
Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Overview of automated reasoning and
ordering-based strategies

Maria Paola Bonacina

Visiting: Computer Science Laboratory, SRI International, Menlo Park, CA, USA
Affiliation: Dipartimento di Informatica, Università degli Studi di Verona, Verona,

Italy, EU

Invited talk at the 9th Summer School on Formal Techniques (SSFT) SRI International and Menlo College,
Atherton, California, USA, May 19, 2019

(Subsuming the invited talk “Ordering-based strategies for theorem proving,” 6th SSFT, May 2016, and the

lecture “Introduction to automated reasoning,” 1st Int. Summer School on SAT/SMT/AR, Instituto

Superior Técnico, U. Lisboa, Lisbon, Portugal, EU, June 2016)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Automated reasoning

Some building blocks for reasoning

The theorem-proving problem

Inference mechanisms

Theorem-proving strategies

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Automated reasoning

Automated reasoning is

I Symbolic computation

I Artificial intelligence

I Computational logic

I ...

I Knowledge described precisely: symbols

I Symbolic reasoning: Logico-deductive, Probabilistic ...

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

The gist of this lecture

I Logico-deductive reasoning

I Focus: first-order logic (FOL)
I Take-home message:

I FOL as machine language
I Reasoning is about ignoring what’s redundant as much as it is

getting what’s relevant
I Expansion and Contraction
I Ordering-based, instance-based, subgoal-reduction-based

strategies
I Inference, Search, and algorithmic building blocks

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Signature

I A finite set of constant symbols: a, b, c ...

I A finite set of function symbols: f , g , h ...

I A finite set of predicate symbols: P, Q, ' ...

I Arities

I Sorts (important but key concepts can be understood without)

An infinite supply of variable symbols: x , y , z , w ...

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Defined symbols and free symbols

I A symbol is defined if it comes with axioms, e.g., '
I It is free otherwise, e.g., P

I Aka: interpreted/uninterpreted

I Equality (') comes with the congruence axioms

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Terms and atoms

I Terms: a, x , f (a, b), g(y)

I Herbrand universe U : all ground terms
(add a constant if there is none in the given signature)

I Atoms: P(a), f (x , x) ' x

I Literals: P(a), f (x , x) ' x , ¬P(a), f (x , x) 6' x

I Herbrand base B: all ground atoms

I If there is at least one function symbol, U and B are infinite

I This is key if the reasoner builds new terms and atoms

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Substitution

I A substitution is a function from variables to terms that is not
identity on a finite set of variables

I σ = {x1 ← t1, . . . , xn ← tn}
I σ = {x ← a, y ← f (w), z ← w}
I Application: h(x , y , z)σ = h(a, f (w),w)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Matching

I Given terms or atoms s and t

I f (x , g(y)) and f (g(b), g(a))

I Find matching substitution: σ s.t. sσ = t
σ = {x ← g(b), y ← a}

I sσ = t: t is instance of s, s is more general than t

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Unification

I Given terms or atoms s and t

I f (g(z), g(y)) and f (x , g(a))

I Find substitution σ s.t. sσ = tσ:
σ = {x ← g(z), y ← a}

I Unification problem: E = {si =? ti}ni=1

I Most general unifier (mgu): e.g., not
σ′ = {x ← g(b), y ← a, z ← b}

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Orderings

I View U and B as ordered sets

I With variables: partial order

I Extend to literals (add sign) and clauses

I Extend to proofs (e.g., equational chains)

I Why? To detect and delete or replace redundant data

I E.g., replace something by something smaller in a
well-founded ordering

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Precedence

I A partial order > on the signature
I Example: the Ackermann function

I ack(0, y) ' succ(y)
I ack(succ(x), 0) ' ack(x , succ(0))
I ack(succ(x), succ(y)) ' ack(x , ack(succ(x), y))

I Precedence ack > succ > 0

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Stability

I � ordering

I s � t

I f (f (x , y), z) � f (x , f (y , z))

