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What is interpolation?

I Consider a function f (univariate for simplicity)

I We know the values of f at points x1, . . . , xn on the x-axis
(e.g., from sampling or experiments)

I We want to know the values of f at additional intermediate
points and build its curve

I This is the problem of interpolation in numerical analysis

I It has many applications in computer graphics (e.g., spline
interpolation)
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Interpolation in logic

What is interpolation in logic?
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Signature

I A finite set of constant symbols: e.g., a, b, c ...

I A finite set of function symbols: e.g., f , g , h ...

I A finite set of predicate symbols: P, Q, R, ' ...

I Arities

I Sorts (important but key concepts can be understood without)

An infinite supply of variables: x , y , z , w ...
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Logical language

I Terms: a, x , f (a), f (x), g(a, x) ...

I Atoms: R, P(a), Q(x , g(b)), ...

I Literals: R, P(a), Q(x , g(b)), ¬R, ¬P(a), ¬Q(x , g(b)), ...

I Formulae: P(a) ∧ Q(a, g(b)), ¬P(a) ∨ Q(a, g(b)),
¬P(a) ⊃ Q(g(b), c), ∀x P(x), ∀x∃y P(x) ⊃ Q(y , x), ....

I Special formulae: ⊥, >
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Logical language

I Ground term, atom, literal, formula: no occurrences of
variables

I Closed formula: all variables are quantified (aka: sentence)
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Defined symbols and free symbols

I A symbol is defined if it comes with axioms, e.g., '
I Equality (') comes with the congruence axioms

I It is free otherwise, e.g., P

I Aka: interpreted/uninterpreted

Maria Paola Bonacina On interpolation in theorem proving



Outline
Introduction to interpolation

Interpolation for propositional resolution
Interpolation and equality

Equality and the congruence axioms

I ∀x . x ' x

I ∀x∀y . x ' y ⊃ y ' x

I ∀x∀y∀z . x ' y ∧ y ' z ⊃ x ' z

I ∀x∀y . x ' y ⊃ f (. . . , x , . . .) ' f (. . . , y , . . .)

I ∀x∀y . [x ' y ∧ P(. . . , x , . . .)] ⊃ P(. . . , y , . . .)
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Craig interpolation or interpolation tout court

I Formulæ A and B such that A ` B
I An interpolant I is a formula that lies between A and B:

I Derivability: A ` I and I ` B
I Signature: I made of symbols common to A and B

where symbol means predicate, function, constant symbol
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Trivial cases

I All symbols of A appear in B: then A itself is the interpolant

I All symbols of B appear in A: then B itself is the interpolant

Assume that at least one has at least one symbol that does not
appear in the other
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Craig’s Interpolation Theorem (1957)

I If A and B are closed formulæ with at least one predicate
symbol in common

I Then an interpolant I exists and it is also a closed formula

I No predicate symbol in common: either A is unsatisfiable and
I is ⊥ or B is valid and I is >
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Theorem proving

I A `? B is a theorem-proving problem

I Refutational theorem proving

I Equivalently: is A ∧ ¬B inconsistent?

I A ∧ ¬B `?⊥
I A,¬B `?⊥
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Proofs by refutation: reverse interpolant

I A and B inconsistent: A,B `⊥
I Then A ` I and B, I `⊥
I All symbols in I common to A and B

Reverse interpolant of (A,B): interpolant of (A,¬B)
because A,B `⊥ means A ` ¬B and B, I `⊥ means I ` ¬B

Interpolant of (A,B): reverse interpolant of (A,¬B)

In refutational settings we say interpolant for reverse interpolant
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Example

I A is ∀x . P(c, x)

I B is ∀x . ¬P(x , d)

I A and B are inconsistent

I Interpolant I is ∃y∀x . P(y , x)
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Reasoning modulo theory T

I `T in place of `
I All uninterpreted symbols in I common to A and B

I No restrictions on interpreted symbols
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Example

