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Introduction

DPLL(Γ+T ) is a theorem-proving method that

I Integrates SMT-solver DPLL(T ) and first-order inference
system Γ

I Combines built-in and axiomatized theories

I Makes first-order inferences model-driven by the candidate
model built by the SMT-solver

I Yields some decision procedures for satisfiability of first-order
formulæ
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Motivation

I Formulæ from applications (e.g., verification) involve
I Background theories (e.g., linear arithmetic, data structures)
I Quantifiers to write, e.g.,

I Invariants
I Axioms of application-specific theories without decision

procedure

I Objective: have both theory reasoning and reasoning about
quantifiers

I Not even semi-decidable in general
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Preliminary assumptions

I Background theory T
I T =

⋃n
i=1 Ti

I Set of formulæ: R∪ P
I R: set of non-ground clauses without T -symbols
I P: set of ground clauses

typically with both T -symbols and R-symbols

I Determine whether R∪ P is satisfiable modulo T
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Some key state-of-the-art reasoning methods

I DPLL-CDCL procedure for SAT

I Ti -solvers: Satisfiability procedures for the Ti ’s
I Satisfiability procedure for T via combination by equality

sharing (aka Nelson-Oppen) of the Ti -satisfiability procedures

I DPLL(T )-based SMT-solver

I First-order engine Γ to handle R (additional theory):
Resolution+Rewriting+Superposition: Superposition-based
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Theory combination by equality sharing

I Theories T1, . . . , Tn with Ti -satisfiability procedures

I T =
⋃n

i=1 Ti
I Disjoint: share only ' and uninterpreted constants

I Mixed terms separated by introducing new constants
(e.g., f (g(a)) ' b becomes f (c) ' b ∧ g(a) ' c , with c new,

if f and g belong to different theories)

I Need to agree on:
I Shared constants
I Cardinalities of shared sorts
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Theory combination by equality sharing

I Compute arrangement: which shared constants are equal and
which are not

I Ti -solvers generate and propagate all entailed (disjunctions of)
equalities between shared constants

I For cardinalities: assume stably infinite:
every Ti -satisfiable ground formula has Ti -model with infinite
cardinality
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Superposition-based inference system Γ

I FOL+= clauses with universally quantified variables

I Axiomatized theories

I Deduce clauses from clauses (expansion)

I Remove redundant clauses (contraction)

I Well-founded ordering � on terms and literals to restrict
expansion and define contraction

I Semi-decision procedure for unsatisfiability

I No backtracking
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Ordering-based inferences

Ordering � on terms and literals to

I restrict expansion inferences

I define contraction inferences

Complete Simplification Ordering:

I stable: if s � t then sσ � tσ

I monotone: if s � t then l [s] � l [t]

I subterm property: l [t] � t

I total on ground terms and literals
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Inference system Γ

State of derivation: set of clauses S

I Expansion rules:
I Resolution: resolve maximal complementary literals
I Superposition: superpose maximal side of maximal equation

into maximal side of maximal (in)equation
I Paramodulation: superpose maximal side of maximal equation

into maximal literal
I Factoring rules

I Contraction rules:
I Simplification by well-founded rewriting
I Subsumption of less general clauses (Cσ ⊆ D as multisets)
I Deletion of trivial clauses
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Combining strengths of different reasoning engines

I DPLL: SAT-problems; large clauses (also non-Horn)

I Theory solvers: e.g., ground equality, linear arithmetic

I DPLL(T )-based SMT-solver: efficient integration of the above
I Superposition-based inference system Γ:

I Horn clauses, equalities, universal quantifiers
(automated instantiation)

I Satisfiability procedure for several theories of data structures
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DPLL(Γ+T ): integrate Γ in DPLL(T )

State of derivation M ||F

I Model-based deduction:
literals in M as premises of Γ-inferences

I Stored as hypotheses in inferred clause

I Hypothetical clause: (L1 ∧ . . . ∧ Ln) . (L′1 ∨ . . . L′m)
interpreted as ¬L1 ∨ . . . ∨ ¬Ln ∨ L′1 ∨ . . . ∨ L′m