I Stability: sσ � tσ for all substitutions σ

I f (f (g(a), b), z) � f (g(a), f (b, z))
σ = {x ← g(a), y ← b}

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Monotonicity

I � ordering

I s � t

I Example: f (x , i(x)) � e

I Monotonicity: r [s] � r [t] for all contexts r
(A context is an expression, here a term or atom, with a hole)

I f (f (x , i(x)), y) � f (e, y)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Subterm property

I � ordering

I s[t] � t

I Example: f (x , i(x)) � i(x)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Simplification ordering

I Stable, monotonic, and with the subterm property:
simplification ordering

I A simplification ordering is well-founded or equivalently
Noetherian

I No infinite descending chain s0 � s1 � . . . si � si+1 � . . .

(Noetherian from Emmy Noether)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Multiset extension

I Multisets, e.g., {a, a, b}, {5, 4, 4, 4, 3, 1, 1}
I From � to �mul :

I M �mul ∅
I M ∪ {a} �mul N ∪ {a} if M �mul N
I M ∪ {a} �mul N ∪ {b} if a � b and M ∪ {a} �mul N

I {5} �mul {4, 4, 4, 3, 1, 1}
I If � is well-founded then �mul is well-founded

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Recursive path ordering (RPO)

s = f (s1, . . . , sn) � g(t1, . . . , tm) = t if

I Either f > g and ∀k, 1 ≤ k ≤ m, s � tk
I Or f = g and {s1, . . . , sn} �mul {t1, . . . , tn}
I Or ∃k such that sk � t

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Distributivity by RPO

I Precedence: ∗ > +
I x ∗ (y + z) � x ∗ y + x ∗ z because

I ∗ > + and
I x ∗ (y + z) � x ∗ y since {x , y + z} �mul {x , y}
I x ∗ (y + z) � x ∗ z since {x , y + z} �mul {x , z}

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Lexicographic extension

I Tuples, vectors, words, e.g., (a, a, b), (5, 4, 4, 4, 3, 1, 1)

I From � to �lex :
(a1, . . . , an) �lex (b1, . . . , bm) if ∃i s.t. ∀j , 1 ≤ j < i , aj = bj ,
and ai � bi

I (5) �lex (4, 4, 4, 3, 1, 1)

I (1, 2, 3, 5, 1) �lex (1, 2, 3, 3, 4)

I If � is well-founded then �lex is well-founded

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Lexicographic path ordering (LPO)

s = f (s1, . . . , sn) � g(t1, . . . , tm) = t if

I Either f > g and ∀k, 1 ≤ k ≤ m, s � tk
I Or f = g , (s1, . . . , sn) �lex (t1, . . . , tn),

and ∀k , i < k ≤ n, s � tk
I Or ∃k such that sk � t

Multiset and lexicographic extension can be mixed: give each
function symbol either multiset or lexicographic status

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Ackermann function by LPO

I Precedence ack > succ > 0

I ack(0, y) � succ(y)
because ack > succ and ack(0, y) � y

I ack(succ(x), 0) � ack(x , succ(0))
because (succ(x), 0) �lex (x , succ(0)),
as succ(x) � x , and ack(succ(x), 0) � succ(0),

since ack > succ and ack(succ(x), 0) � 0

I ack(succ(x), succ(y)) � ack(x , ack(succ(x), y))
because (succ(x), succ(y)) �lex (x , ack(succ(x), y)),
since succ(x) � x and ack(succ(x), succ(y)) � ack(succ(x), y),
because (succ(x), succ(y)) �lex (succ(x), y),

as succ(x) = succ(x) and succ(y) � y

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

From ordering terms to ordering literals

I Read a positive literal L as L ' > and ¬L as L 6' >
where > is a new symbol such that t � > for all terms t

I Equality is the only predicate symbol

I Treat p ' q as the multiset {p, q} and
p 6' q as the multiset {p, p, q, q}

I Apply the multiset extension of the ordering on terms

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Variables cause partiality

I Let s and t be two distinct non-ground terms or atoms

I If ∃x ∈ Var(s) \ Var(t) then t 6� s

I g(x) 6� f (x , y)