I A is a1 6' a2

I B is ∀x∀y . x ' y

I A and B are inconsistent

I Interpolant I is ∃x∃y . x 6' y
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Clausal theorem proving

I Clause: disjunction of literals where all variables are implicitly
universally quantified

I ¬P(f (z)) ∨ ¬Q(g(z)) ∨ R(f (z), g(z))

I No loss of generality: every formula can be transformed into a
conjunction, or set, of clauses

I Inconsistency is preserved
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Transformation into clausal form

I Eliminate ≡ and ⊃: (F ≡ G becomes (F ⊃ G ) ∧ (G ⊃ F ) and

F ⊃ G becomes ¬F ∨ G )

I Reduce the scope of all occurrences of ¬ to an atom:
(¬(F ∨ G ) becomes ¬F ∧ ¬G , ¬(F ∧ G ) becomes ¬F ∨ ¬G , ¬¬F
becomes F , ¬∃F becomes ∀¬F , and ¬∀F becomes ∃¬F )

I Standardize variables apart
(each quantifier occurrence binds a distinct variable symbol)

I Skolemize ∃ and then drop ∀
I Distributivity and associativity: F ∨ (G ∧ H) becomes

(F ∨ G ) ∧ (F ∨ H) and F ∨ (G ∨ H) becomes F ∨ G ∨ H

I Replace ∧ by comma and get a set of clauses
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Skolemization

I Outermost ∃:
I ∃x F [x ] becomes F [a] (all occurrences of x replaced by a)

a is a new Skolem constant
I There exists an element such that F : let this element be

named a

I ∃ in the scope of ∀:
I ∀y∃x F [x , y ] becomes ∀y F [g(y), y ]

(all occurrences of x replaced by g(y))
g is a new Skolem function

I For all y there is an x such that F : x depends on y ;
let g be the map of this dependence
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A simple example

I ¬{[∀x P(x)] ⊃ [∃y ∀z Q(y , z)]}
I ¬{¬[∀x P(x)] ∨ [∃y ∀z Q(y , z)]}
I [∀x P(x)] ∧ ¬[∃y ∀z Q(y , z)]

I [∀x P(x)] ∧ [∀y ∃z ¬Q(y , z)]

I [∀x P(x)] ∧ [∀y ¬Q(y , f (y))] where f is a Skolem function

I {P(x), ¬Q(y , f (y))}: a set of two unit clauses

From now on we work with clauses
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Why interpolation?

I Interpolant is a formula in between formulæ

I Formulæ represent states that satisfy them

I States of an automaton, of a transition system, of a program

I Interpolant may give information on intermediate states
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Image computation in model checking

I Transition system with transition relation

I Forward reachability: computing images

I Backward reachability: computing pre-images

I Interpolant: over-approximation of an image/pre-image

I Interpolation to accelerate convergence towards fixed point

A I
B

−−− ? −−−>
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Abstraction refinement in software model checking

Abstraction Model checking

Feasibility Check
(Theorem proving)

Refinement
(Interpolation)

Program P’

Program P Abstract

Candidate
Error

Bug
(F sat)

Trace T

T spurious
(F unsat:

  proof)

No
bug

F = A ∪ B; add predicates from interpolant I of (A,B): exclude T
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Automated invariant generation

I Loop: pre while C do T post
I ∀s. pre[s] ⊃ I (s)
I ∀s, s ′. I (s) ∧ C [s] ∧ T [s, s ′] ⊃ I (s ′)
I ∀s. I (s) ∧ ¬C [s] ⊃ post(s)

I Invariant I made of symbols common to pre and post; no
symbols local to the loop body T

I A: k-unfolding of loop; B: post-condition violated

I A,B `⊥
I Interpolant of (A,B): candidate invariant
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Why interpolation?

