Interpolation systems for non-ground proofs¹

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy

Formal Topics Series Computer Science Laboratory, SRI International Menlo Park, California, USA

31 August 2016

¹Joint work with Moa Johansson

Maria Paola Bonacina

Interpolation systems for non-ground proofs

Outline

Preliminaries Counter-examples to the color-based approach A two-stage approach Discussion

Preliminaries

Counter-examples to the color-based approach

A two-stage approach

Discussion

イロト イボト イヨト イヨト

臣

What is interpolation?

- Formulæ A and B such that $A \vdash B$
- An interpolant I is a formula such that
 - ► A ⊢ I
 - \blacktriangleright $I \vdash B$
 - All uninterpreted symbols in I are common to A and B

Assume that at least one of A and B has at least one symbol that does not appear in the other

Proofs by refutation: reverse interpolant

- A and B inconsistent: $A, B \vdash \perp$
- Then a reverse interpolant I is a formula such that
 - $\blacktriangleright A \vdash I$
 - ▶ B, I ⊢⊥
 - All uninterpreted symbols in I are common to A and B

Clausal theorem proving: A and B are sets of clauses

Remarks

Reverse interpolant of (A, B): interpolant of $(A, \neg B)$ because $A, B \vdash \perp$ means $A \vdash \neg B$ and $B, I \vdash \perp$ means $I \vdash \neg B$

I reverse interpolant of (A, B): $\neg I$ reverse interpolant of (B, A) because $A \vdash I$ means $A, \neg I \vdash \bot$ and $B, I \vdash \bot$ means $B \vdash \neg I$

In refutational settings we say interpolant for reverse interpolant

Terminology for interpolation: Colors

Uninterpreted symbol:

- A-colored: occurs in A and not in B
- B-colored: occurs in B and not in A
- Transparent: occurs in both

Alternative terminology: A-local, B-local, global

Terminology for interpolation: Colors

Ground term/literal/clause:

- All transparent symbols: transparent
- ► A-colored (at least one) and transparent symbols: A-colored
- ▶ *B*-colored (at least one) and transparent symbols: *B*-colored
- Otherwise: <u>AB-mixed</u>

Interpolation system

- Given refutation of $A \cup B$ extracts interpolant of (A, B)
- Associates partial interpolant PI(C) to every clause C
- Defined inductively based on those of parents
- ▶ $PI(\Box)$ is interpolant of (A, B)

Complete interpolation system

An interpolation system is complete for an inference system if

- For all sets of clauses A and B such that $A \cup B$ is unsatisfiable
- For all refutations of $A \cup B$ by the inference system

It generates an interpolant of (A, B)

There may be more than one

What an interpolation system really does

An interpolation system determines whether a literal L should be added to the interpolant I by:

- Detecting whether L comes from the A side or the B side of the refutation to ensure A ⊢ I and B, I ⊢⊥
- Checking that uninterpreted symbols in L are transparent to ensure that I is transparent

Color-based interpolation systems

- Achieve both goals by classifying symbols based on signature (the colors) and tracking them in the refutation
- Cannot handle <u>AB-mixed</u> literals
- Good for:
 - Propositional refutations
 [Krajíček 1997] [Pudlàk 1997] [McMillan 2003]
 - Equality sharing combination of convex equality-interpolating theories [Yorsh, Musuvathi 2005]
 - Ground first-order refutations under a separating ordering (transparent terms smaller than colored) [MPB, Johansson 2011]

Interpolation of non-ground proofs?

- Inference system Γ for first-order logic with equality
- F-inferences apply substitutions: most general unifiers, matching substitutions, to instantiate (universally quantified) variables
- Interpolation in the presence of variables and substitutions?
- Substitutions easily create AB-mixed literals

Does a separating ordering prevent *AB*-mixed literals in the general case like in the ground case?