Predecessor:

DPLL(Γ) [Leonardo de Moura and Nikolaj Bjørner, IJCAR 2008]
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DPLL(Γ+T ): integrate Γ in DPLL(T )

I Inferred clauses inherit hypotheses from premises

I Backjump: remove hypothetical clauses depending on undone
assignments
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DPLL(Γ+T ): division of labor

Use each engine for what is best at:

I DPLL(T ) sees all and only ground clauses

I Γ sees all non-ground clauses and ground unit R-clauses taken
from M: Γ works on R-satisfiability problem

I Both see the ground unit R-clauses
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DPLL(Γ+T ): two modes

I Search mode: State of derivation M ||F
I M sequence of ground literals: partial model
I F set of hypothetical clauses

clauses(F ) is the set of clauses in F stripped of the hypotheses

I Conflict resolution mode: State of derivation M ||F ||C
I C ground conflict clause

Initial state: M empty, F is {∅ . C | C ∈ R ∪ P}
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Model-based theory combination

A variant of equality sharing:

I Each Ti -solver builds a candidate Ti -model Mi

I Generate and propagate the equalities between shared
constants that are true in Mi

I Less expensive than generating (disjunctions of) equalities
true in all Ti -models consistent with M

I Optimistic approach: if t ' s inconsistent, retract, and fix Mi

by backtracking

I Rationale: few equalities matter in practice

[Leonardo de Moura and Nikolaj Bjørner, SMT 2007]
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Model-based theory combination in DPLL(Γ+T )

I PropagateEq: add to M ground s ' t true in Ti -model:
if Mi (t) = Mi (s), t and s occur in F ,

M ||F =⇒ M t ' s ||F

I Ground terms, not only shared constants, to serve next rule
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DPLL(Γ+T ): expansion inferences

I Say that non-ground clauses C1, . . . ,Cm

and ground R-literals Lm+1, . . . , Ln
generate clause C
by an expansion inference rule in Γ (e.g., superposition)

I Then if we have H1 . C1, . . . ,Hm . Cm in F
and Lm+1, . . . , Ln in M
we can generate H1 ∪ . . . ∪ Hm ∪ {Lm+1, . . . , Ln} . C
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DPLL(Γ+T ): expansion inferences

I Deduce: given non-ground clauses {H1 . C1, . . . ,Hm . Cm} in
F and ground R-literals {Lm+1, . . . , Ln} in M

M ||F =⇒ M ||F ,H . C

where H = H1 ∪ . . . ∪ Hm ∪ {Lm+1, . . . , Ln}
and a Γ-rule infers C from {C1, . . . ,Cm, Lm+1, . . . , Ln}

I Only R-literals: Γ-inferences ignore T -literals

I Take ground unit R-clauses from M as PropagateEq puts
them there
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DPLL(Γ+T ): contraction inferences

I Γ: generate and keep clause; delete redundant clauses;
once redundant always redundant

I How to combine this with a system with backjumping, where
clauses may disappear not because redundant, but because
the hypotheses they depend on are gone from the trail due to
backjumping?
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DPLL(Γ+T ): contraction inferences

I Single premise (e.g., tautology deletion):
apply to H . C if it applies to C

I Multiple premises (e.g., subsumption, simplification):
prevent situation where clause is deleted, but clauses that
make it redundant are gone because of backjumping
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Scope level

I Scope level of a literal in M: its decision level:
level(L) in M L M ′: number of decided literals in M L

I Scope level of a set of literals: the maximum:
level(H) = max{level(L) | L ∈ H} and 0 for ∅
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DPLL(Γ+T ): contraction inferences

