Overview of automated reasoning and ordering-based strategies

Maria Paola Bonacina

Visiting: Computer Science Laboratory, SRI International, Menlo Park, CA, USA Affiliation: Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy, EU

Invited talk at the 9th Summer School on Formal Techniques (SSFT) SRI International and Menlo College, Atherton, California, USA, May 19, 2019

(Subsuming the invited talk "Ordering-based strategies for theorem proving," 6th SSFT, May 2016, and the

lecture "Introduction to automated reasoning," 1st Int. Summer School on SAT/SMT/AR, Instituto

Superior Técnico, U. Lisboa, Lisbon, Portugal, EU, June 2016)

Automated reasoning

Some building blocks for reasoning

The theorem-proving problem

Inference mechanisms

Theorem-proving strategies

Automated reasoning

Automated reasoning is

- Symbolic computation
- Artificial intelligence
- Computational logic

- Knowledge described precisely: symbols
- Symbolic reasoning: Logico-deductive, Probabilistic ...

The gist of this lecture

- Logico-deductive reasoning
- Focus: first-order logic (FOL)
- Take-home message:
 - FOL as machine language
 - Reasoning is about ignoring what's redundant as much as it is getting what's relevant
 - Expansion and Contraction
 - Ordering-based, instance-based, subgoal-reduction-based strategies
 - Inference, Search, and algorithmic building blocks

Signature

- ► A finite set of constant symbols: *a*, *b*, *c* ...
- A finite set of function symbols: f, g, h ...
- A finite set of predicate symbols: P, Q, \simeq ...
- Arities
- Sorts (important but key concepts can be understood without)

An infinite supply of variable symbols: x, y, z, w ...

Defined symbols and free symbols

- \blacktriangleright A symbol is defined if it comes with axioms, e.g., \simeq
- It is free otherwise, e.g., P
- Aka: interpreted/uninterpreted
- ▶ Equality (≃) comes with the congruence axioms

Terms and atoms

Terms:
$$a, x, f(a, b), g(y)$$

 Herbrand universe U: all ground terms (add a constant if there is none in the given signature)

• Atoms:
$$P(a)$$
, $f(x,x) \simeq x$

- ► Literals: P(a), $f(x,x) \simeq x$, $\neg P(a)$, $f(x,x) \not\simeq x$
- ► Herbrand base B: all ground atoms
- If there is at least one function symbol, \mathcal{U} and \mathcal{B} are infinite
- This is key if the reasoner builds new terms and atoms

Substitution

A substitution is a function from variables to terms that is not identity on a finite set of variables

$$\bullet \ \sigma = \{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$$

$$\bullet \ \sigma = \{x \leftarrow a, y \leftarrow f(w), z \leftarrow w\}$$

• Application: $h(x, y, z)\sigma = h(a, f(w), w)$

Matching

- Given terms or atoms s and t
- f(x,g(y)) and f(g(b),g(a))
- Find matching substitution: σ s.t. $s\sigma = t$ $\sigma = \{x \leftarrow g(b), y \leftarrow a\}$
- $s\sigma = t$: t is instance of s, s is more general than t

Unification

- Given terms or atoms s and t
- f(g(z), g(y)) and f(x, g(a))
- Find substitution σ s.t. $s\sigma = t\sigma$: $\sigma = \{x \leftarrow g(z), y \leftarrow a\}$
- Unification problem: $E = \{s_i = {}^{?} t_i\}_{i=1}^n$

Most general unifier (mgu): e.g., not
$$\sigma' = \{x \leftarrow g(b), y \leftarrow a, z \leftarrow b\}$$

Orderings

- View \mathcal{U} and \mathcal{B} as ordered sets
- With variables: partial order
- Extend to literals (add sign) and clauses
- Extend to proofs (e.g., equational chains)
- Why? To detect and delete or replace redundant data
- E.g., replace something by something smaller in a well-founded ordering

Precedence

A partial order > on the signature

Example: the Ackermann function

•
$$ack(0, y) \simeq succ(y)$$

•
$$ack(succ(x), 0) \simeq ack(x, succ(0))$$

• $ack(succ(x), succ(y)) \simeq ack(x, ack(succ(x), y))$

Precedence ack > succ > 0

Stability

- ► ≻ ordering
- \blacktriangleright s \succ t
- $f(f(x,y),z) \succ f(x,f(y,z))$
- Stability: $s\sigma \succ t\sigma$ for all substitutions σ