No

イロト イボト イラト イラト

臣

Counter-example

f, g: transparent a: A-colored b: B-colored

•
$$g(y, \mathbf{b}) \simeq y$$
 and

- $f(g(a,x),x) \simeq f(x,a)$
- With $\sigma = \{y \leftarrow a, x \leftarrow b\}$
- Generate $f(a, b) \simeq f(b, a)$
- Where both sides are <u>AB-mixed</u> literals
- And the inference is compatible with a separating ordering

Can the color-based approach work if we give up completeness and restrict the attention to proofs with no AB-mixed literals?

No

Counter-example

- P: transparent a: A-colored b: B-colored
 - $\neg P(x, b) \lor C$ and $P(a, y) \lor D$
 - Where C and D contain no AB-mixed literals, x ∉ Var(C), y ∉ Var(D)
 - With $\sigma = \{x \leftarrow a, y \leftarrow b\}$
 - Generate $(C \lor D)\sigma = C \lor D$: no *AB*-mixed literals
 - But literals resolved upon ¬P(a, b) and P(a, b) are AB-mixed so that the A-colored/B-colored/transparent case analysis of the colored approach does not suffice

Local or colored proofs

- Local proof: only local inferences
- Local inference: involves at most one color
- Equivalent characterization: no AB-mixed clauses
- Hence the name colored proof

[McMillan 2008] [Kovàcs, Voronkov 2009] [Hoder, Kovàcs, Voronkov 2012]

Can the color-based approach work if we give up completeness and restrict the attention to colored proofs?

No

イロト イボト イラト イラト

Counter-example

- L, R, Q: transparent a, c: A-colored
 - ▶ $p_1: L(x, a) \lor R(x)$ with partial interpolant $PI(p_1)$ and
 - ▶ p_2 : $\neg L(c, y) \lor Q(y)$ with partial interpolant $PI(p_2)$
 - With $\sigma = \{x \leftarrow c, y \leftarrow a\}$
 - Generate $R(c) \lor Q(a)$
 - Even if PI(p₁) and PI(p₂) are transparent
 - (PI(p₁) ∨ PI(p₂))σ is not guaranteed to be, because x may appear in PI(p₁) and y may appear in PI(p₂)

A two-stage approach

- Separate entailment and transparency requirements
- First stage: compute provisional interpolant *î* such that A ⊢ *î* and B, *î* ⊢⊥
- Î may contain colored symbols
- **Second stage**: transform \hat{I} into interpolant I

Use labels to track where literals come from

- **Labeled** Γ-proof tree: attach a label to every literal
- A literal L may occur in more than one clause; the label depends on both literal and clause
- Labels are independent of signatures
- Labels are independent of substitutions
- All literals are labeled, including AB-mixed ones

Labeled **Г**-proof tree

- Clause in A: literals get label A
- Clause in B: literals get label B
- Literals in resolvents inherit labels from literals in parents
- ► Resolvent $c: (C \lor D)\sigma$ of $p_1: L \lor C$ and $p_2: \neg L' \lor D$ with $L\sigma = L'\sigma$: for all $M \in C$, $label(M\sigma, c) = label(M, p_1)$ for all $M \in D$, $label(M\sigma, c) = label(M, p_2)$
- Factor $c: (L \lor C)\sigma$ of $p: L \lor L' \lor C$ with $L\sigma = L'\sigma$: for all $M \in C$, $label(M\sigma, c) = label(M, p)$, and

$$label(L\sigma, c) = \begin{cases} \mathbf{A} & \text{if } label(L, p) = label(L', p) = \mathbf{A} \\ \mathbf{B} & \text{otherwise} \end{cases}$$

Example

$$L(x_1, c)_{\mathbf{A}} \lor P(x_1)_{\mathbf{A}} \lor Q(x_1, y_1)_{\mathbf{A}}$$
$$\neg L(c, x_2)_{\mathbf{B}} \lor P(x_2)_{\mathbf{B}} \lor R(x_2, y_2)_{\mathbf{B}}$$
$$\sigma = \{x_1 \leftarrow c, x_2 \leftarrow c\}$$

