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Superior Técnico, U. Lisboa, Lisbon, Portugal, EU, June 2016)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies



Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Automated reasoning

Some building blocks for reasoning

The theorem-proving problem

Inference mechanisms

Theorem-proving strategies

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies



Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Automated reasoning

Automated reasoning is

I Symbolic computation

I Artificial intelligence

I Computational logic

I ...

I Knowledge described precisely: symbols

I Symbolic reasoning: Logico-deductive, Probabilistic ...
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The gist of this lecture

I Logico-deductive reasoning

I Focus: first-order logic (FOL)
I Take-home message:

I FOL as machine language
I Reasoning is about ignoring what’s redundant as much as it is

getting what’s relevant
I Expansion and Contraction
I Ordering-based, instance-based, subgoal-reduction-based

strategies
I Inference, Search, and algorithmic building blocks
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Signature

I A finite set of constant symbols: a, b, c ...

I A finite set of function symbols: f , g , h ...

I A finite set of predicate symbols: P, Q, ' ...

I Arities

I Sorts (important but key concepts can be understood without)

An infinite supply of variable symbols: x , y , z , w ...
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Defined symbols and free symbols

I A symbol is defined if it comes with axioms, e.g., '
I It is free otherwise, e.g., P

I Aka: interpreted/uninterpreted

I Equality (') comes with the congruence axioms
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Terms and atoms

I Terms: a, x , f (a, b), g(y)

I Herbrand universe U : all ground terms
(add a constant if there is none in the given signature)

I Atoms: P(a), f (x , x) ' x

I Literals: P(a), f (x , x) ' x , ¬P(a), f (x , x) 6' x

I Herbrand base B: all ground atoms

I If there is at least one function symbol, U and B are infinite

I This is key if the reasoner builds new terms and atoms
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Substitution

I A substitution is a function from variables to terms that is not
identity on a finite set of variables

I σ = {x1 ← t1, . . . , xn ← tn}
I σ = {x ← a, y ← f (w), z ← w}
I Application: h(x , y , z)σ = h(a, f (w),w)
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Matching

I Given terms or atoms s and t

I f (x , g(y)) and f (g(b), g(a))

I Find matching substitution: σ s.t. sσ = t
σ = {x ← g(b), y ← a}

I sσ = t: t is instance of s, s is more general than t
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Unification

I Given terms or atoms s and t

I f (g(z), g(y)) and f (x , g(a))

I Find substitution σ s.t. sσ = tσ:
σ = {x ← g(z), y ← a}

I Unification problem: E = {si =? ti}ni=1

I Most general unifier (mgu): e.g., not
σ′ = {x ← g(b), y ← a, z ← b}
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Orderings

I View U and B as ordered sets

I With variables: partial order

I Extend to literals (add sign) and clauses

I Extend to proofs (e.g., equational chains)

I Why? To detect and delete or replace redundant data

I E.g., replace something by something smaller in a
well-founded ordering
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Precedence

I A partial order > on the signature
I Example: the Ackermann function

I ack(0, y) ' succ(y)
I ack(succ(x), 0) ' ack(x , succ(0))
I ack(succ(x), succ(y)) ' ack(x , ack(succ(x), y))

I Precedence ack > succ > 0
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Stability

I � ordering

I s � t

I f (f (x , y), z) � f (x , f (y , z))

I Stability: sσ � tσ for all substitutions σ

I f (f (g(a), b), z) � f (g(a), f (b, z))
σ = {x ← g(a), y ← b}

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies



Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Monotonicity

I � ordering

I s � t

I Example: f (x , i(x)) � e

I Monotonicity: r [s] � r [t] for all contexts r
(A context is an expression, here a term or atom, with a hole)

I f (f (x , i(x)), y) � f (e, y)
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Subterm property

I � ordering

I s[t] � t

I Example: f (x , i(x)) � i(x)
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Simplification ordering

I Stable, monotonic, and with the subterm property:
simplification ordering

I A simplification ordering is well-founded or equivalently
Noetherian

I No infinite descending chain s0 � s1 � . . . si � si+1 � . . .