►
$$f(f(g(a), b), z) \succ f(g(a), f(b, z))$$

 $\sigma = \{x \leftarrow g(a), y \leftarrow b\}$

・ロト ・日ト ・ヨト ・ヨト

Monotonicity

► ≻ ordering

- s ≻ t
- Example: $f(x, i(x)) \succ e$
- Monotonicity: r[s] ≻ r[t] for all contexts r (A context is an expression, here a term or atom, with a hole)

•
$$f(f(x, i(x)), y) \succ f(e, y)$$

Subterm property

- \blacktriangleright > ordering
- ▶ $s[t] \succ t$
- Example: $f(x, i(x)) \succ i(x)$

・ロト ・日ト ・ヨト ・ヨト

Э

Simplification ordering

- Stable, monotonic, and with the subterm property: simplification ordering
- A simplification ordering is well-founded or equivalently Noetherian
- ▶ No infinite descending chain $s_0 \succ s_1 \succ \ldots s_i \succ s_{i+1} \succ \ldots$

(Noetherian from Emmy Noether)

Multiset extension

• Multisets, e.g., $\{a, a, b\}$, $\{5, 4, 4, 4, 3, 1, 1\}$

From
$$\succ$$
 to \succ_{mul} :
 $M \succ_{mul} \emptyset$
 $M \cup \{a\} \succ_{mul} N \cup \{a\}$ if $M \succ_{mul} N$
 $M \cup \{a\} \succ_{mul} N \cup \{b\}$ if $a \succ b$ and $M \cup \{a\} \succ_{mul} N$
 $\{5\} \succ_{mul} \{4, 4, 4, 3, 1, 1\}$

▶ If \succ is well-founded then \succ_{mul} is well-founded

Recursive path ordering (RPO)

$$s = f(s_1, \dots, s_n) \succ g(t_1, \dots, t_m) = t \text{ if}$$

$$Either f > g \text{ and } \forall k, 1 \le k \le m, s \succ t_k$$

$$Or f = g \text{ and } \{s_1, \dots, s_n\} \succ_{mul} \{t_1, \dots, t_n\}$$

$$Or \exists k \text{ such that } s_k \succeq t$$

Distributivity by RPO

イロト イヨト イヨト イヨト

臣

Lexicographic extension

- ▶ Tuples, vectors, words, e.g., (*a*, *a*, *b*), (5, 4, 4, 4, 3, 1, 1)
- From \succ to \succ_{lex} : $(a_1, \ldots, a_n) \succ_{lex} (b_1, \ldots, b_m)$ if $\exists i \text{ s.t. } \forall j, 1 \leq j < i, a_j = b_j,$ and $a_i \succ b_i$

• (5)
$$\succ_{lex}$$
 (4, 4, 4, 3, 1, 1)

- $\blacktriangleright (1,2,3,5,1) \succ_{lex} (1,2,3,3,4)$
- If \succ is well-founded then \succ_{lex} is well-founded

Lexicographic path ordering (LPO)

$$s = f(s_1,\ldots,s_n) \succ g(t_1,\ldots,t_m) = t$$
 if

• Either
$$f > g$$
 and $\forall k, 1 \leq k \leq m, s \succ t_k$

• Or
$$f = g$$
, $(s_1, \ldots, s_n) \succ_{lex} (t_1, \ldots, t_n)$,
and $\forall k, i < k \le n, s \succ t_k$

• Or
$$\exists k$$
 such that $s_k \succeq t$

Multiset and lexicographic extension can be mixed: give each function symbol either multiset or lexicographic status

Ackermann function by LPO

- Precedence ack > succ > 0
- ack(0, y) ≻ succ(y) because ack > succ and ack(0, y) ≻ y
- ► $ack(succ(x), 0) \succ ack(x, succ(0))$ because $(succ(x), 0) \succ_{lex} (x, succ(0))$, as $succ(x) \succ x$, and $ack(succ(x), 0) \succ succ(0)$, since ack > succ and $ack(succ(x), 0) \succ 0$

From ordering terms to ordering literals

- Read a positive literal L as L ≃ ⊤ and ¬L as L ≄ ⊤ where ⊤ is a new symbol such that t ≻ ⊤ for all terms t
- Equality is the only predicate symbol
- Treat p ≃ q as the multiset {p, q} and p ≄ q as the multiset {p, p, q, q}
- Apply the multiset extension of the ordering on terms