I If ∃y ∈ Var(t) \ Var(s) then s 6� t

I Both: t#s (incomparable)

I f (x)#g(y), f (x)#f (y), g(x , z)#f (x , y)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Complete simplification ordering (CSO)

I LPO and RPO are simplification orderings

I Simplification ordering total on ground terms and atoms:
complete simplification ordering (CSO)

I LPO and RPO with a total precedence are CSO

I LPO and RPO do not correlate with size
e.g., f (a) � g5(a) if f > g

I Knuth-Bendix ordering (KBO): based on precedence and a
weight function

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Summary of the first part

I Language: signature, terms, atoms, literals

I Substitutions instantiate variables

I Matching and unification

I A partially ordered world of terms, atoms, literals

I More building blocks: indexing to detect matching and
unification fast

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

At the dawn of computer science

I Kurt Gödel: completeness of first-order logic
Later: Leon Henkin (consistency implies satisfiability)

I Alan Turing: Entscheidungsproblem; “computor;” Turing
machine; universal computer; halting problem; undecidability;
undecidability of first-order logic

I Herbrand theorem: semi-decidability of first-order logic

(Herbrand theorem: Jacques Herbrand + Thoralf Skolem + Kurt Gödel)

(“Computor:” Robert I. Soare “Computability and recursion” Bulletin of

Symbolic Logic 2:284–321, 1996)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

The theorem-proving problem

I A set H of formulas viewed as assumptions or hypotheses

I A formula ϕ viewed as conjecture

I Theorem-proving problem: H |=? ϕ

I Equivalently: is H ∪ {¬ϕ} unsatisfiable?

I If H |= ϕ, then ϕ is a theorem of H, or H ⊃ ϕ is a theorem

I Th(H) = {ϕ : H |= ϕ}
I Infinitely many interpretations on infinitely many domains:

how do we start?

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Two simplifications

I Restrict formulas to clauses: less expressive, but suitable as
machine language

I Restrict interpretations to Herbrand interpretations: a
semantics built out of syntax

I All we have in machine’s memory are symbols, that is, syntax

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Clausal form

I Clause: disjunction of literals where all variables are implicitly
universally quantified

I ¬P(f (z)) ∨ ¬Q(g(z)) ∨ R(f (z), g(z))

I Ordering � on literals extended to clauses by multiset
extension

I No loss of generality: every formula can be transformed into
an equisatisfiable set of clauses

I Every clause has its own variables

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Transformation into clausal form

I Eliminate ≡ and ⊃: F ≡ G becomes (F ⊃ G) ∧ (G ⊃ F) and
F ⊃ G becomes ¬F ∨ G

I Reduce the scope of all occurrences of ¬ to an atom: (each

quantifier occurrence binds a distinct variable¬(F ∨ G) becomes

¬F ∧ ¬G , ¬(F ∧ G) becomes ¬F ∨ ¬G , ¬¬F becomes F , ¬∃F
becomes ∀¬F , and ¬∀F becomes ∃¬F

I Standardize variables apart
(each quantifier occurrence binds a distinct variable symbol)

I Skolemize ∃ and then drop ∀
I Distributivity and associativity: F ∨ (G ∧ H) becomes

(F ∨ G) ∧ (F ∨ H) and F ∨ (G ∨ H) becomes F ∨ G ∨ H

I Replace ∧ by comma and get a set of clauses

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Skolemization

I Outermost ∃:
I ∃x F [x] becomes F [a] (all occurrences of x replaced by a)

a is a new Skolem constant
I There exists an element such that F : let this element be

named a

I ∃ in the scope of ∀:
I ∀y∃x F [x , y] becomes ∀y F [g(y), y]

(all occurrences of x replaced by g(y))
g is a new Skolem function

I For all y there is an x such that F : x depends on y ;
let g be the map of this dependence