I Say we have non-ground clauses H . C , H2 . C2, . . . ,Hm . Cm

in F and ground R-literals Lm+1, . . . , Ln in M

I C2, . . . ,Cm, Lm+1, . . . , Ln simplify C to C ′ or subsume it

I Let H ′ = H2 ∪ . . . ∪ Hm ∪ {Lm+1, . . . , Ln}
I Simplification: replace H . C by (H ∪ H ′) . C ′

I Subsumption: delete H . C

I Both: if level(H ′) ≤ level(H): delete
if level(H ′) > level(H): disable
(re-enable when backjumping level(H ′))
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DPLL(Γ+T ): DPLL-CDCL rules

I Decide: guess ground L true, add it to M (decided literal)

M ||F =⇒ M L ||F

I UnitPropagate consequence of assignment (implied literal):
C ∨ L ground clause
if M |=P ¬C (all lits in C false)

M ||F ,H . (C ∨ L) =⇒ M LH.(C∨L) ||F ,H . (C ∨ L)

Literals in H are immaterial here because they come from M
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DPLL(Γ+T ): DPLL-CDCL rules

I Conflict: C ground clause
if M |=P ¬C

M ||F ,H . C =⇒ M ||F ,H . C || ¬H ∨ C

Conflict clauses are ground
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DPLL(Γ+T ): DPLL-CDCL rules

I Explain: unfold by resolution implied literal: if LH.(D∨L) ∈ M

M ||F ||C ∨ ¬L =⇒ M ||F || ¬H ∨ D ∨ C

I Learn conflict clause C 6∈ clauses(F )

M ||F ||C =⇒ M ||F ,C ||C

Maria Paola Bonacina The theorem-proving method DPLL(Γ+T )



Outline
Introduction

DPLL(Γ+T ) as a transition system
Completeness: variable-inactivity, iterative deepening

Decision procedures by DPLL(Γ+T ) with speculative inferences

DPLL(Γ+T ): DPLL-CDCL rules

I Backjump:

M L′ M ′ ||F ||C ∨ L =⇒ M LC∨L ||F ′

where L′ is the least recently decided literal such that
M |=P ¬C and L undefined in M
F ′ is F minus clauses whose hypothesis intersects L′ M ′

I Unsat: conflict clause is 2

M ||F ||2 =⇒ unsat
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DPLL(Γ+T ): DPLL(T ) rules

I T -Propagate: add ground L that is T -consequence of M:
if L1, . . . , Ln ∈ M and L1, . . . , Ln |=T L

M ||F =⇒ M L(¬L1∨...∨¬Ln∨L) ||F

I T -Conflict: detect that L1, . . . , Ln in M are T -inconsistent:
if L1, . . . , Ln ∈ M and L1, . . . , Ln |=T ⊥

M ||F =⇒ M ||F || ¬L1 ∨ . . . ∨ ¬Ln
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DPLL(Γ+T ): Summary

Use each engine for what is best at:

I DPLL(T ) works on ground clauses and built-in theories

I Γ works on non-ground clauses and ground unit R-clauses
taken from M

I Γ works on R-satisfiability problem

I Γ seen as R-solver in a Nelson-Oppen combination

I Γ-inferences guided by current partial model
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Issues about completeness

I Γ is refutationally complete
Since Γ does not see all the clauses, DPLL(Γ+T ) does not
inherit refutational completeness trivially

I Equality sharing is complete for Nelson-Oppen built-in
theories: how to extend to a combination with an axiomatized
theory R?