Variables cause partiality

- Let s and t be two distinct non-ground terms or atoms
- If $\exists x \in Var(s) \setminus Var(t)$ then $t \not\succ s$
- $g(x) \neq f(x,y)$
- If $\exists y \in Var(t) \setminus Var(s)$ then $s \not\succ t$
- ▶ Both: *t*#*s* (incomparable)
- f(x) # g(y), f(x) # f(y), g(x, z) # f(x, y)

Complete simplification ordering (CSO)

- LPO and RPO are simplification orderings
- Simplification ordering total on ground terms and atoms: complete simplification ordering (CSO)
- LPO and RPO with a total precedence are CSO
- LPO and RPO do not correlate with size e.g., f(a) ≻ g⁵(a) if f > g
- Knuth-Bendix ordering (KBO): based on precedence and a weight function

Summary of the first part

- Language: signature, terms, atoms, literals
- Substitutions instantiate variables
- Matching and unification
- A partially ordered world of terms, atoms, literals
- More building blocks: indexing to detect matching and unification fast

At the dawn of computer science

- Kurt Gödel: completeness of first-order logic
 Later: Leon Henkin (consistency implies satisfiability)
- Alan Turing: Entscheidungsproblem; "computor;" Turing machine; universal computer; halting problem; undecidability; undecidability of first-order logic
- Herbrand theorem: semi-decidability of first-order logic

(Herbrand theorem: Jacques Herbrand + Thoralf Skolem + Kurt Gödel)

("Computor:" Robert I. Soare "Computability and recursion" Bulletin of Symbolic Logic 2:284–321, 1996)

The theorem-proving problem

- A set H of formulas viewed as assumptions or hypotheses
- A formula φ viewed as conjecture
- Theorem-proving problem: $H \models^? \varphi$
- Equivalently: is $H \cup \{\neg\varphi\}$ unsatisfiable?
- If $H \models \varphi$, then φ is a theorem of H, or $H \supset \varphi$ is a theorem

$$Th(H) = \{\varphi \colon H \models \varphi\}$$

Infinitely many interpretations on infinitely many domains: how do we start?

Two simplifications

- Restrict formulas to clauses: less expressive, but suitable as machine language
- Restrict interpretations to Herbrand interpretations: a semantics built out of syntax
- All we have in machine's memory are symbols, that is, syntax

Clausal form

- Clause: disjunction of literals where all variables are implicitly universally quantified
- $\blacktriangleright \neg P(f(z)) \lor \neg Q(g(z)) \lor R(f(z),g(z))$
- Ordering >> on literals extended to clauses by multiset extension
- No loss of generality: every formula can be transformed into an equisatisfiable set of clauses
- Every clause has its own variables

Transformation into clausal form

- Eliminate ≡ and ⊃: F ≡ G becomes (F ⊃ G) ∧ (G ⊃ F) and F ⊃ G becomes ¬F ∨ G
- Reduce the scope of all occurrences of ¬ to an atom: (each quantifier occurrence binds a distinct variable¬(F ∨ G) becomes ¬F ∧ ¬G, ¬(F ∧ G) becomes ¬F ∨ ¬G, ¬¬F becomes F, ¬∃F becomes ∀¬F, and ¬∀F becomes ∃¬F
- Standardize variables apart (each quantifier occurrence binds a distinct variable symbol)
- ▶ Skolemize \exists and then drop \forall
- Distributivity and associativity: F ∨ (G ∧ H) becomes (F ∨ G) ∧ (F ∨ H) and F ∨ (G ∨ H) becomes F ∨ G ∨ H

Skolemization

► Outermost ∃:

- ► ∃x F[x] becomes F[a] (all occurrences of x replaced by a) a is a new Skolem constant
- There exists an element such that F: let this element be named a
- ∃ in the scope of ∀:
 - ∀y∃x F[x, y] becomes ∀y F[g(y), y]
 (all occurrences of x replaced by g(y))
 g is a new Skolem function
 - For all y there is an x such that F: x depends on y; let g be the map of this dependence

A simple example

- $\blacktriangleright \neg \{ [\forall x \ P(x)] \supset [\exists y \ \forall z \ Q(y,z)] \}$
- $\neg \{ \neg [\forall x \ P(x)] \lor [\exists y \ \forall z \ Q(y,z)] \}$
- $\blacktriangleright \ [\forall x \ P(x)] \land \neg [\exists y \ \forall z \ Q(y,z)]$
- $\blacktriangleright \ [\forall x \ P(x)] \land [\forall y \ \exists z \ \neg Q(y,z)]$
- $[\forall x \ P(x)] \land [\forall y \neg Q(y, f(y))]$ where f is a Skolem function
- $\{P(x), \neg Q(y, f(y))\}$: a set of two unit clauses