Resolvent: $P(c)_{\mathbf{A}} \lor Q(c, y_1)_{\mathbf{A}} \lor P(c)_{\mathbf{B}} \lor R(c, y_2)_{\mathbf{B}}$ which becomes $Q(c, y_1)_{\mathbf{A}} \lor P(c)_{\mathbf{B}} \lor R(c, y_2)_{\mathbf{B}}$ after factoring

Э

Labeled **F**-proof tree with equality

Paramodulation/Superposition/Simplification: as for resolution except that new literal generated by equational replacement inherits label of para-into literal

(C ∨ L[r] ∨ D)σ generated by paramodulating p₁: s ≃ r ∨ C into p₂: L[s'] ∨ D with sσ = s'σ: for all M ∈ C, label(Mσ, c) = label(M, p₁) for all M ∈ D, label(Mσ, c) = label(M, p₂) and label(L[r]σ, c) = label(L[s'], p₂)

イロト イヨト イヨト

Partial interpolant

- Clause C in refutation of $A \cup B$
- $\blacktriangleright A \land B \vdash C$
- $\blacktriangleright A \land B \vdash C \lor C$
- $\blacktriangleright A \land \neg C \vdash \neg B \lor C$
- Interpolant of $A \land \neg C$ and $\neg B \lor C$
- Reverse interpolant of $A \land \neg C$ and $B \land \neg C$
- The literals of A ∧ ¬C (B ∧ ¬C) do not necessarily come from the A (B) side of the proof
- Use projections based on labels

Labeled projections

- C|A: literals of C labeled A
- C|B: literals of C labeled B
- ▶ ⊥ if empty
- Commute with substitutions: for resolvent $(C \lor D)\sigma$ $(C \lor D)\sigma|_{\mathbf{A}} = (C|_{\mathbf{A}} \lor D|_{\mathbf{A}})\sigma$

Provisional partial interpolants

Provisional partial interpolant Pl(C) of clause C in refutation of A ∪ B: provisional interpolant of A ∧ ¬(C|_A) and B ∧ ¬(C|_B)
 Pl(□) is provisional interpolant of (A, B)

Provisional interpolation system $\Gamma \hat{I}$

•
$$c: C \in A: \widehat{Pl}(c) = \bot$$

• $c: C \in B: \widehat{Pl}(c) = \top$
• Resolvent $c: (C \lor D)\sigma$ of $p_1: L \lor C$ and $p_2: \neg L' \lor D$:
• Both literals A-labeled: $\widehat{Pl}(c) = (\widehat{Pl}(p_1) \lor \widehat{Pl}(p_2))\sigma$
• Both literals B-labeled: $\widehat{Pl}(c) = (\widehat{Pl}(p_1) \land \widehat{Pl}(p_2))\sigma$
• Positive A-labeled and negative B-labeled:
 $\widehat{Pl}(c) = [(L \lor \widehat{Pl}(p_1)) \land \widehat{Pl}(p_2)]\sigma$
• Positive B-labeled and negative A-labeled:
 $\widehat{Pl}(c) = [\widehat{Pl}(p_1) \land (\neg L' \lor \widehat{Pl}(p_2))]\sigma$

イロト イヨト イヨト イヨト

臣

Provisional interpolation system $\Gamma \hat{I}$

Factor
$$c: (L \lor C)\sigma$$
 of $p: L \lor L' \lor C$:

$$\widehat{PI}(c) = \begin{cases} \widehat{PI}(p)\sigma & \text{if } label(L,p) = label(L',p) \\ (L \lor \widehat{PI}(p))\sigma & \text{otherwise} \end{cases}$$