I Interpolant is an explanation of A,B `⊥
I Conflict-driven reasoning: explaining conflicts,

where a conflict is an inconsistency between a formula to be
satisfied and a candidate model
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Example of explanation by interpolation I

F = {x ≥ 2, ¬(x ≥ 1) ∨ y ≥ 1, x2 + y2 ≤ 1 ∨ xy > 1}
I Caveat: x and y here are constant symbols logically

I M = ∅
I M = x ≥ 2

I M = x ≥ 2, x ≥ 1

I M = x ≥ 2, x ≥ 1, y ≥ 1

I M = x ≥ 2, x ≥ 1, y ≥ 1, x2 + y2 ≤ 1

I M = x ≥ 2, x ≥ 1, y ≥ 1, x2 + y2 ≤ 1, x ← 2

I Conflict: no value for y such that 4 + y2 ≤ 1
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Example of explanation by interpolation II

F = {x ≥ 2, ¬(x ≥ 1) ∨ y ≥ 1, x2 + y2 ≤ 1 ∨ xy > 1}
I x2 + y2 ≤ 1 implies −1 ≤ x ∧ x ≤ 1 which is inconsistent with

x = 2

I −1 ≤ x ∧ x ≤ 1 is an interpolant because x is shared

I Learn ¬(x2 + y2 ≤ 1) ∨ x ≤ 1

I Undo x ← 2 and add x ≤ 1

I M = x ≥ 2, x ≥ 1, y ≥ 1, x2 + y2 ≤ 1, x ≤ 1

Maria Paola Bonacina On interpolation in theorem proving



Outline
Introduction to interpolation

Interpolation for propositional resolution
Interpolation and equality

Interpolation in propositional logic

Interpolation in propositional logic
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Terminology for interpolation: Colors

Uninterpreted symbol:

I A-colored: occurs in A and not in B

I B-colored: occurs in B and not in A

I Transparent: occurs in both

Alternative terminology: A-local, B-local, global
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Terminology for interpolation: Colors

Ground term/literal/clause:

I All transparent symbols: transparent

I A-colored (at least one) and transparent symbols: A-colored

I B-colored (at least one) and transparent symbols: B-colored

I Otherwise: AB-mixed
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Interpolation system

I A and B sets of clauses

I Given: a refutation of A ∪ B

I Interpolation system: extracts interpolant of (A,B)

I How? Computing a partial interpolant PI (C ) for each clause
C in refutation

I Defined in such a way that PI (2) is interpolant of (A,B)
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Partial interpolant

I Clause C in refutation of A ∪ B

I A ∧ B ` C

I A ∧ B ` C ∨ C

I A ∧ ¬C ` ¬B ∨ C

I Interpolant of A ∧ ¬C and ¬B ∨ C

I Reverse interpolant of A ∧ ¬C and B ∧ ¬C
I The signatures of A ∧ ¬C and B ∧ ¬C are not necessarily

those of A and B unless C is transparent

I Use projections
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Symmetric projections

C : disjunction (conjunction) of literals

I C |A: A-colored and transparent literals

I C |B : B-colored and transparent literals

I C |A,B : transparent literals

I ⊥ (>) if empty

If C has no AB-mixed literals: C = C |A ∨ C |B
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Asymmetric projections

C : disjunction (conjunction) of literals

I C\B = C |A \ C |A,B (A-colored only)

I C ↓B= C |B (transparent go with B-colored)

If C has no AB-mixed literals: C = C \B ∨C ↓B
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Partial interpolant

I Clause C in refutation of A ∪ B

I Partial interpolant PI (C ): interpolant of
A ∧ ¬(C |A) and
B ∧ ¬(C |B)

I If C is 2: PI (C ) interpolant of (A,B)
I Requirements:

I A ∧ ¬(C |A) ` PI (C )
I B ∧ ¬(C |B) ∧ PI (C ) `⊥
I PI (C ) transparent

I Or as above with asymmetric projections
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Complete interpolation system