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

A simple example

I ¬{[∀x P(x)] ⊃ [∃y ∀z Q(y , z)]}
I ¬{¬[∀x P(x)] ∨ [∃y ∀z Q(y , z)]}
I [∀x P(x)] ∧ ¬[∃y ∀z Q(y , z)]

I [∀x P(x)] ∧ [∀y ∃z ¬Q(y , z)]

I [∀x P(x)] ∧ [∀y ¬Q(y , f (y))] where f is a Skolem function

I {P(x), ¬Q(y , f (y))}: a set of two unit clauses

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Clausal form and Skolemization

I All steps in the transformation into clauses except
Skolemization preserve logical equivalence
(for every interpretation, F is true iff F ′ is true)

I Skolemization only preserves equisatisfiability
(F is (un)satisfiable iff F ′ is (un)satisfiable)

I Why Skolem symbols must be new?
So that we can interpret them as in the model of F when
building a model of F ′

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Herbrand interpretations

I First-order interpretation M = 〈D,Φ〉
I Let D be the Herbrand universe U
I Let Φ interpret constant and function symbols as themselves:

I Φ(a) = a
I Φ(f)(t1, . . . , tn) = f (t1, . . . , tn)

I Predicate symbols? All possibilities

I The powerset P(B) gives all possible Herbrand interpretations

I Herbrand model: a satisfying Herbrand interpretation

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Clausal form and Herbrand interpretations

I Theorem-proving problem: is H ∪ {¬ϕ} unsatisfiable?

I Transform H ∪ {¬ϕ} into set S of clauses
(S = T] SOS where SOS contains the clauses from ¬ϕ)

I H ∪ {¬ϕ} and S are equisatisfiable

I Theorem-proving problem: is S unsatisfiable?

I S is unsatisfiable iff S has no Herbrand model

I From now on: only Herbrand interpretations

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Not for formulas

I ∃x P(x) ∧ ¬P(a)

I Is it satisfiable? Yes

I Herbrand model? No!

I ∅ and {P(a)} or {¬P(a)} and {P(a)}
I Clausal form: {P(b), ¬P(a)}
I Herbrand model: {P(b)} or {P(b), ¬P(a)}

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Satisfaction

I M: Herbrand interpretation

I M |= S if M |= C for all C ∈ S

I M |= C if M |= Cσ for all ground instances Cσ of C

I M |= Cσ if M |= Lσ for some ground literal Lσ in Cσ

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Herbrand theorem

I S : set of clauses

I S is unsatisfiable iff there exists a finite set S ′ of ground
instances of clauses in S such that S ′ is unsatisfiable

I Finite sets of ground instances can be enumerated and tested
for propositional satisfiability which is decidable: the
first-order theorem-proving problem is semi-decidable

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Instance-based strategies: basic idea

I Generate finite set of ground instances

I Test for satisfiability by SAT-solver

I Unsatisfiable: done

I Satisfiable with propositional model M: generate ground
instances false in M and repeat

I Model-driven instance generation

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Equality

I Congruence axioms in clausal form:
I x ' x
I x 6' y ∨ y ' x
I x 6' y ∨ y 6' z ∨ x ' z
I x 6' y ∨ f (. . . , x , . . .) ' f (. . . , y , . . .)
I x 6' y ∨ ¬P(. . . , x , . . .) ∨ P(. . . , y , . . .)

I E -satisfiability, E -interpretations, Herbrand E -interpretations

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Herbrand theorem

I S : set of clauses

I S is E -unsatisfiable iff there exists a finite set S ′ of ground
instances of clauses in S such that S ′ is E -unsatisfiable

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Summary of the second part

I First-order theorem-proving problem

I Clauses and Herbrand interpretations

I Herbrand theorem

I Theorem proving in first-order logic is semi-decidable

I Design theorem-proving strategies that are semi-decision
procedures and implement the Herbrand theorem

I Instance-based strategies aim at implementing directly the
Herbrand theorem by emphasizing instance generation