・ロト ・日ト ・ヨト ・ヨト

э

Provisional interpolation system $\Gamma \hat{I}$

- Paramodulation/Superposition/Simplification: (C ∨ L[r] ∨ D)σ generated by paramodulating p₁: s ≃ r ∨ C into p₂: L[s'] ∨ D:
 - Both literals **A**-labeled: $\widehat{PI}(c) = (\widehat{PI}(p_1) \vee \widehat{PI}(p_2))\sigma$
 - ► Both literals **B**-labeled: $\widehat{PI}(c) = (\widehat{PI}(p_1) \land \widehat{PI}(p_2))\sigma$
 - Para-from **A**-labeled and para-into **B**-labeled: $\widehat{PI}(c) = [(s \simeq r \lor \widehat{PI}(p_1)) \land \widehat{PI}(p_2)]\sigma$
 - Para-from **B**-labeled and para-into **A**-labeled: $\widehat{PI}(c) = [\widehat{PI}(p_1) \land (s \not\simeq r \lor \widehat{PI}(p_2))]\sigma$

Example

$$A = \{f(x) \simeq g(a, x)\} \qquad B = \{P(f(b)), \ \neg P(g(y, b))\}$$

- \succ : recursive path ordering based on precedence f > g > a
 - 1. $f(x) \simeq g(a, x)_{(\mathbf{A})}$ [\perp] paramodulates into $P(f(b))_{(\mathbf{B})}$ [\top] to yield $P(g(a, b))_{(\mathbf{B})}$ [$f(b) \simeq g(a, b)$] $\widehat{Pl}(P(g(a, b))) = (f(b) \simeq g(a, b) \lor \bot) \land \top = f(b) \simeq g(a, b)$
 - 2. $P(g(a, b))_{(\mathbf{B})} [f(b) \simeq g(a, b)] \text{ and } \neg P(g(y, b))_{(\mathbf{B})} [\top] \text{ resolve to yield } \Box [f(b) \simeq g(a, b)]$ $\hat{I} = \widehat{PI}(\Box) = f(b) \simeq g(a, b) \land \top = f(b) \simeq g(a, b)$

A complete provisional interpolation system

- ΓÎ builds provisional interpolant mostly by adding instances of
 A-labeled literals resolved, factorized, or paramodulated with
 B-labeled ones: communication interface
- **Theorem:** The provisional interpolation system $\Gamma \hat{I}$ is complete
- Lemma: The provisional interpolants generated by Γ î are in negation normal form with ∀-quantified variables and all predicate symbols are either transparent or interpreted (e.g., equality)

Second stage: lifting

- A closed formula is color-flat if its only colored symbols are constant symbols
- Equivalently: all function symbols are interpreted or transparent
- ► Lifting replaces A-colored constants by ∃-quantified variables and B-colored constants by ∀-quantified variables
- If \hat{I} is color-flat, $Lift(\hat{I})$ is transparent
- Since only constants are replaced the order of introduced quantifiers is immaterial: different orders yield different interpolants

Example (continued)

$$A = \{f(x) \simeq g(a, x)\} \qquad B = \{P(f(b)), \neg P(g(y, b))\}$$

a is A-colored, P and b are B-colored, f and g are transparent

1. Provisional interpolant:

$$\hat{l} = f(b) \simeq g(a, b) \land \top = f(b) \simeq g(a, b)$$

The only colored symbols are constants

2. Two interpolants:

$$I_1 = Lift(\hat{I}) = \forall v. \exists w. f(v) \simeq g(w, v)$$

$$I_2 = Lift(\hat{I}) = \exists w. \forall v. f(v) \simeq g(w, v)$$

臣

From provisional interpolants to interpolants

Lemma: If Î is a color-flat, B ∧ Î ⊢⊥ implies B ∧ Lift(Î) ⊢⊥ BWOC: assume B ∧ Lift(Î) has model M; M satisfies also the instance of Lift(Î) where the ∀-quantified vars are replaced by the B-colored constants originally in Î; we build model M' of B ∧ Î; M' interprets B-colored and transparent symbols like M; the only difference is given by the A-colored constants in Î that are new for M:

let \mathcal{M}' interpret them with the individuals picked by \mathcal{M} for the \exists -quantified vars in $Lift(\hat{I})$.

