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Three fundamental concepts in theorem proving

I The ability of distinguishing assumptions and conjecture

I The ability of replacing equals by equals, and

I The ability of generating equations from equations
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Larry Wos (1930–2020)

I BS and MS U. Chicago, PhD UIUC

I MCS Division, Argonne National Laboratory since 1957

I Leader of the theorem-proving research group

I A founder of the Conference on Automated Deduction

I First Editor-in-Chief of the Journal of Automated Reasoning

I Founder of the Association for Automated Reasoning

I First Automated Theorem Proving Prize of the American
Mathematical Society (with Steve Winker) in 1982

I First Herbrand Award in 1992
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Why Argonne?

I (John) Alan Robinson alternated summer jobs at Argonne and
Stanford in 1961-1966

I Initial task at Argonne: an implementation of the
Davis-Putnam procedure (1960)

I At Argonne Robinson invented first-order resolution by
combining propositional resolution (from the Davis-Putnam
procedure) and unification (1962-1964)
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Two major research problems

I How to control resolution?
I Wos et al.: the set of support strategy (1965)

I How to build equality into resolution?
I Wos et al: the demodulation inference rule (1967)
I Wos et al: the paramodulation inference rule (1969)

I That opened six decades of research in theorem proving
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The theorem-proving problem

I A set H of formulas viewed as assumptions or hypotheses

I A formula ϕ viewed as conjecture

I Theorem-proving problem: H |=? ϕ

I Equivalently: is H ∪ {¬ϕ} unsatisfiable?

I Refutation: H ∪ {¬ϕ} `?⊥
I If success, then ϕ is a theorem of H, or H ⊃ ϕ is a theorem

I Clausal form: H ∪ {¬ϕ}; S set of clauses

I Form of the problem: S `? 2 (the empty clause)
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At the foundations of computer science

I David Hilbert: Entscheidungsproblem (first-order validity)

I Kurt Gödel: completeness of first-order logic
(truth and theoremhood correspond)

Later: Leon Henkin (unsatisfiable iff inconsistent)

I Alan Turing: Turing machine, first undecidable problem
(halting), reduction of the Entscheidungsproblem to halting

I Jacques Herbrand: semidecidability of first-order validity

Martin Davis. The Universal Computer–The Road from Leibniz to Turing
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What is resolution?

An example in propositional logic:

P ∨ Q ¬P ∨ R

Q ∨ R

One of the inference rule of the Davis-Putnam procedure
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Resolution for first-order logic (FOL)

S ∪ {L1 ∨ C , L2 ∨ D}
S ∪ {L1 ∨ C , L2 ∨ D, (C ∨ D)σ} L1σ = ¬L2σ

I L1 and L2 have opposite sign

I σ is a substitution: it replaces variables with terms

I σ is a unifier: it makes the two sides identical

I σ is the most general unifier (mgu): least commitment

I Resolution is an expansion inference rule

I Expansion inference rules use unification
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Example

P(g(z), g(y)) ∨ ¬R(z , y) ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

where σ = {x ← g(z), y ← a} is the mgu

σ′ = {x ← g(b), y ← a, z ← b} is not an mgu
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Factoring

S ∪ {L1 ∨ . . . ∨ Lk ∨ C}
S ∪ {L1 ∨ . . . ∨ Lk ∨ C , (L1 ∨ C )σ} L1σ = L2σ = . . . Lkσ

I σ is the mgu

I Factoring is an expansion inference rule

I Needed for the completeness of resolution:
consider P(x) ∨ P(y) and ¬P(z) ∨ ¬P(w)
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Subsumption

S ∪ {C , D}
S ∪ {C}

Cσ ⊆ D

I σ is a matching substitution

I Clauses as multisets of literals (ex.: {P(a),P(a),Q(b)})
I P(x) ∨ P(y) does not subsume P(z)

I Prevents a clause from subsuming its factors

I Cσ ⊆ D and Dσ ⊆ C : variants (retain the oldest)

