iN, j1 … jN : two distinct permutations of 1 … N

 store (… (store (a, ki1, ei1), … kiN, eiN) …)
 =
 store (… (store (a, kj1, ej1), … kjN, ejN) …)

 storecomm(N) : schema

 ∧(p, q) ∈ D kp ≠ kq

 ⇒
store (… (store (a, ki1, ei1), … kiN, eiN) …)
 =
 store (… (store (a, kj1, ej1), … kjN, ejN) …)

 storecomm(N) : instances
Each choice of permutations generates a different instance:

N! permutations of the indices

The number of instances is the number of 2-combinations
 of N! permutations:

 N! (N! - 1) / 2

Sample 10 permutations: 45 instances for each value of N

 swap(N): intuition

Swapping pairs of elements in an array
 in two different orders yields the same array

 swap(N) : definition
Recursively:
Base case: N = 2 elements:
L2 = store (store (a, i1, select (a, i0)), i0, select (a, i1))
R2 = store (store (a, i0, select (a, i1)), i1, select (a, i0))

 L2 = R2

Recursive case: N = k+2 elements:
Lk+2 = store (store (Lk, ik+1, select (Lk, ik)), ik, select (Lk, ik+1))
Rk+2 = store (store (Rk, ik , select (Rk, ik+1)), ik+1, select (Rk, ik))

 Lk+2 = Rk+2

 swap(N) : instances

N elements, N/2 pairs to exchange
N! permutations of the elements
Ci : number of i-combinations over the set of N/2 pairs
 number of ways of picking i pairs for exchange

 Σi Ci = 2^(N/2) - 1

Number of instances: 1/2 × N! × (2^(N/2) - 1)
Sample up to 16 permutations and 20 instances for each
 value of N.

Experiments

Set up of the experiments

• Two tools: CVC validity checker and E
theorem prover

• E: auto mode and user-selected strategy

• Performance for N is average over all
generated instances for value N

• Comparison of asymptotic behavior of E
and CVC as N grows

The CVC validity checker

[Aaron Stump, David L. Dill et al., Stanford U.]

Combines procedures à la Nelson-Oppen
(e.g., lists, arrays, records, real arithmetics …)

Has SAT solver: first GRASP then Chaff

Theory of arrays: ad hoc algorithm based on congruence
 closure with pre-processing wrt. axioms of T1 and
 elimination of “ store” via partial equations

The E theorem prover

[Stephan Schulz, TU-Muenchen]

Inference system I : o-superposition/paramodulation,
reflection, o-factoring, simplification, subsumption

Search plans Σ :
• given-clause loop with clause selection functions and
 only “ already-selected” list inter-reduced
• term orderings: KBO and LPO
• literal selection functions

Strategies in experiments

• E-auto: automatic mode

• E-SOS: { problem in form T ∪ G }

 Clause selection:
(SimulateSOS,RefinedWeight)

 Term ordering: LPO

• Precedence: select > store > sk > constants

 Running CVC and E on
storecomm(N)

N ranges from 2 to 150

E takes presentation T1 in input

Behavior on storecomm(N)

Running CVC and E on swap(N)

CVC: does up to N = 10, runs out of memory on
 any instance of swap(12)

E with presentation T1: same as above and slower

E with presentation T2: succeeds also for N ≥ 12

Behavior on swap(N)

Discussion

• Need more experiments: other synthetic
benchmarks, other theories, combination of
theories, real-world problems

• Understand role of flattening better

• Other provers, e.g., w. more inter-reduction

• Termination results for other theories?

• Complexity of concrete strategies on
specific theories

Discussion

• Theorem proving may help build better
satisfiability procedures

• Theorem proving needs more work on auto
mode and search plans (search, not blind
saturation)

• Proof assistants incorporate satisfiability
procedures: integration of automated
theorem proving in proof assistants