Clausal form and Skolemization

- All steps in the transformation into clauses except Skolemization preserve logical equivalence (for every interpretation, F is true iff F' is true)
- Skolemization only preserves equisatisfiability (F is (un)satisfiable iff F' is (un)satisfiable)
- Why Skolem symbols must be new? So that we can interpret them as in the model of F when building a model of F'

Herbrand interpretations

- First-order interpretation $\mathcal{M} = \langle \mathcal{D}, \Phi \rangle$
- Let \mathcal{D} be the Herbrand universe \mathcal{U}
- Let Φ interpret constant and function symbols as themselves:

•
$$\Phi(a) = a$$

$$\Phi(f)(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

- Predicate symbols? All possibilities
- The powerset $\mathcal{P}(\mathcal{B})$ gives all possible Herbrand interpretations
- Herbrand model: a satisfying Herbrand interpretation

イロト イボト イラト イラト

Clausal form and Herbrand interpretations

- Theorem-proving problem: is $H \cup \{\neg \varphi\}$ unsatisfiable?
- Transform H ∪ {¬φ} into set S of clauses (S = T ⊎ SOS where SOS contains the clauses from ¬φ)
- $H \cup \{\neg \varphi\}$ and S are equisatisfiable
- Theorem-proving problem: is S unsatisfiable?
- ► S is unsatisfiable iff S has no Herbrand model
- From now on: only Herbrand interpretations

Not for formulas

- $\blacktriangleright \exists x \ P(x) \land \neg P(a)$
- Is it satisfiable? Yes
- Herbrand model? No!
- \emptyset and $\{P(a)\}$ or $\{\neg P(a)\}$ and $\{P(a)\}$
- Clausal form: $\{P(b), \neg P(a)\}$
- Herbrand model: $\{P(b)\}$ or $\{P(b), \neg P(a)\}$

Satisfaction

- M: Herbrand interpretation
- $\mathcal{M} \models S$ if $\mathcal{M} \models C$ for all $C \in S$
- $\mathcal{M} \models C$ if $\mathcal{M} \models C\sigma$ for all ground instances $C\sigma$ of C
- $\mathcal{M} \models C\sigma$ if $\mathcal{M} \models L\sigma$ for some ground literal $L\sigma$ in $C\sigma$

イロト イボト イヨト

Herbrand theorem

- S: set of clauses
- S is unsatisfiable iff there exists a finite set S' of ground instances of clauses in S such that S' is unsatisfiable
- Finite sets of ground instances can be enumerated and tested for propositional satisfiability which is decidable: the first-order theorem-proving problem is semi-decidable

Instance-based strategies: basic idea

- Generate finite set of ground instances
- Test for satisfiability by SAT-solver
- Unsatisfiable: done
- Satisfiable with propositional model *M*: generate ground instances false in *M* and repeat
- Model-driven instance generation

Equality

Congruence axioms in clausal form:

E-satisfiability, E-interpretations, Herbrand E-interpretations

Herbrand theorem

- S: set of clauses
- S is E-unsatisfiable iff there exists a finite set S' of ground instances of clauses in S such that S' is E-unsatisfiable

Summary of the second part

- First-order theorem-proving problem
- Clauses and Herbrand interpretations
- Herbrand theorem
- Theorem proving in first-order logic is semi-decidable
- Design theorem-proving strategies that are semi-decision procedures and implement the Herbrand theorem
- Instance-based strategies aim at implementing directly the Herbrand theorem by emphasizing instance generation

Expansion and contraction

Like many search procedures, most reasoning methods combine various forms of growing and shrinking:

- Ordering-based strategies: expansion and contraction of a set of clauses
- ► Ordering >> on clauses extended to sets of clauses by multiset extension

Expansion

An inference

A B

where A and B are sets of clauses is an expansion inference if

- ► A ⊂ B: something is added
- $\blacktriangleright \text{Hence } A \prec B$
- ► $(B \setminus A) \subseteq Th(A)$ hence $B \subseteq Th(A)$ hence $Th(B) \subseteq Th(A)$ (soundness)