An interpolation system is complete for an inference system if

I For all sets of clauses A and B such that A∪B is unsatisfiable

I For all refutations of A ∪ B by the inference system

It generates an interpolant of (A,B)

There may be more than one
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Inductive approach to interpolation

I The interpolation system is defined inductively

I By defining the partial interpolant of the consequence given
the partial interpolants of the premises for each inference rule

I Prove complete:
show that its partial interpolants are indeed such

Maria Paola Bonacina On interpolation in theorem proving



Outline
Introduction to interpolation

Interpolation for propositional resolution
Interpolation and equality

Propositional resolution: example

P ∨ ¬Q ∨ ¬R, ¬P ∨ O

O ∨ ¬Q ∨ ¬R

where O, P, Q, and R are propositional atoms
(aka propositional variables, aka 0-ary predicates)
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Propositional resolution

S ∪ {L ∨ C , ¬L ∨ D}
S ∪ {L ∨ C , ¬L ∨ D, C ∨ D}

I L is an atom

I C and D are disjunctions of literals

I L and ¬L are the literals resolved upon

I C ∨ D is called resolvent

Maria Paola Bonacina On interpolation in theorem proving



Outline
Introduction to interpolation

Interpolation for propositional resolution
Interpolation and equality

First-order ground resolution

P(c , g(a)) ∨ ¬R(c , b), ¬P(c , g(a)) ∨ Q(a, g(a))

¬R(c , b) ∨ Q(a, g(a))

Same as propositional resolution: map ground atoms into
propositional atoms
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Example in propositional logic

A = {a ∨ e, ¬a ∨ b, ¬a ∨ c} B = {¬b ∨ ¬c ∨ d , ¬d , ¬e}

1. a ∨ e resolves with ¬e to yield a

2. a resolves with ¬a ∨ c to yield c

3. a resolves with ¬a ∨ b to yield b

4. b resolves with ¬b ∨ ¬c ∨ d to yield ¬c ∨ d

5. c resolves with ¬c ∨ d to yield d

6. d resolves with ¬d to yield 2

Goal: interpolate this refutation to get an interpolant of (A,B)
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Propositional interpolation systems

I Literals in proof are input literals

I Input literals are either A-colored or B-colored or transparent

I No AB-mixed literals
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The HKPYM interpolation system

C clause in refutation of A ∪ B by propositional resolution:

I C ∈ A: PI (C ) = ⊥
I C ∈ B: PI (C ) = >
I C ∨ D propositional resolvent of p1 : C ∨ L and p2 : D ∨ ¬L:

I L A-colored: PI (C ∨ D) = PI (p1) ∨ PI (p2)
I L B-colored: PI (C ∨ D) = PI (p1) ∧ PI (p2)
I L transparent: PI (C ∨ D) = (L ∨ PI (p1)) ∧ (¬L ∨ PI (p2))

Symmetric projections

[Huang 1995] [Kraj́ıček 1997] [Pudlàk 1997] [Yorsh, Musuvathi 2005]
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Example with HKPYM

A = {a ∨ e, ¬a ∨ b, ¬a ∨ c} B = {¬b ∨ ¬c ∨ d , ¬d , ¬e}

1. a ∨ e [⊥] resolves with ¬e [>] to yield a [e]:

PI (a) = (e ∨ ⊥) ∧ (¬e ∨ >) = e

2. a [e] resolves with ¬a ∨ c [⊥] to yield c [e]: PI (c) = e ∨ ⊥= e

3. a [e] resolves with ¬a ∨ b [⊥] to yield b [e]: PI (b) = e ∨ ⊥= e

4. b [e] resolves with ¬b ∨ ¬c ∨ d [>] to yield ¬c ∨ d [b ∨ e]:

PI (¬c ∨ d) = (b ∨ e) ∧ (¬b ∨ >) = b ∨ e

5. c [e] resolves with ¬c ∨ d [b ∨ e] to yield d [e ∨ (c ∧ b)]:

PI (d) = (c ∨ e) ∧ (¬c ∨ b ∨ e) = e ∨ (c ∧ b)

6. d [e ∨ (c ∧ b)] resolves with ¬d [>] to yield 2 [e ∨ (c ∧ b)]:

PI (2) = (e ∨ (c ∧ b)) ∧ > = e ∨ (c ∧ b)
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The MM interpolation system

C clause in refutation of A ∪ B by propositional resolution:

I C ∈ A: PI (C ) = C |A,B
I C ∈ B: PI (C ) = >
I C ∨ D propositional resolvent of p1 : C ∨ L and p2 : D ∨ ¬L:

I L A-colored: PI (C ∨ D) = PI (p1) ∨ PI (p2)
I L B-colored or transparent: PI (C ∨ D) = PI (p1) ∧ PI (p2)

Asymmetric projections

[McMillan 2003]

Maria Paola Bonacina On interpolation in theorem proving



Outline
Introduction to interpolation

Interpolation for propositional resolution
Interpolation and equality

Example with MM

A = {a ∨ e, ¬a ∨ b, ¬a ∨ c} B = {¬b ∨ ¬c ∨ d , ¬d , ¬e}

1. a ∨ e [e] resolves with ¬e [>] to yield a [e]: PI (a) = e ∧ > = e

2. a [e] resolves with ¬a ∨ c [c] to yield c [e ∨ c]: PI (c) = e ∨ c

3. a [e] resolves with ¬a ∨ b [b] to yield b [e ∨ b]: PI (b) = e ∨ b

4. b [e ∨ b] resolves with ¬b ∨ ¬c ∨ d [>] to yield ¬c ∨ d [e ∨ b]:

PI (¬c ∨ d) = (e ∨ b) ∧ > = e ∨ b

5. c [e ∨ c] resolves with ¬c ∨ d [e ∨ b] to yield d [e ∨ (c ∧ b)]:

PI (d) = (e ∨ c) ∧ (e ∨ b) = e ∨ (c ∧ b)

6. d [e ∨ (c ∧ b)] resolves with ¬d [>] to yield 2 [e ∨ (c ∧ b)]:

PI (2) = (e ∨ (c ∧ b)) ∧ > = e ∨ (c ∧ b)
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Comparison of HKPYM and MM

I In this example the final interpolant is the same, although at
each step the HKPYM partial interpolant implies the MM
partial interpolant

I In general: MM interpolants imply HKPYM interpolants
[D’Silva, Kroening, Purandare, Weissenbacher 2010]

I But there is no general result as to whether weaker or
stronger is preferable

Maria Paola Bonacina On interpolation in theorem proving



Outline
Introduction to interpolation

Interpolation for propositional resolution
Interpolation and equality

Interpolation and equality

Interpolation and equality
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Equational reasoning

Replacing equals by equals as in ground rewriting:

S ∪ {f (a, a) ' a, P(f (a, a)) ∨ Q(a)}
S ∪ {f (a, a) ' a, P(a) ∨ Q(a)}

It can be done as f (a, a) � a: replacing equals by equals needs an
ordering in order to know in which direction apply the equality
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Monotonicity

I � ordering

I s � t

I Example: f (a, i(a)) � e

I Monotonicity: r [s] � r [t] for all contexts r
(A context is an expression, here a term or atom, with a hole)

I f (f (a, i(a)), b) � f (e, b)
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Subterm property

I � ordering

I s[t] � t

I Example: f (a, i(a)) � i(a)
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Well-foundedness

I No infinite descending chain s0 � s1 � . . . si � si+1 � . . .