(Noetherian from Emmy Noether)
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Multiset extension

I Multisets, e.g., {a, a, b}, {5, 4, 4, 4, 3, 1, 1}
I From � to �mul :

I M �mul ∅
I M ∪ {a} �mul N ∪ {a} if M �mul N
I M ∪ {a} �mul N ∪ {b} if a � b and M ∪ {a} �mul N

I {5} �mul {4, 4, 4, 3, 1, 1}
I If � is well-founded then �mul is well-founded
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Recursive path ordering (RPO)

s = f (s1, . . . , sn) � g(t1, . . . , tm) = t if

I Either f > g and ∀k, 1 ≤ k ≤ m, s � tk
I Or f = g and {s1, . . . , sn} �mul {t1, . . . , tn}
I Or ∃k such that sk � t
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Distributivity by RPO

I Precedence: ∗ > +
I x ∗ (y + z) � x ∗ y + x ∗ z because

I ∗ > + and
I x ∗ (y + z) � x ∗ y since {x , y + z} �mul {x , y}
I x ∗ (y + z) � x ∗ z since {x , y + z} �mul {x , z}
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Lexicographic extension

I Tuples, vectors, words, e.g., (a, a, b), (5, 4, 4, 4, 3, 1, 1)

I From � to �lex :
(a1, . . . , an) �lex (b1, . . . , bm) if ∃i s.t. ∀j , 1 ≤ j < i , aj = bj ,
and ai � bi

I (5) �lex (4, 4, 4, 3, 1, 1)

I (1, 2, 3, 5, 1) �lex (1, 2, 3, 3, 4)

I If � is well-founded then �lex is well-founded
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Lexicographic path ordering (LPO)

s = f (s1, . . . , sn) � g(t1, . . . , tm) = t if

I Either f > g and ∀k, 1 ≤ k ≤ m, s � tk
I Or f = g , (s1, . . . , sn) �lex (t1, . . . , tn),

and ∀k , i < k ≤ n, s � tk
I Or ∃k such that sk � t

Multiset and lexicographic extension can be mixed: give each
function symbol either multiset or lexicographic status
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Ackermann function by LPO

I Precedence ack > succ > 0

I ack(0, y) � succ(y)
because ack > succ and ack(0, y) � y

I ack(succ(x), 0) � ack(x , succ(0))
because (succ(x), 0) �lex (x , succ(0)),
as succ(x) � x , and ack(succ(x), 0) � succ(0),

since ack > succ and ack(succ(x), 0) � 0

I ack(succ(x), succ(y)) � ack(x , ack(succ(x), y))
because (succ(x), succ(y)) �lex (x , ack(succ(x), y)),
since succ(x) � x and ack(succ(x), succ(y)) � ack(succ(x), y),
because (succ(x), succ(y)) �lex (succ(x), y),

as succ(x) = succ(x) and succ(y) � y
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From ordering terms to ordering literals

I Read a positive literal L as L ' > and ¬L as L 6' >
where > is a new symbol such that t � > for all terms t

I Equality is the only predicate symbol

I Treat p ' q as the multiset {p, q} and
p 6' q as the multiset {p, p, q, q}

I Apply the multiset extension of the ordering on terms
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Variables cause partiality

I Let s and t be two distinct non-ground terms or atoms

I If ∃x ∈ Var(s) \ Var(t) then t 6� s

I g(x) 6� f (x , y)

I If ∃y ∈ Var(t) \ Var(s) then s 6� t

I Both: t#s (incomparable)

I f (x)#g(y), f (x)#f (y), g(x , z)#f (x , y)
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Complete simplification ordering (CSO)

I LPO and RPO are simplification orderings

I Simplification ordering total on ground terms and atoms:
complete simplification ordering (CSO)

I LPO and RPO with a total precedence are CSO

I LPO and RPO do not correlate with size
e.g., f (a) � g5(a) if f > g

I Knuth-Bendix ordering (KBO): based on precedence and a
weight function
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Summary of the first part

I Language: signature, terms, atoms, literals

I Substitutions instantiate variables

I Matching and unification

I A partially ordered world of terms, atoms, literals

I More building blocks: indexing to detect matching and
unification fast
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At the dawn of computer science

I Kurt Gödel: completeness of first-order logic
Later: Leon Henkin (consistency implies satisfiability)

I Alan Turing: Entscheidungsproblem; “computor;” Turing
machine; universal computer; halting problem; undecidability;
undecidability of first-order logic

I Herbrand theorem: semi-decidability of first-order logic

(Herbrand theorem: Jacques Herbrand + Thoralf Skolem + Kurt Gödel)

(“Computor:” Robert I. Soare “Computability and recursion” Bulletin of

Symbolic Logic 2:284–321, 1996)
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The theorem-proving problem

I A set H of formulas viewed as assumptions or hypotheses

I A formula ϕ viewed as conjecture

I Theorem-proving problem: H |=? ϕ

I Equivalently: is H ∪ {¬ϕ} unsatisfiable?