Contraction

An inference

A B

where A and B are sets of clauses is a contraction inference if

- $A \not\subseteq B$: something is deleted or replaced
- ▶ $B \prec_{mul} A$: if replaced, replaced by something smaller
- (A \ B) ⊆ Th(B) hence A ⊆ Th(B) hence Th(A) ⊆ Th(B) (monotonicity or adequacy)

• Every step sound and adequate: Th(A) = Th(B)

イロト 不得 トイラト イラト 二日

Propositional resolution

$$\frac{P \lor \neg Q \lor \neg R, \ \neg P \lor O}{O \lor \neg Q \lor \neg R}$$

where O, P, Q, and R are propositional atoms (aka propositional variables, aka 0-ary predicates)

Propositional resolution

is an expansion inference rule:

$$\frac{S \cup \{ L \lor C, \neg L \lor D \}}{S \cup \{ L \lor C, \neg L \lor D, C \lor D \}}$$

- ► *S* is a set of clauses
- L is an atom
- C and D are disjunctions of literals
- L and $\neg L$ are the literals resolved upon
- $C \lor D$ is called resolvent

First-order resolution

$$\frac{S \cup \{\boldsymbol{L}_1 \lor \boldsymbol{C}, \ \neg \boldsymbol{L}_2 \lor \boldsymbol{D}\}}{S \cup \{\boldsymbol{L}_1 \lor \boldsymbol{C}, \ \neg \boldsymbol{L}_2 \lor \boldsymbol{D}, \ (\boldsymbol{C} \lor \boldsymbol{D})\boldsymbol{\sigma}\}}$$

where $L_1\sigma = L_2\sigma$ for σ mgu

・ロト ・日ト ・ヨト ・ヨト

First-order resolution

$$\frac{P(g(z),g(y)) \lor \neg R(z,y), \ \neg P(x,g(a)) \lor Q(x,g(x))}{\neg R(z,a) \lor Q(g(z),g(g(z)))}$$

where $\sigma = \{x \leftarrow g(z), y \leftarrow a\}$

・ロト ・日ト ・ヨト ・ヨト

Э

Ordered resolution

$$\frac{S \cup \{L_1 \lor C, \neg L_2 \lor D\}}{S \cup \{L_1 \lor C, \neg L_2 \lor D, (C \lor D)\sigma\}}$$

where

•
$$L_1 \sigma = L_2 \sigma$$
 for σ mgu
• $L_1 \sigma \not\preceq M \sigma$ for all $M \in C$
• $\neg L_2 \sigma \not\preceq M \sigma$ for all $M \in D$

・ロト ・回ト ・ヨト ・ヨト

3

Ordered resolution

$$\frac{P(g(z), g(y)) \lor \neg R(z, y), \ \neg P(x, g(a)) \lor Q(x, g(x))}{\neg R(z, a) \lor Q(g(z), g(g(z)))}$$

•
$$\sigma = \{x \leftarrow g(z), y \leftarrow a\}$$

$$\blacktriangleright P(g(z),g(a)) \not\preceq \neg R(z,a)$$

$$\blacktriangleright \neg P(g(z), g(a)) \not\preceq Q(g(z), g(g(z)))$$

• Not allowed, e.g., with Q > R > P > g > a

Subsumption

$$\frac{S \cup \{P(x, y) \lor Q(z), \ Q(a) \lor P(b, b) \lor R(u)\}}{S \cup \{P(x, y) \lor Q(z)\}}$$

 $C = P(x, y) \lor Q(z)$ subsumes $D = Q(a) \lor P(b, b) \lor R(u)$ as there is a substitution $\sigma = \{z \leftarrow a, x \leftarrow b, y \leftarrow b\}$ such that $C\sigma \subset D$ hence $\{C\} \models \{D\}$ (adequacy)

・ロト ・回ト ・ヨト ・ヨト

Subsumption ordering

- Subsumption ordering: $C \leq D$ if $\exists \sigma \ C \sigma \subseteq D$ (as multisets)
- Strict subsumption ordering: $C \blacktriangleleft D$ if $C \trianglelefteq D$ and $C \oiint D$
- ► The strict subsumption ordering < is well-founded
- ► Equality up to variable renaming: C = D if C ≤ D and C ≤ D (C and D are variants)

Subsumption

is a contraction inference rule:

$$\frac{S \cup \{C, D\}}{S \cup \{C\}}$$

- ► Either *C* < *D* (strict subsumption)
- Or C [•] → D and C ≺ D where ≺ is the lexicographic combination of < and another well-founded ordering (e.g., C was generated before D) (subsumption of variants)</p>
- Clause D is redundant
- Subsumption uses matching, resolution uses unification

イロト イボト イヨト

And equality?