I Monotonicity and the subterm property suffice to ensure
well-foundedness on ground terms
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Equality changes the picture for interpolation

I Propositional logic: no AB-mixed literals and colors are stable

I Equality: what if AB-mixed equality ta ' tb is derived?
ta: A-colored ground term; tb: B-colored ground term

I Rewriting: ta and tb in normal form, ta � tb:
rewrite ta as tb; tb should become transparent

I A-colored/B-colored/transparent cannot change dynamically!
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Equality-interpolating theory

I (A,B): there exist transparent ground terms

I If A ∧ B |=T ta ' tb
ta: A-colored ground term and tb: B-colored ground term

I Then A ∧ B |=T ta ' t ∧ tb ' t for some transparent ground
term t called equality-interpolating term

[Yorsh, Musuvathi 2005]
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Separating ordering

Ordering � on terms and literals:
separating if s � r whenever r is transparent and s is not
([McMillan 2008], [Kovàcs, Voronkov 2009])

Rewriting: ta and tb rewritten to t
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Separating implies no AB-mixed literals

I Γ: inference system with resolution, superposition,
simplification, subsumption ...

I Lemma: If the ordering � is separating, ground Γ-refutations
contain no AB-mixed literals

I s ' r and l [s] not AB-mixed, and s � r
I either s and r same color or r transparent
I l [r ] not AB-mixed
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EUF is equality-interpolating

I Theorem: The quantifier-free fragment of the theory of
equality is equality-interpolating

I Γ with � separating ordering
I (A,B): there exist transparent ground terms
I If A ∧ B |= ta ' tb
I A ∪ B ∪ {ta 6' tb} `Γ⊥ by refutational completeness of Γ
I No AB-mixed equalities as � is separating
I Valley proof ta

∗→ t
∗← tb contains at least a transparent term

I t must be transparent
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Interpolation system GΓI

C clause in ground Γ-refutation of A ∪ B:

I Base cases and resolution: same as in HKPYM
I c : C ∨ l [r ]∨D generated from p1 : C ∨ s ' r and p2 : l [s]∨D

I s ' r A-colored: PI (c) = PI (p1) ∨ PI (p2)
I s ' r B-colored: PI (c) = PI (p1) ∧ PI (p2)
I s ' r transparent: PI (c) = (s ' r ∨ PI (p1)) ∧ (s 6' r ∨ PI (p2))
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Example

A = {P(c), ¬P(e)} B = {c ' e} c � e

P is A-colored, c and e are transparent

1. c ' e [>] simplifies P(c) [⊥] into P(e) [c 6' e]
PI (P(e)) = (c ' e ∨ >) ∧ (c 6' e ∨ ⊥) = c 6' e

2. ¬P(e) [⊥] resolves with P(e) [c 6' e] to yield 2 [c 6' e]
PI (2) = ⊥ ∨c 6' e = c 6' e
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Example

A = {Q(f (a)), f (a) ' c} B = {¬Q(f (b)), f (b) ' c}

a is A-colored, b is B-colored, all other symbols are transparent

1. f (a) ' c [⊥] simplifies Q(f (a)) [⊥] into Q(c) [⊥]
where f (a) � c in any separating ordering
PI (Q(c)) =⊥ ∨ ⊥=⊥

2. f (b) ' c [>] simplifies ¬Q(f (b)) [>] into ¬Q(c) [>]
where f (b) � c in any separating ordering
PI (¬Q(c)) = > ∧> = >

3. Q(c) [⊥] resolves with ¬Q(c) [>] to yield 2 [Q(c)]
PI (2) = (Q(c)∨ ⊥) ∧ (¬Q(c) ∨ >) = Q(c)
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Completeness

I Theorem: If the ordering is separating, GΓI is a complete
interpolation system for ground Γ-refutations

I The proof shows that the partial interpolants built by GΓI
satisfy the requirements for partial interpolants.
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Discussion

I Generality: interpolants for more logics, theories, inference
systems

I Quality: better interpolants; stronger? weaker? shorter?

I Non-ground proofs theories?
Two-stage approach:
Maria Paola Bonacina and Moa Johansson. On interpolation in

automated theorem proving. Journal of Automated Reasoning,

54(1):69-97, 2015
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