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Motivation

• HW/SW verification requires reasoning with 
theories  of data types, e.g., integer, real, arrays, 
lists, trees, tuples, sets.

• E.g., use arrays to model registers and memories in 
formalizing HW verification problems.

• Some of these theories are decidable.

• Built-in theories for verification tools and proof 
assistants.



Satisfiability procedures

T  : background theory, possibly with intended interpretation
ϕ  : quantifier-free formula
ϕ’  : DNF ( ¬ ϕ )
G  : conjunction ( set ) of ground literals from ϕ’  

Sat procedure
 for TG

unsat

sat



Common approach:

Design, prove sound and complete, and implement a satisfiability
 procedure for each decidable theory of interest.

Issues:
• Most problems involve multiple theories: combination of
 theories/procedures [ Nelson-Oppen, Shostak, …]
• Abstract frameworks [ e.g., Tiwari ] or proofs for concrete
 procedures [ e.g., Shankar, Stump ]
• Implement from scratch data structures and algorithms for
 each procedure: correctness of implementation? SW reuse?
 



Relation to term rewriting :
These theories involve equality:

•  Ground completion and congruence closure to decide
   quantifier-free theory of equality

•  Unification theory, reasoning “ modulo”  to work with
   a background theory

•  Normalization: key notion in satisfiability procedures

•  Completion-based, or, more generally, ordering-based
   theorem proving: can it help?



Theorem proving would help:

• Combination of theories: give union of the 
axiomatizations in input to the prover

• No need of ad hoc proofs for each procedure

• Reuse code of existing provers



Termination ?

C = < I, Σ >  : theorem-proving strategy
I : refutationally complete inference system with superposition/
 paramodulation, simplification, subsumption …
Σ: fair search plan
 is a semi-decision procedure:

T ∪ G

Yes, iff T ∪ G is
unsatisfiable

?

C



Termination results :

Armando, Ranise, Rusinowitch [CSL 2001]:

T: theory of arrays, lists, sets and combinations thereof

flattenG

C
T

unsat

sat



Another way to put it:

CCT T*
T*

G

unsat

 sat

Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving
 [Kounalis & Rusinowitch, CADE 1988]

FO special theories: e.g., T = T* for arrays [ARR, CSL 2001]



How about efficiency ?

A satisfiability procedure with T built-in is expected
to be always much faster than a theorem prover with
T in input !

May not be obvious:
•  theory of arrays
•  synthetic benchmarks (allow to assess scalability
 by experimental asymptotic analysis)
•  comparison of E prover and CVC validity checker
  with theory of arrays built-in



Theory of arrays: the signature

 store : array × index × element → array

 select : array × index → element



Presentation T1

(1)  ∀ A, I, E. select ( store ( A, I, E ), I )  =  E

(2)  ∀ A, I, J, E.  I  ≠  J   ⇒
       select ( store ( A, I, E ), J )  =  select (A, J)

(3) Extensionality:   ∀ A, B.  
      ∀ I. select ( A, I )  =  select ( B, I )
                                    ⇒
                                A  = B



Pre-processing extensionality

 t ≠ t’

 select ( t, sk ( t, t’  )) ≠  select ( t’ , sk ( t, t’  ))

 select ( A, sk ( A, B )) ≠  select ( B, sk ( A, B ))  ∨  A  =  B



Presentation T2

Keep (1) and (2) and replace extensionality (3) by:

(4) ∀ A, I. store ( A, I, select ( A, I ))  =  A

(5) ∀ A, I, E, F.
 store ( store ( A, I, E ), I, F )  =  store ( A, I, F )

(6) ∀ A, I, J, E.  I  ≠  J  ⇒
 store ( store ( A, I, E ), J, F )  =  store ( store ( A, J, F ), I, E )

T1 entails (4)  (5)  (6)



Use of presentations

• T1 is saturated and application of C to

T1 ∪ G is guaranteed to terminate [ARR2001]:

C acts as decision procedure

• T2 is not saturated (saturation does not halt):

C applied to T2 ∪ G acts as semi-decision

procedure



Two sets of synthetic benchmarks

 



 storecomm(N): intuition

Storing values at distinct places
in an array is “ commutative”



 storecomm(N) : definition

 k1 … kN  :   N indices
D  :  set of 2-combinations over { 1 … N }
Indices must be distinct:

        ∧(p, q) ∈  D     kp   ≠   kq

 i1 … iN, j1 … jN : two distinct permutations of  1 … N

 store (… ( store ( a, ki1, ei1 ), … kiN, eiN ) … )
                                  =
 store (… ( store ( a, kj1, ej1 ), … kjN, ejN ) … )



 storecomm(N) : schema

      ∧(p, q) ∈  D     kp   ≠   kq 

                                    ⇒
store (… ( store ( a, ki1, ei1 ), … kiN, eiN ) … )
                                  =
 store (… ( store ( a, kj1, ej1 ), … kjN, ejN ) … )
 



 storecomm(N) : instances
Each choice of permutations generates a different instance:

N! permutations of the indices

The number of instances is the number of 2-combinations
 of N! permutations:

                                    N! (N! - 1) / 2

Sample 10 permutations: 45 instances for each value of N



 swap(N): intuition

Swapping pairs of elements in an array
 in two different orders yields the same array



 swap(N) : definition
Recursively:
Base case: N = 2 elements:
L2 = store ( store ( a, i1, select ( a, i0 )), i0, select (a, i1))
R2 = store ( store ( a, i0, select ( a, i1 )), i1, select (a, i0))

                                       L2  =  R2

Recursive case: N = k+2 elements:
Lk+2 = store ( store ( Lk, ik+1, select ( Lk, ik )), ik, select (Lk, ik+1))
Rk+2 = store ( store ( Rk, ik , select ( Rk, ik+1 )), ik+1, select (Rk, ik))

                                      Lk+2  =  Rk+2



 swap(N) : instances

N elements, N/2 pairs to exchange
N! permutations of the elements
Ci : number of i-combinations over the set of N/2 pairs
       number of ways of picking i pairs for exchange

                           Σi Ci  =  2^(N/2)  -  1

Number of instances: 1/2 × N!  × (2^(N/2)  -  1)
Sample up to 16 permutations and 20 instances for each
 value of N.



Experiments

 



Set up of the experiments

• Two tools: CVC validity checker and E 
theorem prover

• E: auto mode and user-selected strategy

• Performance for N is average over all 
generated instances for value N

• Comparison of asymptotic behavior of E 
and CVC as N grows



The CVC validity checker

[Aaron Stump, David L. Dill et al., Stanford U.]

Combines procedures à la Nelson-Oppen
(e.g., lists, arrays, records, real arithmetics …)

Has SAT solver: first GRASP then Chaff

Theory of arrays: ad hoc algorithm based on congruence
 closure with pre-processing wrt. axioms  of T1 and
 elimination of “  store”   via partial equations



The E theorem prover

[Stephan Schulz, TU-Muenchen]

Inference system I : o-superposition/paramodulation,
reflection, o-factoring, simplification, subsumption

Search plans Σ : 
•  given-clause loop with clause selection functions and
   only “ already-selected”  list inter-reduced
•  term orderings: KBO and LPO
•  literal selection functions



Strategies in experiments

• E-auto: automatic mode

• E-SOS:               { problem in form T ∪ G }

    Clause selection: 
(SimulateSOS,RefinedWeight)

    Term ordering: LPO

• Precedence: select > store > sk > constants



 Running CVC and E on 
storecomm(N)

N ranges from 2 to 150

E takes presentation T1 in input



Behavior on storecomm(N)



Running CVC and E on swap(N)

CVC: does up to N = 10, runs out of memory on
 any instance of swap(12)

E with presentation T1: same as above and slower

E with presentation T2: succeeds also for N ≥ 12



Behavior on swap(N)



Discussion

• Need more experiments: other synthetic 
benchmarks, other theories, combination of 
theories, real-world problems

• Understand role of flattening better

• Other provers, e.g., w. more inter-reduction

• Termination results for other theories?

• Complexity of concrete strategies on 
specific theories



Discussion

• Theorem proving may help build better 
satisfiability procedures

• Theorem proving needs more work on auto 
mode and search plans (search, not blind 
saturation)

• Proof assistants incorporate satisfiability 
procedures: integration of automated 
theorem proving in proof assistants