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Expansion and contraction

Like many search procedures, most reasoning methods combine
various forms of growing and shrinking:

I Ordering-based strategies: expansion and contraction of a set
of clauses

I Ordering � on clauses extended to sets of clauses by multiset
extension

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Expansion

An inference

A

B

where A and B are sets of clauses is an expansion inference if

I A ⊂ B: something is added

I Hence A ≺ B

I (B \ A) ⊆ Th(A) hence B ⊆ Th(A) hence Th(B) ⊆ Th(A)
(soundness)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Contraction

An inference

A

B

where A and B are sets of clauses is a contraction inference if

I A 6⊆ B: something is deleted or replaced

I B ≺mul A: if replaced, replaced by something smaller

I (A \ B) ⊆ Th(B) hence A ⊆ Th(B) hence Th(A) ⊆ Th(B)
(monotonicity or adequacy)

I Every step sound and adequate: Th(A) = Th(B)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Propositional resolution

P ∨ ¬Q ∨ ¬R, ¬P ∨ O

O ∨ ¬Q ∨ ¬R

where O, P, Q, and R are propositional atoms
(aka propositional variables, aka 0-ary predicates)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Propositional resolution

is an expansion inference rule:

S ∪ {L ∨ C , ¬L ∨ D}
S ∪ {L ∨ C , ¬L ∨ D, C ∨ D}

I S is a set of clauses

I L is an atom

I C and D are disjunctions of literals

I L and ¬L are the literals resolved upon

I C ∨ D is called resolvent

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

First-order resolution

S ∪ {L1 ∨ C , ¬L2 ∨ D}
S ∪ {L1 ∨ C , ¬L2 ∨ D, (C ∨ D)σ}

where L1σ = L2σ for σ mgu

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

First-order resolution

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

where σ = {x ← g(z), y ← a}

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Ordered resolution

S ∪ {L1 ∨ C , ¬L2 ∨ D}
S ∪ {L1 ∨ C , ¬L2 ∨ D, (C ∨ D)σ}

where

I L1σ = L2σ for σ mgu

I L1σ 6� Mσ for all M ∈ C

I ¬L2σ 6� Mσ for all M ∈ D

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Ordered resolution

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

I σ = {x ← g(z), y ← a}
I P(g(z), g(a)) 6� ¬R(z , a)

I ¬P(g(z), g(a)) 6� Q(g(z), g(g(z)))

I Allowed, e.g., with P > R > Q > g

I Not allowed, e.g., with Q > R > P > g > a

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Subsumption

S ∪ {P(x , y) ∨ Q(z), Q(a) ∨ P(b, b) ∨ R(u)}
S ∪ {P(x , y) ∨ Q(z)}

C = P(x , y) ∨ Q(z) subsumes D = Q(a) ∨ P(b, b) ∨ R(u)
as there is a substitution σ = {z ← a, x ← b, y ← b}
such that Cσ ⊂ D hence {C} |= {D} (adequacy)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Subsumption ordering

I Subsumption ordering: C •≤ D if ∃σ Cσ ⊆ D (as multisets)

I Strict subsumption ordering: C •< D if C •≤ D and C 6•≤ D

I The strict subsumption ordering •< is well-founded

I Equality up to variable renaming: C
•
= D if C •≤ D and C •≤ D

(C and D are variants)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Subsumption

is a contraction inference rule:

S ∪ {C , D}
S ∪ {C}

I Either C •< D (strict subsumption)

I Or C
•
= D and C ≺ D where ≺ is the lexicographic

combination of •< and another well-founded ordering
(e.g., C was generated before D) (subsumption of variants)

I Clause D is redundant

I Subsumption uses matching, resolution uses unification

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

And equality?