Replacing equals by equals as in ground rewriting:

$$\frac{S \cup \{f(a, a) \simeq a, P(f(a, a)) \lor Q(a)\}}{S \cup \{f(a, a) \simeq a, P(a) \lor Q(a)\}}$$

It can be done as $f(a, a) \succ a$ (by the subterm property)

(日) (四) (三) (三) (三)

Simplification

is a contraction inference rule:

$$\frac{S \cup \{f(x,x) \simeq x, P(f(a,a)) \lor Q(a)\}}{S \cup \{f(x,x) \simeq x, P(a) \lor Q(a)\}}$$

•
$$f(x, x)$$
 matches $f(a, a)$ with $\sigma = \{x \leftarrow a\}$
• $f(a, a) \succ a$

・ロト ・日ト ・ヨト ・ヨト

臣

Simplification

$$S \cup \{s \simeq t, \ L[r] \lor C\}$$
$$S \cup \{s \simeq t, \ L[t\sigma] \lor C\}$$

- L is a literal with r as subterm (L could be another equation)
- C is a disjunction of literals
- $\exists \sigma$ such that $s\sigma = r$ and $s\sigma \succ t\sigma$
- $L[t\sigma] \lor C$ is entailed by the original set (soundness)
- $L[r] \lor C$ is entailed by the resulting set (adequacy)
- L[r] ∨ C is redundant

イロト 不得 トイラト イラト 二日

Expansion for equality reasoning

- Simplification is a powerful rule that often does most of the work in presence of equality
- But it is not enough
- Equality reasoning requires to generate new equations
- We need an expansion rule that builds equality into resolution and uses unification not only matching

Superposition/Paramodulation

$$\frac{f(z,e) \simeq z, \ f(I(x,y),y) \simeq x}{I(x,e) \simeq x}$$

•
$$f(z,e)\sigma = f(I(x,y),y)\sigma$$

• $\sigma = \{z \leftarrow l(x, e), y \leftarrow e\}$ most general unifier

- $f(I(x, e), e) \succ I(x, e)$ (by the subterm property)
- $f(I(x, e), e) \succ x$ (by the subterm property)
- Superposing two equations yields a peak: l(x, e) ← f(l(x, e), e) → x

イロト イヨト イヨト イヨト 二日

Superposition/Paramodulation

is an expansion inference rule:

$$\frac{S \cup \{l \simeq r, \ p[s] \bowtie q\}}{S \cup \{l \simeq r, \ p[s] \bowtie q, \ (p[r] \bowtie q)\sigma\}}$$

$$\blacktriangleright$$
 🖂 is either \simeq or $ot\simeq$

- s is not a variable
- $l\sigma = s\sigma$ with σ mgu
- $\blacktriangleright \ I\sigma \not\preceq r\sigma \text{ and } p\sigma \not\preceq q\sigma$

Completion

- New equations closing such peaks are called critical pairs, as they complete the set of equations into a confluent one
- Confluence ensures uniqueness of normal forms
- This procedure is known as Knuth-Bendix completion
- ► Unfailing or Ordered Knuth-Bendix completion ensures ground confluence (unique normal form of ground terms) which suffices for theorem proving in equational theories as the Skolemized form of ¬(∀x̄ s ≃ t) is ground

イロト イボト イヨト

Superposition/Paramodulation

$$\frac{S \cup \{I \simeq r \lor C, \ L[s] \lor D\}}{S \cup \{I \simeq r \lor C, \ L[s] \lor D, \ (L[r] \lor C \lor D)\sigma\}}$$

- C and D are disjunctions of literals
- L[s]: literal paramodulated into
- s is not a variable
- $l\sigma = s\sigma$ with σ mgu
- $I\sigma \not\preceq r\sigma$ and if L[s] is $p[s] \bowtie q$ then $p\sigma \not\preceq q\sigma$
- $(I \simeq r)\sigma \not\preceq M\sigma$ for all $M \in C$
- $L[s]\sigma \not\preceq M\sigma$ for all $M \in D$

What's in a name

- Paramodulation was used first in resolution-based theorem proving where simplification was called demodulation
- Superposition and simplification, or rewriting, were used first in Knuth-Bendix completion
- Some authors use superposition between unit equations and paramodulation otherwise
- Other authors use superposition when the literal paramodulated into is an equational literal and paramodulation otherwise