I Subsumption is a contraction inference rule

I Contraction inference rules use matching
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Motivation for the set of support strategy

I Even with subsumption, resolution is too prolific

I Too many irrelevant inferences (do not appear in any proof)

I H ∪ {¬ϕ}; S : distinction between H and ¬ϕ forgotten

I Larry Wos was interested in problems from mathematics

I In math problems H |=? ϕ the set H is known to be consistent
(e.g., presentation of a theory)

I Then what is the point in expanding H?
It won’t give a contradiction!
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The set of support strategy

I H ; A: clausal form of H

I ¬ϕ; SOS : clausal form of ¬ϕ: goal clauses

I SOS is the input set of support

I If H is consistent, so is A: no point in expanding A

I A resolution step must have at least one parent from SOS

I All resolvents are added to SOS : only SOS grows
(the factors of clauses in A are added to A upfront)

I A goal-sensitive strategy
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The given-clause algorithm

I Two lists sos and axioms initialized with SOS and A

I Loop until proof found or sos empty which means sat

I At every iteration: pick a given-clause C from sos

I The best according to an evaluation function
(weight, pick-given ratio)

I Perform all expansion steps between C and clauses in axioms

I Move C from sos to axioms

I Add all newly generated clauses to sos

I No inference whose premises are both in A

Maria Paola Bonacina Set of Support, Demodulation, and Paramodulation



Outline
Introduction

The set of support strategy
History of demodulation

History of paramodulation/superposition

Motivation for demodulation

I Larry Wos was interested in applying theorem proving to
mathematics: equality is everywhere

I Reasoning with equations:
Replacing equals by equals (Birkhoff theorem)

I Problem: non-termination
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Example: non-termination due to a cycle

1. f (a, b, x) ' f (x , x , x)

2. g(x , y) ' x

3. g(x , y) ' y}

Infinite reduction:
f (g(a, b), g(a, b), g(a, b))→
f (a, g(a, b), g(a, b))→
f (a, b, g(a, b))→
f (g(a, b), g(a, b), g(a, b))→ . . . . . . . . .
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Example: non-termination due to infinite growth

i(x + y) ' (i(i(x)) + y) + y

Infinite reduction:
i((i(i(0)) + 1) + 1)→
with matching substitution {x ← i(i(0)) + 1, y ← 1}
(i(i(i(i(0)) + 1)) + 1) + 1→
with matching substitution {x ← i(i(0)), y ← 1}
(i((i(i(i(i(0)))) + 1) + 1) + 1) + 1→
with matching substitution {x ← i(i(i(i(0)))) + 1, y ← 1}
(((i(i(i(i(i(i(0)))) + 1)) + 1) + 1) + 1) + 1→ . . . . . . . . .
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Solution: a well-founded ordering

I Replace s by t only if t is smaller in a well-founded ordering

I An ordering � is well-founded if
there is no infinite descending chain
s0 � s1 � . . . si � si+1 � . . .
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Larry Wos’ demodulation inference rule (1967)

S ∪ {l ' r , C [lσ]}
S ∪ {l ' r , C [rσ]}

‖C [lσ]‖ > ‖C [rσ]‖

I l ' r is called demodulant or demodulator

I σ is a matching substitution

I ‖C ‖ is the number of symbols in C

I Decreasing the number of symbols is well-founded
because the ordering on the natural numbers is well-founded
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Problems opened by Larry Wos’ demodulation

I What if the number of symbols does not change?
Ex.: x + y ' y + x

I What if we wanted to increase the number of symbols?
Ex.: x ∗ (y + z) ' x ∗ y + x ∗ z

I Does resolution remain refutationally complete if we add
demodulation?
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Knuth-Bendix completion procedure (1970)

I Orient equations into rewrite rules:
l ' r becomes l → r if l � r for � a well-founded ordering

I Apply l → r to rewrite or reduce t[lσ] to t[rσ]

I Knuth-Bendix ordering (KBO): uses a precedence on symbols
and a weight function that generalizes symbol count

I Knuth-Bendix completion takes a set of equations E and
produces a canonical rewrite systems:
E |= ∀x̄ .s ' t iff there exists a u such that ŝ

∗→ u
∗← t̂

I If an equation in E can be neither simplified, nor deleted
(s ' s), nor oriented, the procedure fails
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Reduction ordering

I Well-founded

I Stable: t � u implies tσ � uσ for all substitutions σ
I Monotonic: t � u implies c[t] � c[u] for all contexts c

I Knuth-Bendix orderings
I Recursive path orderings [Dershowitz 1982]
I Lexicographic path orderings [Kamin & Lévy 1980]

I In general these orderings are partial, not total!
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Knuth-Bendix completion as theorem proving

I E |=? ∀x̄ .s ' t

I Negating ∀x̄ .s ' t yields ∃x̄ .s 6' t and hence ŝ 6' t̂ where ŝ is
s with all vars replaced by Skolem constants

I Refutationally: E ∪ {ŝ 6' t̂} `? 2

I Apply Knuth-Bendix completion to E and reduce ŝ and t̂
whenever possible

I Refutation found if ŝ
∗→ u and t̂

∗→ u so that u 6' u
contradicts x ' x

I Complete unless the procedure fails [Gérard Huet 1981]
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Knuth-Bendix completion as inference rules

I State of the derivation: (E ;R) where E is a set of equations
and R a set of rewrite rules

I A reduction ordering on equational proofs

I An inference rule deriving (E ′;R ′) from (E ;R) is
proof-reducing
if for all theorems s ' t of E ∪ R and
for all proofs π of s ' t in E ∪ R
there exists a proof π′ of s ' t in E ′ ∪ R ′ such that π ≥ π′

[Leo Bachmair et al. 1986] [Leo Bachmair & Nachum Dershowitz 1994]
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Inference rules for demodulation in KB completion

The Simplify rule reduces a side of an equation:

(E ∪ {p[lσ] ' q};R ∪ {l → r})
(E ∪ {p[rσ] ' q};R ∪ {l → r})

where ' is symmetric
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Inference rules for demodulation in KB completion

The Compose rule reduces the right-hand side of a rewrite rule
so that another rewrite rule is produced:

(E ;R ∪ {p → q[lσ], l → r})
(E ;R ∪ {p → q[rσ], l → r})
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Inference rules for demodulation in KB completion

The Collapse rule reduces the left-hand side of a rewrite rule, so
that an equation is produced:

(E ;R ∪ {p[lσ]→ q, l → r})
(E ∪ {p[rσ] ' q};R ∪ {l → r})

p[lσ] ·� l

where ·� is the strict encompassment ordering on terms
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The encompassment ordering

I Encompassment: t ·� s if t = c[sϑ]

I ϑ is a substitution

I Strict: either c is not empty or ϑ is not a variable renaming

I Prevent l → r from reducing p[lσ] if l and p[lσ] are variants:
not proof-reducing

I Disallow applying f (e, y) ' y to reduce f (e, x) ' x
Disallow applying f (e, y) ' y to reduce f (e, x) ' h(x)
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Still only a partial solution

I What about equations that cannot be oriented into rewrite
rules?
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Unfailing or ordered completion (1987)

I It is not necessary to orient equations into rewrite rules

I It suffices to orient the applied instances

I The procedure does not fail

I It produces only a ground canonical rewrite system, but
ground canonicity is enough for theorem proving:
the target theorem ŝ 6' t̂ is ground

I State of the derivation: (E ; ŝ 6' t̂)
E : set of equations

[Jieh Hsiang & Michaël Rusinowitch 1987] [Leo Bachmair et al. 1989]
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Complete simplification ordering

I Subterm property: c[t] � t

I Stable: t � u implies tσ � uσ for all substitutions σ

I Monotonic: t � u implies c[t] � c[u] for all contexts c

I These three properties imply well-founded
I Total on ground terms

I Knuth-Bendix orderings
I Recursive path orderings (not all)
I Lexicographic path orderings
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Inference rules for demodulation in completion

Simplification of the target

(E ∪ {l ' r}; ŝ[lσ] 6' t̂)

(E ∪ {l ' r}; ŝ[rσ] 6' t̂)
lσ � rσ
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Inference rules for demodulation in completion

Simplification of the presentation

(E ∪ {p[lσ] ' q, l ' r}; ŝ 6' t̂)

(E ∪ {p[rσ] ' q, l ' r}; ŝ 6' t̂)

I l ' r is called a simplifier

I lσ � rσ

I p[lσ] ·� l ∨ q � p[rσ]
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The side condition for simplification of equations

I p[lσ] ·� l ∨ q � p[rσ]

I It lets l ' r simplify p[lσ] ' q when p[lσ] is a variant of l
provided that q � p[rσ]

I Apply f (e, y) ' y to simplify f (e, x) ' h(x)?
Yes because h(x) � x

I Apply f (e, y) ' y to simplify f (e, x) ' x?
No because x 6� y

I Apply f (e, x) ' h(x) to simplify f (e, y) ' y?
No because y 6� h(y)
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Example of simplification

1. f (x) ' g(x)

2. g(h(y)) ' k(y)

3. f (h(b)) 6' k(b) (target theorem)

I Precedence: f > g > h > k > b

I (1) simplifies the target to g(h(b)) 6' k(b)
with matching substitution σ = {x ← h(b)}
since f (h(b)) � g(h(b))

I (2) simplifies g(h(b)) 6' k(b) to k(b) 6' k(b)
with matching substitution ϑ = {y ← b}
since g(h(b)) � k(b)
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Still only a partial solution

I What about demodulation of clauses?

I A key step: from ordering terms to ordering literals
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Multiset extension

I Multisets, e.g., {P(a),P(a),Q(b)}, {5, 4, 4, 4, 3, 1, 1}
I From � to �mul :

I M �mul ∅ if M 6= ∅
I M ∪ {a} �mul N ∪ {a} if M �mul N
I M ∪ {a} �mul N ∪ {b} if a � b and M ∪ {a} �mul N

I {5} �mul {4, 4, 4, 3, 1, 1}
I If � is well-founded then �mul is well-founded

[Nachum Dershowitz & Zohar Manna 1979]
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From ordering terms to ordering literals

I Complete or completable reduction ordering
(all KBO’s, RPO’s, LPO’s)

I Read a positive literal L as L ' > and ¬L as L 6' >
where > is a new symbol such that t � > for all terms t

I Equality is the only predicate symbol

I Treat p ' q as the multiset {p, q} and
p 6' q as the multiset {p, p, q, q}

I Apply the multiset extension of the ordering on terms

[Leo Bachmair & Harald Ganzinger 1994]

Maria Paola Bonacina Set of Support, Demodulation, and Paramodulation



Outline
Introduction

The set of support strategy
History of demodulation

History of paramodulation/superposition

A simplification inference rule for clauses

S ∪ {C [lσ], l ' r}
S ∪ {C [rσ], l ' r}

lσ � rσ, C [lσ] � (lσ ' rσ)

In the superposition calculus SP
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The above example revisited

1. f (x) ' g(x)

2. g(h(y)) ' k(y)

3. f (h(b)) 6' k(b) (target theorem)

I Precedence: f > g > h > k > b

I (1) simplifies the target to g(h(b)) 6' k(b)
with matching substitution σ = {x ← h(b)}
since {f (h(b)), f (h(b)), k(b), k(b)} �mul {f (h(b)), g(h(b))}

I (2) simplifies g(h(b)) 6' k(b) to k(b) 6' k(b)
with matching substitution ϑ = {y ← b}
since {g(h(b)), g(h(b)), k(b), k(b)} �mul {g(h(b)), k(b)}
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Another example

1. f (x) ' b

2. f (b) ' c

I Precedence: b � c

I Simplification of completion allows (1) to simplify (2) to
b ' c with matching substitution σ = {x ← b}
because f (b) � b and f (b) ·� f (x)

I But {f (b), c} �mul {f (b), b} does not hold

I Simplification of SP does not apply

I Encompassment demodulation for SP
[André Duarte and Konstantin Korovin at IJCAR 2022]
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Motivation for paramodulation/superposition

I Once replacement of equals by equals is restricted to be
well-founded, it does not suffice for completeness

I We need an inference rule that generates equations from
equations
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The equality axioms in clausal form

x ' x (Reflexivity)

x 6' y ∨ y ' x (Symmetry)

x 6' y ∨ y 6' z ∨ x ' z (Transitivity)
n∨

i=1

xi 6' yi ∨ f (x̄) ' f (ȳ) (Function Substitutivity)

n∨
i=1

xi 6' yi ∨ ¬P(x̄) ∨ P(ȳ) (Predicate Substitutivity)

Added to the input for resolution: not practical!
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Larry Wos’ paramodulation inference rule (1969)

S ∪ {l ' r ∨ C , M[t] ∨ D}
S ∪ {l ' r ∨ C , M[t] ∨ D, (C ∨M[r ] ∨ D)σ} lσ = tσ

I ' is symmetric and σ is the mgu of l and t

I C and D are disjunctions of literals

I l ' r ∨ C is the para-from clause

I l ' r is the para-from literal

I M[t] ∨ D is the para-into clause

I M[t] is the para-into literal

I (C ∨M[r ] ∨ D)σ is called paramodulant
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Problems opened by Larry Wos’ paramodulation

I Wos–Robinson conjecture:
paramodulation is refutationally complete
without paramodulating into variables and
without functionally reflexive axioms
Functionally reflexive axioms: f (x̄) ' f (x̄) for all function symbols f

I Refutational completeness of resolution and paramodulation in
the presence of demodulation and other contraction rules?
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Knuth-Bendix completion procedure (1970)

Superposition of rewrite rules

(E ;R ∪ {l → r , p[t]→ q})
(E ∪ {p[r ]σ ' qσ};R ∪ {l → r , p[t]→ q}) t 6∈ X , lσ = tσ

I σ is the mgu of l and t

I t is not a variable (X is the set of variable symbols)

I p[r ]σ ' qσ is called a critical pair
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Unfailing or ordered completion (1987)

Superposition of equations

E ∪ {l ' r , p[t] ' q}
E ∪ {l ' r , p[t] ' q, p[r ]σ ' qσ} t 6∈ X , lσ = tσ

I lσ 6� rσ

I p[t]σ 6� qσ

I l ' r and p[t] ' q superpose only if their instances by σ are either

orientable (lσ � rσ) or uncomparable

I Equivalently: only if lσ is strictly maximal in {lσ, rσ} and p[t]σ is

strictly maximal in {p[t]σ, qσ}
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Example

f (z , e) ' z f (l(x , y), y) ' x

l(x , e) ' x

I f (z , e)σ = f (l(x , y), y)σ

I σ = {z ← l(x , e), y ← e} most general unifier

I f (l(x , e), e) � l(x , e) (by the subterm property)

I f (l(x , e), e) � x (by the subterm property)

I Superposing two equations yields a peak:
l(x , e)← f (l(x , e), e)→ x
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Another challenge

How to obtain an inference system for FOL+= that

I Avoids paramodulating or superposing into variables

I Is restricted by the ordering

I Is refutationally complete also in the presence of contraction
(e.g., demodulation, subsumption, tautology deletion)

I Reduces to completion for an input of the form E ∪ {ŝ 6' t̂}
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Maximal literals

I Clauses as multisets of literals

I Literal L is maximal in clause C if
¬(∃M ∈ C . M � L) or equivalently ∀M ∈ C . L 6≺ M
The other literals can only be smaller, equal, or uncomparable

I Literal L is strictly maximal in clause C if
¬(∃M ∈ C . M � L) or equivalently ∀M ∈ C . L 6� M
The other literals can only be smaller or uncomparable
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(Ordered) Resolution

S ∪ {L1 ∨ C , L2 ∨ D}
S ∪ {L1 ∨ C , L2 ∨ D, (C ∨ D)σ}

I L1σ = ¬L2σ (σ mgu)

I ∀M ∈ C . L1σ 6� Mσ (strictly maximal)

I ∀M ∈ D. L2σ 6� Mσ (strictly maximal)
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Example

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

I σ = {x ← g(z), y ← a}
I Check that P(g(z), g(a)) 6� ¬R(z , a)

I Check that P(g(z), g(a)) 6� Q(g(z), g(g(z)))

I Allowed with precedence P > R > Q > g

I Not allowed with precedence Q > R > P > g > a
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(Ordered) Factoring

S ∪ {L1 ∨ . . . ∨ Lk ∨ C}
S ∪ {L1 ∨ . . . ∨ Lk ∨ C , (L1 ∨ C )σ}

I L1σ = L2σ = . . . Lkσ (σ mgu)

I ∀M ∈ C . L1σ 6� Mσ (strictly maximal)
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Toward (ordered) paramodulation / superposition

I Para-from clause: l ' r ∨ C
I Para-into clause:

I M[t] ∨ D
I p[t] ' q ∨ D
I p[t] 6' q ∨ D

I lσ = tσ (mgu σ)

I The subterm t is not a variable (t 6∈ X )
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Four ordering-based conditions

(i) Para-from literal strictly maximal: ∀Q ∈ C . (l ' r)σ 6� Qσ

(ii) Left-hand side of para-from literal strictly maximal: lσ 6� rσ

(iii.a) Para-into literal strictly maximal: ∀Q ∈ D. M[t]σ 6� Qσ
∀Q ∈ D. (p[t] ' q)σ 6� Qσ

(iii.b) Or maximal if it is a negated equation:
∀Q ∈ D. (p[t] 6' q)σ 6≺ Qσ

(iv) Left-hand side of positive equational para-into literal strictly
maximal: p[t]σ 6� qσ
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(Ordered) paramodulation

S ∪ {l ' r ∨ C , M[t] ∨ D}
S ∪ {l ' r ∨ C , M[t] ∨ D, (C ∨M[r ] ∨ D)σ} (i) (ii) (iii .a)

The refutational completeness of the Ordered Literal Inference
System with (ordered) resolution, (ordered) factoring, and
(ordered) paramodulation settled the Wos–Robinson conjecture

[Jieh Hsiang & Michaël Rusinowitch 1991]
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The superposition calculus SP

Affords all four ordering-based conditions:

S ∪ {l ' r ∨ C , p[t] ' q ∨ D}
S ∪ {l ' r ∨ C , p[t] ' q ∨ D, (C ∨ p[r ] ' q ∨ D)σ}

with (i), (ii), (iii.a), and (iv)

S ∪ {l ' r ∨ C , p[t] 6' q ∨ D}
S ∪ {l ' r ∨ C , p[t] 6' q ∨ D, (C ∨ p[r ] 6' q ∨ D)σ}

with (i), (ii), (iii.b), and (iv)

and solved also the problem of generalizing completion to FOL+=
[Leo Bachmair & Harald Ganzinger 1994]
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Six decades of research

I From the set of support strategy to the given-clause algorithm
(Bill McCune with Otter and Stephan Schulz with Eprover)

I From demodulation and paramodulation to the superposition
calculus SP [Leo Bachmair & Harald Ganzinger 1994]

I Still at the heart of contemporary first-order theorem provers

I Extended to higher order theorem proving:
λ-superposition [Alex Bentkamp et al. 2021]
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