Replacing equals by equals as in ground rewriting:

S ∪ {f (a, a) ' a, P(f (a, a)) ∨ Q(a)}
S ∪ {f (a, a) ' a, P(a) ∨ Q(a)}

It can be done as f (a, a) � a (by the subterm property)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Simplification

is a contraction inference rule:

S ∪ {f (x , x) ' x , P(f (a, a)) ∨ Q(a)}
S ∪ {f (x , x) ' x , P(a) ∨ Q(a)}

I f (x , x) matches f (a, a) with σ = {x ← a}
I f (a, a) � a

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Simplification

S ∪ {s ' t, L[r] ∨ C}
S ∪ {s ' t, L[tσ] ∨ C}

I L is a literal with r as subterm (L could be another equation)

I C is a disjunction of literals

I ∃σ such that sσ = r and sσ � tσ

I L[tσ] ∨ C is entailed by the original set (soundness)

I L[r] ∨ C is entailed by the resulting set (adequacy)

I L[r] ∨ C is redundant

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Expansion for equality reasoning

I Simplification is a powerful rule that often does most of the
work in presence of equality

I But it is not enough

I Equality reasoning requires to generate new equations

I We need an expansion rule that builds equality into resolution
and uses unification not only matching

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

f (z , e) ' z , f (l(x , y), y) ' x

l(x , e) ' x

I f (z , e)σ = f (l(x , y), y)σ

I σ = {z ← l(x , e), y ← e} most general unifier

I f (l(x , e), e) � l(x , e) (by the subterm property)

I f (l(x , e), e) � x (by the subterm property)

I Superposing two equations yields a peak:
l(x , e)← f (l(x , e), e)→ x

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

is an expansion inference rule:

S ∪ {l ' r , p[s] ./ q}
S ∪ {l ' r , p[s] ./ q, (p[r] ./ q)σ}

I ./ is either ' or 6'
I s is not a variable

I lσ = sσ with σ mgu

I lσ 6� rσ and pσ 6� qσ

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Completion

I New equations closing such peaks are called critical pairs, as
they complete the set of equations into a confluent one

I Confluence ensures uniqueness of normal forms

I This procedure is known as Knuth-Bendix completion

I Unfailing or Ordered Knuth-Bendix completion ensures ground
confluence (unique normal form of ground terms) which
suffices for theorem proving in equational theories as the
Skolemized form of ¬(∀x̄ s ' t) is ground

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

S ∪ {l ' r ∨ C , L[s] ∨ D}
S ∪ {l ' r ∨ C , L[s] ∨ D, (L[r] ∨ C ∨ D)σ}

I C and D are disjunctions of literals

I L[s]: literal paramodulated into

I s is not a variable

I lσ = sσ with σ mgu

I lσ 6� rσ and if L[s] is p[s] ./ q then pσ 6� qσ

I (l ' r)σ 6� Mσ for all M ∈ C

I L[s]σ 6� Mσ for all M ∈ D

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

What’s in a name

I Paramodulation was used first in resolution-based theorem
proving where simplification was called demodulation

I Superposition and simplification, or rewriting, were used first
in Knuth-Bendix completion

I Some authors use superposition between unit equations and
paramodulation otherwise

I Other authors use superposition when the literal
paramodulated into is an equational literal and
paramodulation otherwise

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Derivation

I Input set S

I Inference system I: a set of inference rules

I I-derivation from S :

S0
Ì
S1

Ì
. . . Si

Ì
Si+1

Ì
. . .

where S0 = S and for all i , Si+1 is derived from Si by an
inference rule in I

I Refutation: a derivation such that 2 ∈ Sk for some k

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Refutational completeness

An inference system I is refutationally complete if for all sets S of
clauses, if S is unsatisfiable, there exists an I-derivation from S
that is a refutation.