I If H |= ϕ, then ϕ is a theorem of H, or H ⊃ ϕ is a theorem

I Th(H) = {ϕ : H |= ϕ}
I Infinitely many interpretations on infinitely many domains:

how do we start?
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Two simplifications

I Restrict formulas to clauses: less expressive, but suitable as
machine language

I Restrict interpretations to Herbrand interpretations: a
semantics built out of syntax

I All we have in machine’s memory are symbols, that is, syntax
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Clausal form

I Clause: disjunction of literals where all variables are implicitly
universally quantified

I ¬P(f (z)) ∨ ¬Q(g(z)) ∨ R(f (z), g(z))

I Ordering � on literals extended to clauses by multiset
extension

I No loss of generality: every formula can be transformed into
an equisatisfiable set of clauses

I Every clause has its own variables
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Transformation into clausal form

I Eliminate ≡ and ⊃: F ≡ G becomes (F ⊃ G ) ∧ (G ⊃ F ) and
F ⊃ G becomes ¬F ∨ G

I Reduce the scope of all occurrences of ¬ to an atom: (each

quantifier occurrence binds a distinct variable¬(F ∨ G ) becomes

¬F ∧ ¬G , ¬(F ∧ G ) becomes ¬F ∨ ¬G , ¬¬F becomes F , ¬∃F
becomes ∀¬F , and ¬∀F becomes ∃¬F

I Standardize variables apart
(each quantifier occurrence binds a distinct variable symbol)

I Skolemize ∃ and then drop ∀
I Distributivity and associativity: F ∨ (G ∧ H) becomes

(F ∨ G ) ∧ (F ∨ H) and F ∨ (G ∨ H) becomes F ∨ G ∨ H

I Replace ∧ by comma and get a set of clauses

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies



Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Skolemization

I Outermost ∃:
I ∃x F [x ] becomes F [a] (all occurrences of x replaced by a)

a is a new Skolem constant
I There exists an element such that F : let this element be

named a

I ∃ in the scope of ∀:
I ∀y∃x F [x , y ] becomes ∀y F [g(y), y ]

(all occurrences of x replaced by g(y))
g is a new Skolem function

I For all y there is an x such that F : x depends on y ;
let g be the map of this dependence
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A simple example

I ¬{[∀x P(x)] ⊃ [∃y ∀z Q(y , z)]}
I ¬{¬[∀x P(x)] ∨ [∃y ∀z Q(y , z)]}
I [∀x P(x)] ∧ ¬[∃y ∀z Q(y , z)]

I [∀x P(x)] ∧ [∀y ∃z ¬Q(y , z)]

I [∀x P(x)] ∧ [∀y ¬Q(y , f (y))] where f is a Skolem function

I {P(x), ¬Q(y , f (y))}: a set of two unit clauses
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Clausal form and Skolemization

I All steps in the transformation into clauses except
Skolemization preserve logical equivalence
(for every interpretation, F is true iff F ′ is true)

I Skolemization only preserves equisatisfiability
(F is (un)satisfiable iff F ′ is (un)satisfiable)

I Why Skolem symbols must be new?
So that we can interpret them as in the model of F when
building a model of F ′
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Herbrand interpretations

I First-order interpretation M = 〈D,Φ〉
I Let D be the Herbrand universe U
I Let Φ interpret constant and function symbols as themselves:

I Φ(a) = a
I Φ(f )(t1, . . . , tn) = f (t1, . . . , tn)

I Predicate symbols? All possibilities

I The powerset P(B) gives all possible Herbrand interpretations

I Herbrand model: a satisfying Herbrand interpretation
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Clausal form and Herbrand interpretations

I Theorem-proving problem: is H ∪ {¬ϕ} unsatisfiable?

I Transform H ∪ {¬ϕ} into set S of clauses
(S = T ] SOS where SOS contains the clauses from ¬ϕ)

I H ∪ {¬ϕ} and S are equisatisfiable

I Theorem-proving problem: is S unsatisfiable?

I S is unsatisfiable iff S has no Herbrand model

I From now on: only Herbrand interpretations
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Not for formulas

I ∃x P(x) ∧ ¬P(a)

I Is it satisfiable? Yes

I Herbrand model? No!