I DPLL(T ) uses depth-first search: complete for ground SMT
problems, not with non-ground inferences
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From rewriting-based theorem proving

I N: set of ground clauses

I IN : candidate model

I Counterexample: IN 6|= C

I Reduction property for counterexamples: for all N, IN , and
counterexample C ∈ N, Γ infers a counterexample D ≺ C

I Theorem: if N Γ-saturated, then unsatisfiable iff 2 ∈ N

I Proof: show that if 2 6∈ N then satisfiable

Maria Paola Bonacina The theorem-proving method DPLL(Γ+T )
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From rewriting-based theorem proving

I Proof: show that if 2 6∈ N then satisfiable
BWOC: Assume that it is not
For all candidate model IN there is a counterexample C ∈ N
Let C be the ≺-smallest
By the reduction property for counterexamples, Γ can
generate a counterexample D ≺ C
Either D ∈ N and then C is not the smallest
Or D 6∈ N and then N is not Γ-saturated
Either way we have a contradiction
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Γ as decision procedure

I Termination results by analysis of inferences: Γ as an
R-satisfiability procedure

I Covered theories include: lists, arrays and records with or
without extensionality, recursive data structures

Joint works with Alessandro Armando, Mnacho Echenim, Michaël

Rusinowitch, Silvio Ranise, and Stephan Schulz
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Variable-inactivity

I Clause C : variable-inactive if no maximal literal has the form
t ' x where x 6∈ Var(t)
(Intuition: no paramodulation/superposition from variables

the case x ∈ Var(t) is blocked by the ordering as t[x ] � x by the

subterm property)

I Set of clauses: variable-inactive if all its clauses are

[Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, Stephan

Schulz, FroCoS 2005, ACM TOCL 2009]
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Variable-inactivity

I S0 = R∪ S where S is any set of ground R-literals

I Γ-derivation: S0 ` S1 ` . . . Si ` Si+1

I Fairness of Γ: no irredundant Γ-inference indefinitely
postponed

I Limit: S∞ =
⋃

j≥0

⋂
i≥j Si (persistent clauses)

I Theory R: variable-inactive if limit S∞ of fair Γ-derivation
from S0 = R∪ S is variable-inactive

I Persistent clauses are variable-inactive

[Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, Stephan

Schulz, FroCoS 2005, ACM TOCL 2009]
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Modularity of termination

I Theorem: if Γ terminates on Ri -satisfiability problems, it
terminates also on R-satisfiability problems for R =

⋃n
i=1Ri ,

if the Ri ’s are disjoint and variable-inactive

I Proof: (assume t � c for all compound term t and constant c)

the only inferences across theories are
superpositions/paramodulations from shared constants
replacing constant with constant: only finitely many
(informally: correspond to equalities between shared constants
in equality sharing)

[Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, Stephan

Schulz, FroCoS 2005 and ACM TOCL 2009]
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Variable inactivity implies stable infiniteness

I Lemma: if S0 is satisfiable, it admits no infinite model iff S∞
contains a cardinality constraint
(e.g., x ' y ∨ x ' z ∨ z ' y : not variable-inactive)

I Theorem: if R is variable-inactive, then it is stably infinite
Proof: by the lemma, not stably infinite implies not
variable-inactive

I In practice Γ reveals lack of infinite model by generating a
cardinality constraint

[Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and

Daniele Zucchelli, IJCAR 2006]

Maria Paola Bonacina The theorem-proving method DPLL(Γ+T )



Outline
Introduction

DPLL(Γ+T ) as a transition system
Completeness: variable-inactivity, iterative deepening

Decision procedures by DPLL(Γ+T ) with speculative inferences

Requirements for DPLL(Γ+T ): T -smooth set

R∪ P is T -smooth, for T =
⋃n

i=1 Ti , if

I T1, . . . , Tn and R are disjoint

I T1, . . . , Tn are stably infinite

I R is variable-inactive
I P is P1 ∪ P2

I P1: ground R-clauses
I P2: ground T -clauses
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Fairness for DPLL(Γ+T )

I Γ-based transitions: Deduce transitions and contraction
transitions

I Fairness: all applicable transitions applied eventually except
redundant Γ-based transitions

I Saturated state:
I Either M ||F ||2
I Or M ||F such that the only applicable inferences are

redundant Γ-based transitions

I Fair derivation yields saturated state eventually
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Refutational completeness of DPLL(Γ+T )

I Theorem: if input S = R∪ P is T -smooth, whenever
DPLL(Γ+T ) reaches a saturated state M ||F , S is
T -satisfiable.