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Ordering-based inference system

An inference system with

I Expansion rules: resolution, factoring,
superposition/paramodulation, equational factoring, reflection
(resolution with x ' x)

I Contraction rules: subsumption, simplification, tautology
deletion, clausal simplification (unit resolution + subsumption)

is refutationally complete

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Summary of the third part

I Expansion and contraction

I Resolution and subsumption

I Paramodulation/superposition and simplification

I Contraction uses matching, expansion uses unification

I Ordering-based inference system

I Derivation

I Refutational completeness

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Search

I An inference system is non-deterministic

I Given S and I, many I-derivations from S are possible

I Which one to build? Search problem

I Search space

I Rules and moves: inference rules and inference steps

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Strategy

I Theorem-proving strategy: C = 〈I,Σ〉
I I: inference system

I Σ: search plan

I The search plan picks at every stage of the derivation which
inference to do next

I A deterministic proof procedure

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Completeness

I Inference system: refutational completeness
there exist refutations

I Search plan: fairness
ensure that the generated derivation is a refutation

I Refutationally complete inference system + fair search plan =
complete theorem-proving strategy

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Fairness

I Fairness: consider eventually all needed steps: What is
needed?

I Dually: what is not needed, or: what is redundant?

I Fairness and redundancy are related

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Redundancy

I Based on ordering � on clauses:
a clause is redundant if all its ground instances are;
a ground clause is redundant if there are ground instances of
other clauses that entail it and are smaller

I Based on ordering � on proofs:
a clause is redundant if adding it does not decrease any
minimal proofs (dually, removing it does not increase proofs)

I Agree if proofs are measured by maximal premises

I Redundant inference: uses/generates redundant clause

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Fairness

I A derivation is fair if whenever a minimal proof of the target
theorem is reducible by inferences, it is reduced eventually

I A derivation is uniformly fair if all non-redundant inferences
are done eventually

I A search plan is (uniformly) fair if all its derivations are

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Contraction first

I Eager-contraction search plan:

I Schedule contraction before expansion

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

The given-clause algorithm

I Two lists: ToBeSelected and AlreadySelected
(Other names: SOS and Usable; Active and Passive)

I Initialization:
I ToBeSelected = S0 (the input clauses)
I AlreadySelected = ∅

I Alternative: the set of support strategy
I ToBeSelected = clauses(¬ϕ) (clauses from the goal)
I AlreadySelected = clauses(H) (the other input clauses)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

The given-clause algorithm: expansion

I Loop until either proof found or ToBeSelected = ∅, the latter
meaning satisfiable

I At every iteration: pick a given-clause from ToBeSelected

I How? Best-first search: the best according to an evaluation
function (e.g., weight, FIFO, pick-given ratio)

I Perform all expansion steps with the given-clause and clauses
in AlreadySelected as premises

I Move the given-clause from ToBeSelected to AlreadySelected

I Insert all newly generated clauses in ToBeSelected

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Forward contraction

I Forward contraction: contract newly generated clauses by
pre-existing ones

I Forward contract each new clause prior to insertion in
ToBeSelected

I A very high number of clauses gets deleted typically by
forward contraction

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Backward contraction

I Backward contraction: contract pre-existing clauses by new
ones

I For fairness backward contraction must be applied after
forward contraction (e.g., subsumption)

I Detect which clauses can be backward-contracted and treat
them as new

I Every backward-contracted clause may backward-contract
others

I How much to do? How often?

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

A choice of invariants

I Keep ToBeSelected ∪ AlreadySelected contracted
I Keep only AlreadySelected contracted

I Backward-contract {given−clause} ∪ AlreadySelected right
after picking the given-clause

I Deletion of “orphans” in ToBeSelected

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Proof reconstruction

I The derivation is not the proof
I At the end of a successful derivation:

I Proof reconstruction
I The ancestor-graph of 2

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Theorem provers

I Proof assistant ∼ interpreter
I Theorem prover ∼ compiler

I Iterative experimentation with settings (options, parameters)
I Incomplete strategies
I Auto mode
I Machine learning of settings

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Some theorem provers

I Otter, EQP, and Prover9 by the late Bill McCune

I SNARK by the late Mark E. Stickel

I SPASS by Christoph Weidenbach et al.

I E by Stephan Schulz and EHOH by Petar Vukmirovic

I Vampire by Andrei Voronkov et al.

I Waldmeister by Thomas Hillenbrand et al.