I ∅ and {P(a)} or {¬P(a)} and {P(a)}
I Clausal form: {P(b), ¬P(a)}
I Herbrand model: {P(b)} or {P(b), ¬P(a)}
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Satisfaction

I M: Herbrand interpretation

I M |= S if M |= C for all C ∈ S

I M |= C if M |= Cσ for all ground instances Cσ of C

I M |= Cσ if M |= Lσ for some ground literal Lσ in Cσ
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Herbrand theorem

I S : set of clauses

I S is unsatisfiable iff there exists a finite set S ′ of ground
instances of clauses in S such that S ′ is unsatisfiable

I Finite sets of ground instances can be enumerated and tested
for propositional satisfiability which is decidable: the
first-order theorem-proving problem is semi-decidable
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Instance-based strategies: basic idea

I Generate finite set of ground instances

I Test for satisfiability by SAT-solver

I Unsatisfiable: done

I Satisfiable with propositional model M: generate ground
instances false in M and repeat

I Model-driven instance generation
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Equality

I Congruence axioms in clausal form:
I x ' x
I x 6' y ∨ y ' x
I x 6' y ∨ y 6' z ∨ x ' z
I x 6' y ∨ f (. . . , x , . . .) ' f (. . . , y , . . .)
I x 6' y ∨ ¬P(. . . , x , . . .) ∨ P(. . . , y , . . .)

I E -satisfiability, E -interpretations, Herbrand E -interpretations
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Herbrand theorem

I S : set of clauses

I S is E -unsatisfiable iff there exists a finite set S ′ of ground
instances of clauses in S such that S ′ is E -unsatisfiable
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Summary of the second part

I First-order theorem-proving problem

I Clauses and Herbrand interpretations

I Herbrand theorem

I Theorem proving in first-order logic is semi-decidable

I Design theorem-proving strategies that are semi-decision
procedures and implement the Herbrand theorem

I Instance-based strategies aim at implementing directly the
Herbrand theorem by emphasizing instance generation
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Expansion and contraction

Like many search procedures, most reasoning methods combine
various forms of growing and shrinking:

I Ordering-based strategies: expansion and contraction of a set
of clauses

I Ordering � on clauses extended to sets of clauses by multiset
extension
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Expansion

An inference

A

B

where A and B are sets of clauses is an expansion inference if

I A ⊂ B: something is added

I Hence A ≺ B

I (B \ A) ⊆ Th(A) hence B ⊆ Th(A) hence Th(B) ⊆ Th(A)
(soundness)
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Contraction

An inference

A

B

where A and B are sets of clauses is a contraction inference if

I A 6⊆ B: something is deleted or replaced

I B ≺mul A: if replaced, replaced by something smaller

I (A \ B) ⊆ Th(B) hence A ⊆ Th(B) hence Th(A) ⊆ Th(B)
(monotonicity or adequacy)

I Every step sound and adequate: Th(A) = Th(B)
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Propositional resolution

P ∨ ¬Q ∨ ¬R, ¬P ∨ O

O ∨ ¬Q ∨ ¬R

where O, P, Q, and R are propositional atoms
(aka propositional variables, aka 0-ary predicates)
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Propositional resolution

is an expansion inference rule:

S ∪ {L ∨ C , ¬L ∨ D}
S ∪ {L ∨ C , ¬L ∨ D, C ∨ D}

I S is a set of clauses

I L is an atom

I C and D are disjunctions of literals

I L and ¬L are the literals resolved upon

I C ∨ D is called resolvent
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First-order resolution

S ∪ {L1 ∨ C , ¬L2 ∨ D}
S ∪ {L1 ∨ C , ¬L2 ∨ D, (C ∨ D)σ}

where L1σ = L2σ for σ mgu
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First-order resolution

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

where σ = {x ← g(z), y ← a}
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Ordered resolution

S ∪ {L1 ∨ C , ¬L2 ∨ D}
S ∪ {L1 ∨ C , ¬L2 ∨ D, (C ∨ D)σ}

where

I L1σ = L2σ for σ mgu

I L1σ 6� Mσ for all M ∈ C

I ¬L2σ 6� Mσ for all M ∈ D
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Ordered resolution

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

I σ = {x ← g(z), y ← a}
I P(g(z), g(a)) 6� ¬R(z , a)

I ¬P(g(z), g(a)) 6� Q(g(z), g(g(z)))