I Proof: we need to show that clauses(F ) ∪M is T -satisfiable
I For each ground non-unit clause C in clauses(F ) there is a

literal of C in M by saturation w.r.t. Decide: ground non-unit
clause are redundant in clauses(F ) ∪M

I Thus, the fact that Γ does not see ground non-unit R-clauses
is immaterial, because they are satisfied by M
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Refutational completeness of DPLL(Γ+T )

Proof: (continues)

I Non-ground R-clauses in clauses(F ) and ground R-literals in
M: Γ-saturated, hence satisfiable by the reduction property
for counterexamples

I All T -clauses: T -satisfiable by saturation w.r.t. T -conflict

I Combination: by completeness of a Nelson-Oppen
combination of stably infinite theories by T -smoothness

Maria Paola Bonacina The theorem-proving method DPLL(Γ+T )



Outline
Introduction

DPLL(Γ+T ) as a transition system
Completeness: variable-inactivity, iterative deepening

Decision procedures by DPLL(Γ+T ) with speculative inferences

How to ensure fairness of DPLL(Γ+T )?

Example:

1. ¬p(x , y) ∨ p(f (x), f (y)) ∨ p(g(x), g(y)): seen by Γ

2. p(a, b)

3. g(x) 6' x : seen by Γ

4. g(c) ' c ∨ g(d) ' d

Unsatisfiable because of clauses (3) and (4).
Initially Γ sees only clauses (1) and (3) because M is empty.
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Example continued

1. ¬p(x , y) ∨ p(f (x), f (y)) ∨ p(g(x), g(y)): seen by Γ

2. p(a, b)

3. g(x) 6' x : seen by Γ

4. g(c) ' c ∨ g(d) ' d

1. Decide adds p(a, b) to M: seen by Γ

2. Resolution generates p(f (a), f (b)) ∨ p(g(a), g(b))

3. Decide adds p(f (a), f (b)) to M: seen by Γ

4. Resolution generates
p(f (f (a)), f (f (b))) ∨ p(g(f (a)), g(f (b))) ...

5. ... infinite unfair derivation that does not detect unsat!
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Answer: iterative deepening

Inference depth:

I Clause: infDepth(C ) = depth of inference tree producing C

I Implied literal: infDepth(L) = depth of clause that implied L

I Decided literal: infDepth(L) = min inference depth of clause
including L

k-bounded DPLL(Γ+T ): Deduce restricted to premises C with
infDepth(C ) < k
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Same example with iterative deepening

1. ¬p(x , y) ∨ p(f (x), f (y)) ∨ p(g(x), g(y)): seen by Γ

2. p(a, b)

3. g(x) 6' x : seen by Γ

4. g(c) ' c ∨ g(d) ' d

1. The bound on inference depth prevents the infinite alternation
of Decide and Resolution steps

2. Decide adds g(c) ' c to M: seen by Γ

3. Resolution generates 2

4. Decide adds g(d) ' d to M: seen by Γ

5. Resolution generates 2

6. Unsat
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Termination

I Theorem: k-bounded DPLL(Γ+T ) terminates:
DPLL(T ) does + finitely many Deduce steps within k

I DPLL(Γ+T ) stuck at k if only Deduce applies and only to
premises excluded by bound k

I Three outcomes: sat, unsat, stuck (don’t know)

I Decision procedure: sat, unsat

Maria Paola Bonacina The theorem-proving method DPLL(Γ+T )



Outline
Introduction

DPLL(Γ+T ) as a transition system
Completeness: variable-inactivity, iterative deepening

Decision procedures by DPLL(Γ+T ) with speculative inferences

How to get decision procedures?