I leanCoP by Jens Otten

I iProver by Konstantin Korovin et al.

I Metis by Joe Leslie-Hurd and MetiTarski by Larry Paulson et al.

I Zipperposition by Simon Cruanes

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Some applications

I Analysis, verification, synthesis of systems, e.g.:
I Cryptographic protocols
I Message-passing systems
I Software specifications
I Theorem-proving support to model checking

I Mathematics: proving non-trivial theorems in, e.g.,
I Boolean algebras (e.g., the Robbins conjecture)
I Theories of rings (e.g., the Moufang identities), groups and

quasigroups
I Many-valued logics (e.g., Lukasiewicz logic)

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Some research topics

I Strategies seeking proof/counter-model in one search:
model-based first-order reasoning

I Adding built-in theories

I Integration of theorem-provers and SAT/SMT solvers

I Theorem-proving strategies as decision procedures

I Parallel/distributed theorem proving

I Goal-sensitive or target-oriented strategies

I Machine-independent evaluation of strategies: strategy
analysis, search complexity

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Some textbooks

I Chin-Liang Chang, Richard Char-Tung Lee. Symbolic Logic and

Mechanical Theorem Proving. Computer Science Classics,

Academic Press, 1973

I Alexander Leitsch. The Resolution Calculus. Texts in Theoretical

Computer Science, An EATCS Series, Springer, 1997

I Rolf Socher-Ambrosius, Patricia Johann. Deduction Systems.

Graduate Texts in Computer Science, Springer, 1997

I John Harrison. Handbook of Practical Logic and Automated

Reasoning. Cambridge University Press, 2009

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

More textbooks

I Raymond M. Smullyan. First-order logic. Dover Publications 1995

(republication of the original published by Springer Verlag in 1968)

I Allan Ramsay. Formal Methods in Artificial Intelligence. Cambridge

Tracts in Theoretical Computer Science 6, Cambridge University

Press, 1989

I Ricardo Caferra, Alexander Leitsch, Nicolas Peltier. Automated

Model Building. Applied Logic Series 31, Kluwer Academic

Publishers, 2004

I Martin Davis. The Universal Computer. The Road from Leibniz to

Turing. Turing Centenary Edition. Mathematics/Logic/Computing

Series. CRC Press, Taylor and Francis Group, 2012

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Some surveys

I Maria Paola Bonacina. A taxonomy of theorem-proving strategies.

In Artificial Intelligence Today – Recent Trends and Developments,

LNAI 1600:43–84, Springer, 1999 [providing 150 references]

I Maria Paola Bonacina. A taxonomy of parallel strategies for

deduction. Annals of Mathematics and Artificial Intelligence

29(1/4):223–257, 2000 [providing 104 references]

I Maria Paola Bonacina. On theorem proving for program checking –

Historical perspective and recent developments. In Proc. of the

12th Int. Symp. on Principles and Practice of Declarative

Programming, 1–11, ACM Press, 2010 [providing 119 references]

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

More surveys

I Maria Paola Bonacina, Ulrich Furbach, Viorica
Sofronie-Stokkermans. On first-order model-based reasoning.

In Logic, Rewriting, and Concurrency, LNCS 9200:181–204,

Springer, 2015 [providing 88 references]

I Maria Paola Bonacina. On conflict-driven reasoning.

In Proc. of the 6th Workshop on Automated Formal Methods (May

2017), Kalpa Publications, 5:31–49, EasyChair, 2018 [providing 60

references]

I Maria Paola Bonacina. Parallel theorem proving.

In Handbook of Parallel Constraint Reasoning, Ch. 6, 179–235,

Springer, 2018 [providing 230 references]

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Inference mechanisms
Theorem-proving strategies

Thanks

Thank you!

Maria Paola Bonacina Overview of automated reasoning and ordering-based strategies

	Outline
	Automated reasoning
	Some building blocks for reasoning
	The theorem-proving problem
	Inference mechanisms
	Theorem-proving strategies