I Allowed, e.g., with P > R > Q > g

I Not allowed, e.g., with Q > R > P > g > a
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Subsumption

S ∪ {P(x , y) ∨ Q(z), Q(a) ∨ P(b, b) ∨ R(u)}
S ∪ {P(x , y) ∨ Q(z)}

C = P(x , y) ∨ Q(z) subsumes D = Q(a) ∨ P(b, b) ∨ R(u)
as there is a substitution σ = {z ← a, x ← b, y ← b}
such that Cσ ⊂ D hence {C} |= {D} (adequacy)
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Subsumption ordering

I Subsumption ordering: C •≤ D if ∃σ Cσ ⊆ D (as multisets)

I Strict subsumption ordering: C •< D if C •≤ D and C 6•≤ D

I The strict subsumption ordering •< is well-founded

I Equality up to variable renaming: C
•
= D if C •≤ D and C •≤ D

(C and D are variants)
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Subsumption

is a contraction inference rule:

S ∪ {C , D}
S ∪ {C}

I Either C •< D (strict subsumption)

I Or C
•
= D and C ≺ D where ≺ is the lexicographic

combination of •< and another well-founded ordering
(e.g., C was generated before D) (subsumption of variants)

I Clause D is redundant

I Subsumption uses matching, resolution uses unification
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And equality?

Replacing equals by equals as in ground rewriting:

S ∪ {f (a, a) ' a, P(f (a, a)) ∨ Q(a)}
S ∪ {f (a, a) ' a, P(a) ∨ Q(a)}

It can be done as f (a, a) � a (by the subterm property)
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Simplification

is a contraction inference rule:

S ∪ {f (x , x) ' x , P(f (a, a)) ∨ Q(a)}
S ∪ {f (x , x) ' x , P(a) ∨ Q(a)}

I f (x , x) matches f (a, a) with σ = {x ← a}
I f (a, a) � a
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Simplification

S ∪ {s ' t, L[r ] ∨ C}
S ∪ {s ' t, L[tσ] ∨ C}

I L is a literal with r as subterm (L could be another equation)

I C is a disjunction of literals

I ∃σ such that sσ = r and sσ � tσ

I L[tσ] ∨ C is entailed by the original set (soundness)

I L[r ] ∨ C is entailed by the resulting set (adequacy)

I L[r ] ∨ C is redundant
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Expansion for equality reasoning

I Simplification is a powerful rule that often does most of the
work in presence of equality

I But it is not enough

I Equality reasoning requires to generate new equations

I We need an expansion rule that builds equality into resolution
and uses unification not only matching
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Superposition/Paramodulation

f (z , e) ' z , f (l(x , y), y) ' x

l(x , e) ' x

I f (z , e)σ = f (l(x , y), y)σ

I σ = {z ← l(x , e), y ← e} most general unifier

I f (l(x , e), e) � l(x , e) (by the subterm property)

I f (l(x , e), e) � x (by the subterm property)

I Superposing two equations yields a peak:
l(x , e)← f (l(x , e), e)→ x
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Superposition/Paramodulation

is an expansion inference rule:

S ∪ {l ' r , p[s] ./ q}
S ∪ {l ' r , p[s] ./ q, (p[r ] ./ q)σ}

I ./ is either ' or 6'
I s is not a variable

I lσ = sσ with σ mgu

I lσ 6� rσ and pσ 6� qσ
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Completion

I New equations closing such peaks are called critical pairs, as
they complete the set of equations into a confluent one

I Confluence ensures uniqueness of normal forms

I This procedure is known as Knuth-Bendix completion

I Unfailing or Ordered Knuth-Bendix completion ensures ground
confluence (unique normal form of ground terms) which
suffices for theorem proving in equational theories as the
Skolemized form of ¬(∀x̄ s ' t) is ground
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Superposition/Paramodulation

S ∪ {l ' r ∨ C , L[s] ∨ D}
S ∪ {l ' r ∨ C , L[s] ∨ D, (L[r ] ∨ C ∨ D)σ}

I C and D are disjunctions of literals

I L[s]: literal paramodulated into

I s is not a variable

I lσ = sσ with σ mgu

I lσ 6� rσ and if L[s] is p[s] ./ q then pσ 6� qσ

I (l ' r)σ 6� Mσ for all M ∈ C

I L[s]σ 6� Mσ for all M ∈ D
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What’s in a name

I Paramodulation was used first in resolution-based theorem
proving where simplification was called demodulation