イロト 不得 トイラト イラト 二日

Derivation

- Input set S
- ▶ Inference system *I*: a set of inference rules
- ► *I*-derivation from *S*:

$$S_0 \vdash_{\mathcal{I}} S_1 \vdash_{\mathcal{I}} \ldots S_i \vdash_{\mathcal{I}} S_{i+1} \vdash_{\mathcal{I}} \ldots$$

where $S_0 = S$ and for all *i*, S_{i+1} is derived from S_i by an inference rule in \mathcal{I}

Refutation: a derivation such that $\Box \in S_k$ for some k

Refutational completeness

An inference system \mathcal{I} is refutationally complete if for all sets S of clauses, if S is unsatisfiable, there exists an \mathcal{I} -derivation from S that is a refutation.

Ordering-based inference system

An inference system with

- Expansion rules: resolution, factoring, superposition/paramodulation, equational factoring, reflection (resolution with x ~ x)
- Contraction rules: subsumption, simplification, tautology deletion, clausal simplification (unit resolution + subsumption)
- is refutationally complete

Summary of the third part

- Expansion and contraction
- Resolution and subsumption
- Paramodulation/superposition and simplification
- Contraction uses matching, expansion uses unification
- Ordering-based inference system
- Derivation
- Refutational completeness

Search

- An inference system is non-deterministic
- Given S and \mathcal{I} , many \mathcal{I} -derivations from S are possible
- Which one to build? Search problem
- Search space
- Rules and moves: inference rules and inference steps

Strategy

- Theorem-proving strategy: $C = \langle \mathcal{I}, \Sigma \rangle$
- ► *I*: inference system
- Σ: search plan
- The search plan picks at every stage of the derivation which inference to do next
- A deterministic proof procedure

Completeness

- Inference system: refutational completeness there exist refutations
- Search plan: fairness ensure that the generated derivation is a refutation
- Refutationally complete inference system + fair search plan = complete theorem-proving strategy

- Fairness: consider eventually all needed steps: What is needed?
- Dually: what is not needed, or: what is redundant?
- Fairness and redundancy are related

Redundancy

- ► Based on ordering >> on clauses: a clause is redundant if all its ground instances are; a ground clause is redundant if there are ground instances of other clauses that entail it and are smaller
- Based on ordering >> on proofs:
 a clause is redundant if adding it does not decrease any minimal proofs (dually, removing it does not increase proofs)
- Agree if proofs are measured by maximal premises
- Redundant inference: uses/generates redundant clause

- A derivation is fair if whenever a minimal proof of the target theorem is reducible by inferences, it is reduced eventually
- A derivation is uniformly fair if all non-redundant inferences are done eventually
- A search plan is (uniformly) fair if all its derivations are

Contraction first

Schedule contraction before expansion

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

The given-clause algorithm

- Two lists: ToBeSelected and AlreadySelected (Other names: SOS and Usable; Active and Passive)
- Initialization:
 - ToBeSelected = S_0 (the input clauses)
 - AlreadySelected = Ø
- Alternative: the set of support strategy
 - ToBeSelected = clauses($\neg \varphi$) (clauses from the goal)
 - AlreadySelected = clauses(H) (the other input clauses)

The given-clause algorithm: expansion

- Loop until either proof found or *ToBeSelected* = Ø, the latter meaning satisfiable
- ► At every iteration: pick a given-clause from *ToBeSelected*
- How? Best-first search: the best according to an evaluation function (e.g., weight, FIFO, pick-given ratio)
- Perform all expansion steps with the given-clause and clauses in *AlreadySelected* as premises
- Move the given-clause from ToBeSelected to AlreadySelected
- Insert all newly generated clauses in ToBeSelected

イロト 不得 トイラト イラト 二日

Forward contraction

- Forward contraction: contract newly generated clauses by pre-existing ones
- Forward contract each new clause prior to insertion in ToBeSelected
- A very high number of clauses gets deleted typically by forward contraction

Backward contraction

- Backward contraction: contract pre-existing clauses by new ones
- For fairness backward contraction must be applied after forward contraction (e.g., subsumption)
- Detect which clauses can be backward-contracted and treat them as new
- Every backward-contracted clause may backward-contract others
- How much to do? How often?