I Need theorem prover that terminates on satisfiable inputs
I Not possible in general:

I FOL is only semi-decidable
I First-order formulæ of linear arithmetic with uninterpreted

functions: not even semi-decidable

However we need less than a general solution.
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Problematic axioms do occur

Example:

1. ¬(x v y) ∨ f (x) v f (y) (Monotonicity)

2. a v b generates by resolution

3. {f i (a) v f i (b)}i≥0

When f (a) v f (b) or f 2(a) v f 2(b) often suffice to show
satisfiability
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The idea of speculative inferences

I Speculative inference: adds arbitrary clause C

I To induce termination on satisfiable inputs

I In order to detect satisfiability it suffices to find one model

I If we can find a model that satisfies both the input set of
clauses and those added by speculative inferences, we do not
worry that the latter may not be true in all models
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Speculative inferences: example

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Terminate and detect satisfiability
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Speculative inferences in DPLL(Γ+T )

I Speculative inference: add arbitrary clause C

I What if it makes the problem unsatisfiable?
I Detect conflict and backjump:

I dCe: new propositional variable (a “name” for C )
I Use hypothetical clauses: Add dCe . C to F
I Add dCe to M to memorize this assumption in the trail
I Speculative inferences are reversible, as the system can remove
dCe from M and dCe . C from F by backjumping
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Speculative inferences in DPLL(Γ+T )

State of derivation: M ||F

Transition rule:

I SpeculativeIntro: add dCe . C to F and dCe to M

M ||F =⇒ M dCe ||F , dCe . C
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Speculative inferences in DPLL(Γ+T )

I Also SpeculativeIntro is bounded by iterative deepening for
termination:
(k , u)-bounded DPLL(Γ+T )
with bound k on inference depth for Deduce
and bound u on number of applications of SpeculativeIntro

I DPLL(Γ+T ) stuck at (k , u) if the only applicable transitions
are Deduce beyond k or SpeculativeIntro beyond u
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The example again

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x

2. Rewrite a v f (c) into df (x) ' xe . a v c

3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x

5. a v b yields only f (a) v f (b)

6. a v f (c) yields only df (f (x)) = xe . f (a) v c

7. Terminate and detect satisfiability
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Decision procedures with speculative inferences

To decide satisfiability modulo T of R∪ P:

I Find sequence of clauses U = C1,C2 . . .Ci , . . . such that
I If SpeculativeIntro adds the clauses in U there exist k and u

s.t. (k , u)-bounded DPLL(Γ+T ) is guaranteed to terminate
I returning Unsat if R∪ P is T -unsatisfiable
I in a state which is not stuck otherwise
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Essentially finite theories

A weakening of the finite model property:

I A structure Φ is essentially finite w.r.t. a function symbol f if
the range of Φ(f ) is finite

I Theorem: If Φ is essentially finite w.r.t. a monadic function
symbol f then Φ |= f j(x) ' f i (x) for some j 6= i

I Essentially finite R:
I signature has a single monadic function symbol f
I whenever R∪ P is satisfiable, for P a set of ground R-clauses,

it has an essentially finite model w.r.t. f
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Decision procedures for essentially finite theories

Theorem:

I R is essentially finite

I SpeculativeIntro adds f j(x) ' f i (x), j > i , for increasing
values of i and j

I If the number of literals in clauses is bounded by other
properties of Γ and R

I Then DPLL(Γ+T ) is a decision procedure for T -satisfiability
of R-smooth problems R∪ P
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Decision procedures for essentially finite theories

Proof:

I R∪ P T -unsatisfiable: by refutational completeness
DPLL(Γ+T ) reaches state unsat when the bound k on
inference depth gets large enough

I R∪ P T -satisfiable:
I Bound u on SpeculativeIntro large enough to add

f j(x) ' f i (x) true in the model (j > i)
I Rewriting by f j(x) ' f i (x) limits term depth
I Number of literals limited by hypothesis
I Only finitely many clauses generated
I Termination without getting stuck
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Negative selection

A way to restrict Resolution and Paramodulation/Superposition:

I A clause can have one, some or all its negative literal selected
depending on the chosen selection function

I The selection function is part of the search plan

I The negative literal resolved upon and the literal
paramodulated/superposed into do not need to be maximal,
must be selected instead

I The other premise must not contain any selected literal
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Negative selection

I Some negative literal is selected for each clause containing one

I Then one premise for each Resolution and
Paramodulation/Superposition inference will be positive:
Positive Strategy

I If in addition the problem is Horn: (Positive) Unit Strategy

I Resolution with negative selection realizes (Positive)
Hyperresolution
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A situation where clause length is limited

Γ: Resolution and Paramodulation/Superposition with negative
selection, Simplification

I R is Horn

I (Positive) Unit Strategy

I Unit Paramodulation/Superposition does not increase the
number of literals

I Hyperresolution only generates positive unit clauses

I The number of literals in generated clauses is bounded
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Ground-preserving clauses

I A clause is ground-preserving if variables in positive literals
appear also in negative literals

I A set of clauses is ground-preserving if all its clauses are

I In a ground-preserving set the only positive clauses are ground
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Another terminating situation

Γ: Resolution and Paramodulation/Superposition with negative
selection, Simplification

I R is ground-preserving

I Positive Strategy

I Hyperresolution only generates positive ground clauses

I Paramodulation/Superposition generates either ground
clauses or non-ground ground-preserving clauses with fewer
variable positions than the non-ground parent

I Simplification by f j(x) ' f i (x) limits term depth

I Only finitely many clauses generated
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Axiomatizations of type systems

v: subtype relation, f : type constructor

Reflexivity x v x (1)

Transitivity ¬(x v y) ∨ ¬(y v z) ∨ x v z (2)

Anti-Symmetry ¬(x v y) ∨ ¬(y v x) ∨ x ' y (3)

Monotonicity ¬(x v y) ∨ f (x) v f (y) (4)

Tree-Property ¬(z v x) ∨ ¬(z v y) ∨ x v y ∨ y v x (5)

Multiple inheritance: MI = {(1), (2), (3), (4)}
Single inheritance: SI = MI ∪ {(5)}
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These axiomatizations are essentially finite

I R has the finite model property: whenever R∪P is satisfiable,
for P a set of ground R-clauses, it has a finite model

I Theorems: SI and MI have the finite model property and
therefore they are essentially finite
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Concrete examples of decision procedures

DPLL(Γ+T ) with addition of f j(x) ' f i (x) for j > i decides the
satisfiability modulo T of T -smooth problems

I MI ∪ P
because MI is essentially finite and Horn

I SI ∪ P
because SI is essentially finite and ground-preserving
(except for reflexivity which however does not affect termination by

case analysis of the possible inferences)
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More axioms for types

g : type representative

I g(x) 6' null

I h(g(x)) ' x

Let TR = {g(x) 6' null , h(g(x)) ' x}
TR has only infinite models:

I g is injective, since it has left inverse

I g is not surjective, since there is no pre-image for null

I a set with an injective but not surjective function is infinite
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A decision procedure for more than one function symbol

Theorem: DPLL(Γ+T ) with addition of f j(x) ' f i (x) for j > i
decides the satisfiability modulo T of T -smooth problems
MI ∪ TR ∪ P and SI ∪ TR ∪ P.
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A decision procedure for more than one function symbol

Proof:

I Γ terminates on TR-satisfiability problems by case analysis of
the possible inferences

I MI and TR are disjoint and variable-inactive

I SI and TR are disjoint and variable-inactive

I Γ terminates on MI ∪ TR-satisfiability problems and
SI ∪ TR-satisfiability problems

I Thus the addition of TR does not affect the previous results
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Future work

I More decision procedures by speculative inferences?

I DPLL(Γ+T ) detects the lack of infinite models if Γ generates
a cardinality constraint, but does not have a general way to
discover the lack of finite models (works on asymmetric
combinations and superposition for bounded domains?)

I MCsat(Γ)?
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