イロト イボト イラト イラト

From provisional interpolants to interpolants

Lemma: If Î is a color-flat, A ⊢ Î implies A ⊢ Lift(Î) A ∧ ¬Î ⊢⊥ implies A ∧ ¬Lift(Î) ⊢⊥ BWOC: assume A ∧ ¬Lift(Î) has model M; M satisfies also the instance of Lift(Î) where the ∀-quantified vars (after negation!) are replaced by the A-colored constants originally in Î; we build model M' of A ∧ ¬Î; M' interprets A-colored and transparent symbols like M; the only difference is given by the B-colored constants in ¬Î that are new for M:

let \mathcal{M}' interpret them with the individuals picked by \mathcal{M} for the \exists -quantified vars (after negation!) in $\neg Lift(\hat{I})$.

イロト イボト イラト イラト

A complete interpolation system

- ▶ **Theorem:** If \hat{l} is a color-flat provisional interpolant of (A, B), then $Lift(\hat{l})$ is an interpolant of (A, B)
- Corollary: Complete provisional interpolation system + lifting = complete interpolation system

- Interpolation systems for non-ground proofs
- The color-based approach does not work
- The two-stage approach does
- Other approaches: trasform the proof; but none works for non-ground proofs with colored uninterpreted function symbols
- The two-stage approach covers also $DPLL(\Gamma + T)$

- Integrates SMT-solver DPLL(*T*) and first-order inference system Γ
- Combines built-in and axiomatized theories
- Makes first-order inferences model-driven by the candidate model built by the SMT-solver
- Yields some decision procedures for satisfiability of first-order formulæ

- Works with hypothetical clauses H ▷ C, where C is a clause, and H a set of ground literals from the trail used to infer C
- When H ▷ C, with C ground, is in conflict, it generates the ground conflict clause ¬H ∨ C
- ¬H ∨ C may enter a DPLL(Γ+T)-refutation, with its Γ-proof tree as subproof
- The Γ-proof tree is not necessarily ground

Refutation by $DPLL(\Gamma + T)$

- DPLL-CDCL-refutation: propositional resolution
- DPLL(T)-refutation: propositional resolution + T-lemmas (T-conflict clauses are T-lemmas)
- DPLL(Γ+T)-refutation: DPLL(T)-refutation + Γ-proof trees as subtrees

Model-based theory combination in DPLL(Γ +T)

- Each T_i -solver builds a candidate T_i -model M_i
- Generate and propagate ground equalities $t \simeq s$ true in M_i
- If inconsistent, backtrack
- t ≃ s may end up in *T*-lemmas or hypothetical clauses, hence in the DPLL(Γ+*T*)-refutation
- No guarantee that $t \simeq s$ is not *AB*-mixed

Interpolation for $\mathsf{DPLL}(\Gamma + \mathcal{T})$

- ΓÎ + (provisional) interpolation system for DPLL(T) = provisional interpolation system for DPLL(Γ+T)
- Color-flat provisional interpolants: interpolants via lifting
- Provisional interpolants do not need to be transparent: no need to restrict T to convex equality-interpolating theories to avoid AB-mixed literals
- Model-based theory combination also allowed

イロト イボト イラト イラト

- Maria Paola Bonacina and Moa Johansson. On interpolation in automated theorem proving. Journal of Automated Reasoning, 54(1):69-97, 2015 [providing 61 references]
- Maria Paola Bonacina. Two-stage interpolation systems (Abstract). Notes of the First International Workshop on Interpolation: from Proofs to Applications (IPrA), St. Petersburg, Russia, July 2013; TR TU-Wien 2013