I Superposition and simplification, or rewriting, were used first
in Knuth-Bendix completion

I Some authors use superposition between unit equations and
paramodulation otherwise

I Other authors use superposition when the literal
paramodulated into is an equational literal and
paramodulation otherwise
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Derivation

I Input set S

I Inference system I: a set of inference rules

I I-derivation from S :

S0
Ì
S1

Ì
. . . Si

Ì
Si+1

Ì
. . .

where S0 = S and for all i , Si+1 is derived from Si by an
inference rule in I

I Refutation: a derivation such that 2 ∈ Sk for some k

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies



Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Refutational completeness

An inference system I is refutationally complete if for all sets S of
clauses, if S is unsatisfiable, there exists an I-derivation from S
that is a refutation.
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Ordering-based inference system

An inference system with

I Expansion rules: resolution, factoring,
superposition/paramodulation, equational factoring, reflection
(resolution with x ' x)

I Contraction rules: subsumption, simplification, tautology
deletion, clausal simplification (unit resolution + subsumption)

is refutationally complete
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Summary of the third part

I Expansion and contraction

I Resolution and subsumption

I Paramodulation/superposition and simplification

I Contraction uses matching, expansion uses unification

I Ordering-based inference system

I Derivation

I Refutational completeness
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Search

I An inference system is non-deterministic

I Given S and I, many I-derivations from S are possible

I Which one to build? Search problem

I Search space

I Rules and moves: inference rules and inference steps
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Strategy

I Theorem-proving strategy: C = 〈I,Σ〉
I I: inference system

I Σ: search plan

I The search plan picks at every stage of the derivation which
inference to do next

I A deterministic proof procedure
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Completeness

I Inference system: refutational completeness
there exist refutations

I Search plan: fairness
ensure that the generated derivation is a refutation

I Refutationally complete inference system + fair search plan =
complete theorem-proving strategy
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Fairness

I Fairness: consider eventually all needed steps: What is
needed?

I Dually: what is not needed, or: what is redundant?

I Fairness and redundancy are related
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Redundancy

I Based on ordering � on clauses:
a clause is redundant if all its ground instances are;
a ground clause is redundant if there are ground instances of
other clauses that entail it and are smaller

I Based on ordering � on proofs:
a clause is redundant if adding it does not decrease any
minimal proofs (dually, removing it does not increase proofs)

I Agree if proofs are measured by maximal premises

I Redundant inference: uses/generates redundant clause
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Fairness

I A derivation is fair if whenever a minimal proof of the target
theorem is reducible by inferences, it is reduced eventually

I A derivation is uniformly fair if all non-redundant inferences
are done eventually

I A search plan is (uniformly) fair if all its derivations are
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Contraction first

I Eager-contraction search plan:

I Schedule contraction before expansion
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The given-clause algorithm

I Two lists: ToBeSelected and AlreadySelected
(Other names: SOS and Usable; Active and Passive)

I Initialization:
I ToBeSelected = S0 (the input clauses)
I AlreadySelected = ∅

I Alternative: the set of support strategy
I ToBeSelected = clauses(¬ϕ) (clauses from the goal)
I AlreadySelected = clauses(H) (the other input clauses)
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The given-clause algorithm: expansion

I Loop until either proof found or ToBeSelected = ∅, the latter
meaning satisfiable

I At every iteration: pick a given-clause from ToBeSelected

I How? Best-first search: the best according to an evaluation
function (e.g., weight, FIFO, pick-given ratio)

I Perform all expansion steps with the given-clause and clauses
in AlreadySelected as premises

I Move the given-clause from ToBeSelected to AlreadySelected

I Insert all newly generated clauses in ToBeSelected
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Forward contraction

I Forward contraction: contract newly generated clauses by
pre-existing ones

I Forward contract each new clause prior to insertion in
ToBeSelected

I A very high number of clauses gets deleted typically by
forward contraction
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Backward contraction

I Backward contraction: contract pre-existing clauses by new
ones

I For fairness backward contraction must be applied after
forward contraction (e.g., subsumption)

I Detect which clauses can be backward-contracted and treat
them as new

I Every backward-contracted clause may backward-contract
others

I How much to do? How often?
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A choice of invariants

I Keep ToBeSelected ∪ AlreadySelected contracted
I Keep only AlreadySelected contracted

I Backward-contract {given−clause} ∪ AlreadySelected right
after picking the given-clause

I Deletion of “orphans” in ToBeSelected
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Proof reconstruction

I The derivation is not the proof
I At the end of a successful derivation:

I Proof reconstruction
I The ancestor-graph of 2
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Theorem provers

I Proof assistant ∼ interpreter
I Theorem prover ∼ compiler

I Iterative experimentation with settings (options, parameters)
I Incomplete strategies
I Auto mode
I Machine learning of settings
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Some theorem provers

I Otter, EQP, and Prover9 by the late Bill McCune

I SNARK by the late Mark E. Stickel

I SPASS by Christoph Weidenbach et al.

I E by Stephan Schulz and EHOH by Petar Vukmirovic

I Vampire by Andrei Voronkov et al.

I Waldmeister by Thomas Hillenbrand et al.

I leanCoP by Jens Otten

I iProver by Konstantin Korovin et al.

I Metis by Joe Leslie-Hurd and MetiTarski by Larry Paulson et al.

I Zipperposition by Simon Cruanes
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Some applications

I Analysis, verification, synthesis of systems, e.g.:
I Cryptographic protocols
I Message-passing systems
I Software specifications
I Theorem-proving support to model checking

I Mathematics: proving non-trivial theorems in, e.g.,
I Boolean algebras (e.g., the Robbins conjecture)
I Theories of rings (e.g., the Moufang identities), groups and

quasigroups
I Many-valued logics (e.g., Lukasiewicz logic)
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Some research topics

I Strategies seeking proof/counter-model in one search:
model-based first-order reasoning

I Adding built-in theories

I Integration of theorem-provers and SAT/SMT solvers

I Theorem-proving strategies as decision procedures

I Parallel/distributed theorem proving

I Goal-sensitive or target-oriented strategies

I Machine-independent evaluation of strategies: strategy
analysis, search complexity
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Some textbooks

I Chin-Liang Chang, Richard Char-Tung Lee. Symbolic Logic and

Mechanical Theorem Proving. Computer Science Classics,

Academic Press, 1973

I Alexander Leitsch. The Resolution Calculus. Texts in Theoretical

Computer Science, An EATCS Series, Springer, 1997

I Rolf Socher-Ambrosius, Patricia Johann. Deduction Systems.

Graduate Texts in Computer Science, Springer, 1997

I John Harrison. Handbook of Practical Logic and Automated

Reasoning. Cambridge University Press, 2009
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More textbooks

I Raymond M. Smullyan. First-order logic. Dover Publications 1995

(republication of the original published by Springer Verlag in 1968)

I Allan Ramsay. Formal Methods in Artificial Intelligence. Cambridge

Tracts in Theoretical Computer Science 6, Cambridge University

Press, 1989

I Ricardo Caferra, Alexander Leitsch, Nicolas Peltier. Automated

Model Building. Applied Logic Series 31, Kluwer Academic

Publishers, 2004

I Martin Davis. The Universal Computer. The Road from Leibniz to

Turing. Turing Centenary Edition. Mathematics/Logic/Computing

Series. CRC Press, Taylor and Francis Group, 2012
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Some surveys

I Maria Paola Bonacina. A taxonomy of theorem-proving strategies.

In Artificial Intelligence Today – Recent Trends and Developments,

LNAI 1600:43–84, Springer, 1999 [providing 150 references]

I Maria Paola Bonacina. A taxonomy of parallel strategies for

deduction. Annals of Mathematics and Artificial Intelligence

29(1/4):223–257, 2000 [providing 104 references]

I Maria Paola Bonacina. On theorem proving for program checking –

Historical perspective and recent developments. In Proc. of the

12th Int. Symp. on Principles and Practice of Declarative

Programming, 1–11, ACM Press, 2010 [providing 119 references]
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More surveys

I Maria Paola Bonacina, Ulrich Furbach, Viorica
Sofronie-Stokkermans. On first-order model-based reasoning.

In Logic, Rewriting, and Concurrency, LNCS 9200:181–204,

Springer, 2015 [providing 88 references]

I Maria Paola Bonacina. On conflict-driven reasoning.

In Proc. of the 6th Workshop on Automated Formal Methods (May

2017), Kalpa Publications, 5:31–49, EasyChair, 2018 [providing 60

references]

I Maria Paola Bonacina. Parallel theorem proving.

In Handbook of Parallel Constraint Reasoning, Ch. 6, 179–235,

Springer, 2018 [providing 230 references]
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Thanks

Thank you!
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