A choice of invariants

- ► Keep ToBeSelected ∪ AlreadySelected contracted
- Keep only AlreadySelected contracted
 - Backward-contract {given-clause} U AlreadySelected right after picking the given-clause
 - Deletion of "orphans" in ToBeSelected

Proof reconstruction

- The derivation is not the proof
- At the end of a successful derivation:
 - Proof reconstruction
 - ▶ The ancestor-graph of \Box

Theorem provers

- Proof assistant ~ interpreter
- Theorem prover ~ compiler
 - Iterative experimentation with settings (options, parameters)
 - Incomplete strategies
 - Auto mode
 - Machine learning of settings

Some theorem provers

- Otter, EQP, and Prover9 by the late Bill McCune
- SNARK by the late Mark E. Stickel
- SPASS by Christoph Weidenbach et al.
- E by Stephan Schulz and EHOH by Petar Vukmirovic
- Vampire by Andrei Voronkov et al.
- Waldmeister by Thomas Hillenbrand et al.
- leanCoP by Jens Otten
- iProver by Konstantin Korovin et al.
- Metis by Joe Leslie-Hurd and MetiTarski by Larry Paulson et al.
- Zipperposition by Simon Cruanes

Some applications

Analysis, verification, synthesis of systems, e.g.:

- Cryptographic protocols
- Message-passing systems
- Software specifications
- Theorem-proving support to model checking

Mathematics: proving non-trivial theorems in, e.g.,

- Boolean algebras (e.g., the Robbins conjecture)
- Theories of rings (e.g., the Moufang identities), groups and quasigroups
- Many-valued logics (e.g., Lukasiewicz logic)

Some research topics

- Strategies seeking proof/counter-model in one search: model-based first-order reasoning
- Adding built-in theories
- Integration of theorem-provers and SAT/SMT solvers
- Theorem-proving strategies as decision procedures
- Parallel/distributed theorem proving
- Goal-sensitive or target-oriented strategies
- Machine-independent evaluation of strategies: strategy analysis, search complexity

Some textbooks

- Chin-Liang Chang, Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving. Computer Science Classics, Academic Press, 1973
- Alexander Leitsch. The Resolution Calculus. Texts in Theoretical Computer Science, An EATCS Series, Springer, 1997
- Rolf Socher-Ambrosius, Patricia Johann. Deduction Systems. Graduate Texts in Computer Science, Springer, 1997
- John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, 2009

More textbooks

- Raymond M. Smullyan. First-order logic. Dover Publications 1995 (republication of the original published by Springer Verlag in 1968)
- Allan Ramsay. Formal Methods in Artificial Intelligence. Cambridge Tracts in Theoretical Computer Science 6, Cambridge University Press, 1989
- Ricardo Caferra, Alexander Leitsch, Nicolas Peltier. Automated Model Building. Applied Logic Series 31, Kluwer Academic Publishers, 2004
- Martin Davis. The Universal Computer. The Road from Leibniz to Turing. Turing Centenary Edition. Mathematics/Logic/Computing Series. CRC Press, Taylor and Francis Group, 2012

(日) (四) (三) (三) (三)

Some surveys

- Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Artificial Intelligence Today – Recent Trends and Developments, LNAI 1600:43–84, Springer, 1999 [providing 150 references]
- Maria Paola Bonacina. A taxonomy of parallel strategies for deduction. Annals of Mathematics and Artificial Intelligence 29(1/4):223–257, 2000 [providing 104 references]
- Maria Paola Bonacina. On theorem proving for program checking Historical perspective and recent developments. In *Proc. of the* 12th Int. Symp. on Principles and Practice of Declarative Programming, 1–11, ACM Press, 2010 [providing 119 references]

(日) (四) (三) (三) (三)

More surveys

- Maria Paola Bonacina, Ulrich Furbach, Viorica Sofronie-Stokkermans. On first-order model-based reasoning. In *Logic, Rewriting, and Concurrency*, LNCS 9200:181–204, Springer, 2015 [providing 88 references]
- Maria Paola Bonacina. On conflict-driven reasoning.
 In Proc. of the 6th Workshop on Automated Formal Methods (May 2017), Kalpa Publications, 5:31–49, EasyChair, 2018 [providing 60 references]
- Maria Paola Bonacina. Parallel theorem proving. In Handbook of Parallel Constraint Reasoning, Ch. 6, 179–235, Springer, 2018 [providing 230 references]

(日) (四) (三) (三) (三)

Thank you!

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies