Interpolation systems for non-ground proofs ${ }^{1}$

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy

Formal Topics Series
Computer Science Laboratory, SRI International
Menlo Park, California, USA
31 August 2016

[^0]
Preliminaries

Counter-examples to the color-based approach

A two-stage approach

Discussion

What is interpolation?

- Formulæ A and B such that $A \vdash B$
- An interpolant I is a formula such that
- $A \vdash I$
- $1 \vdash B$
- All uninterpreted symbols in I are common to A and B

Assume that at least one of A and B has at least one symbol that does not appear in the other

Proofs by refutation: reverse interpolant

- A and B inconsistent: $A, B \vdash \perp$
- Then a reverse interpolant I is a formula such that
- $A \vdash I$
- $B, I \vdash \perp$
- All uninterpreted symbols in I are common to A and B

Clausal theorem proving: A and B are sets of clauses

Remarks

Reverse interpolant of (A, B) : interpolant of $(A, \neg B)$ because $A, B \vdash \perp$ means $A \vdash \neg B$ and $B, I \vdash \perp$ means $I \vdash \neg B$

I reverse interpolant of (A, B) : $\neg /$ reverse interpolant of (B, A) because $A \vdash I$ means $A, \neg I \vdash \perp$ and $B, I \vdash \perp$ means $B \vdash \neg l$

In refutational settings we say interpolant for reverse interpolant

Terminology for interpolation: Colors

Uninterpreted symbol:

- A-colored: occurs in A and not in B
- B-colored: occurs in B and not in A
- Transparent: occurs in both

Alternative terminology: A-local, B-local, global

Terminology for interpolation: Colors

Ground term/literal/clause:

- All transparent symbols: transparent
- A-colored (at least one) and transparent symbols: A-colored
- B-colored (at least one) and transparent symbols: B-colored
- Otherwise: $A B$-mixed

Interpolation system

- Given refutation of $A \cup B$ extracts interpolant of (A, B)
- Associates partial interpolant $P I(C)$ to every clause C
- Defined inductively based on those of parents
- $P I(\square)$ is interpolant of (A, B)

Complete interpolation system

An interpolation system is complete for an inference system if

- For all sets of clauses A and B such that $A \cup B$ is unsatisfiable
- For all refutations of $A \cup B$ by the inference system

It generates an interpolant of (A, B)
There may be more than one

What an interpolation system really does

An interpolation system determines whether a literal L should be added to the interpolant / by:

- Detecting whether L comes from the A side or the B side of the refutation to ensure $A \vdash I$ and $B, I \vdash \perp$
- Checking that uninterpreted symbols in L are transparent to ensure that I is transparent

Color-based interpolation systems

- Achieve both goals by classifying symbols based on signature (the colors) and tracking them in the refutation
- Cannot handle $A B$-mixed literals
- Good for:
- Propositional refutations
[Krajíček 1997] [Pudlàk 1997] [McMillan 2003]
- Equality sharing combination of convex equality-interpolating theories [Yorsh, Musuvathi 2005]
- Ground first-order refutations under a separating ordering (transparent terms smaller than colored) [MPB, Johansson 2011]

Interpolation of non-ground proofs?

- Inference system 「 for first-order logic with equality- 「-inferences apply substitutions: most general unifiers, matching substitutions, to instantiate (universally quantified) variables
- Interpolation in the presence of variables and substitutions?
- Substitutions easily create $A B$-mixed literals

Conjecture

Does a separating ordering prevent $A B$-mixed literals in the general case like in the ground case?

No

Counter-example

f, g : transparent a: A-colored b: B-colored

- $g(y, b) \simeq y$ and
- $f(g(a, x), x) \simeq f(x, a)$
- With $\sigma=\{y \leftarrow a, x \leftarrow b\}$
- Generate $f(a, b) \simeq f(b, a)$
- Where both sides are $A B$-mixed literals
- And the inference is compatible with a separating ordering

Conjecture

Can the color-based approach work if we give up completeness and restrict the attention to proofs with no $A B$-mixed literals?

No

Counter-example

P : transparent a: A-colored $b: B$-colored

- $\neg P(x, b) \vee C$ and $P(a, y) \vee D$
- Where C and D contain no $A B$-mixed literals, $x \notin \operatorname{Var}(C), y \notin \operatorname{Var}(D)$
- With $\sigma=\{x \leftarrow a, y \leftarrow b\}$
- Generate $(C \vee D) \sigma=C \vee D$: no $A B$-mixed literals
- But literals resolved upon $\neg P(a, b)$ and $P(a, b)$ are $A B$-mixed so that the A-colored/ B-colored/transparent case analysis of the colored approach does not suffice

Local or colored proofs

- Local proof: only local inferences
- Local inference: involves at most one color
- Equivalent characterization: no $A B$-mixed clauses
- Hence the name colored proof
[McMillan 2008] [Kovàcs, Voronkov 2009] [Hoder, Kovàcs, Voronkov 2012]

Conjecture

Can the color-based approach work if we give up completeness and restrict the attention to colored proofs?

No

Counter-example

L, R, Q : transparent a, c: A-colored

- $p_{1}: L(x, a) \vee R(x)$ with partial interpolant $P I\left(p_{1}\right)$ and
$-p_{2}: \neg L(c, y) \vee Q(y)$ with partial interpolant $\operatorname{PI}\left(p_{2}\right)$
- With $\sigma=\{x \leftarrow c, y \leftarrow a\}$
- Generate $R(c) \vee Q(a)$
- Even if $P I\left(p_{1}\right)$ and $P I\left(p_{2}\right)$ are transparent
- $\left(P I\left(p_{1}\right) \vee P I\left(p_{2}\right)\right) \sigma$ is not guaranteed to be, because x may appear in $P I\left(p_{1}\right)$ and y may appear in $P I\left(p_{2}\right)$

A two-stage approach

- Separate entailment and transparency requirements
- First stage: compute provisional interpolant \hat{l} such that $A \vdash \hat{l}$ and $B, \hat{l} \vdash \perp$
- \hat{l} may contain colored symbols
- Second stage: transform \hat{l} into interpolant I

Use labels to track where literals come from

- Labeled Γ-proof tree: attach a label to every literal
- A literal L may occur in more than one clause; the label depends on both literal and clause
- Labels are independent of signatures
- Labels are independent of substitutions
- All literals are labeled, including $A B$-mixed ones

Labeled 「-proof tree

- Clause in A : literals get label \mathbf{A}
- Clause in B : literals get label B
- Literals in resolvents inherit labels from literals in parents
- Resolvent $c:(C \vee D) \sigma$ of $p_{1}: L \vee C$ and $p_{2}: \neg L^{\prime} \vee D$ with $L \sigma=L^{\prime} \sigma$: for all $M \in C$, label $(M \sigma, c)=\operatorname{label}\left(M, p_{1}\right)$ for all $M \in D, \operatorname{label}(M \sigma, c)=\operatorname{label}\left(M, p_{2}\right)$
- Factor c: $(L \vee C) \sigma$ of $p: L \vee L^{\prime} \vee C$ with $L \sigma=L^{\prime} \sigma$: for all $M \in C$, label $(M \sigma, c)=\operatorname{label}(M, p)$, and

$$
\operatorname{label}(L \sigma, c)= \begin{cases}\mathbf{A} & \text { if label }(L, p)=\operatorname{label}\left(L^{\prime}, p\right)=\mathbf{A} \\ \mathbf{B} & \text { otherwise }\end{cases}
$$

Example

$$
\begin{aligned}
& L\left(x_{1}, c\right)_{\mathbf{A}} \vee P\left(x_{1}\right)_{\mathbf{A}} \vee Q\left(x_{1}, y_{1}\right)_{\mathbf{A}} \\
& \neg L\left(c, x_{2}\right)_{\mathbf{B}} \vee P\left(x_{2}\right)_{\mathbf{B}} \vee R\left(x_{2}, y_{2}\right)_{\mathbf{B}} \\
& \sigma=\left\{x_{1} \leftarrow c, x_{2} \leftarrow c\right\}
\end{aligned}
$$

Resolvent: $P(c)_{\mathbf{A}} \vee Q\left(c, y_{1}\right)_{\mathbf{A}} \vee P(c)_{\mathbf{B}} \vee R\left(c, y_{2}\right)_{\mathbf{B}}$ which becomes $Q\left(c, y_{1}\right)_{\mathbf{A}} \vee P(c)_{\mathbf{B}} \vee R\left(c, y_{2}\right)_{\mathbf{B}}$ after factoring

Labeled Г-proof tree with equality

- Paramodulation/Superposition/Simplification: as for resolution except that new literal generated by equational replacement inherits label of para-into literal
$\triangleright(C \vee L[r] \vee D) \sigma$ generated by paramodulating $p_{1}: s \simeq r \vee C$ into $p_{2}: L\left[s^{\prime}\right] \vee D$ with $s \sigma=s^{\prime} \sigma$:
for all $M \in C$, label $(M \sigma, c)=\operatorname{label}\left(M, p_{1}\right)$
for all $M \in D, \operatorname{label}(M \sigma, c)=\operatorname{label}\left(M, p_{2}\right)$
and label $(L[r] \sigma, c)=\operatorname{label}\left(L\left[s^{\prime}\right], p_{2}\right)$

Partial interpolant

- Clause C in refutation of $A \cup B$
- $A \wedge B \vdash C$
- $A \wedge B \vdash C \vee C$
- $A \wedge \neg C \vdash \neg B \vee C$
- Interpolant of $A \wedge \neg C$ and $\neg B \vee C$
- Reverse interpolant of $A \wedge \neg C$ and $B \wedge \neg C$
- The literals of $A \wedge \neg C(B \wedge \neg C)$ do not necessarily come from the $A(B)$ side of the proof
- Use projections based on labels

Labeled projections

- $\left.C\right|_{\mathbf{A}}$: literals of C labeled \mathbf{A}
- $\left.C\right|_{\mathbf{B}}$: literals of C labeled \mathbf{B}
$-\perp$ if empty
- Commute with substitutions: for resolvent $(C \vee D) \sigma$ $\left.(C \vee D) \sigma\right|_{\mathbf{A}}=\left(\left.\left.C\right|_{\mathbf{A}} \vee D\right|_{\mathbf{A}}\right) \sigma$

Provisional partial interpolants

- Provisional partial interpolant $\widehat{P I}(C)$ of clause C in refutation of $A \cup B$:
provisional interpolant of $A \wedge \neg\left(\left.C\right|_{\mathbf{A}}\right)$ and $B \wedge \neg\left(\left.C\right|_{\mathbf{B}}\right)$
- $\widehat{P I}(\square)$ is provisional interpolant of (A, B)

Provisional interpolation system $\Gamma \hat{I}$

- $c: C \in A: \widehat{P l}(c)=\perp$
- $c: C \in B: \widehat{P I}(c)=\top$
- Resolvent $c:(C \vee D) \sigma$ of $p_{1}: L \vee C$ and $p_{2}: \neg L^{\prime} \vee D$:
- Both literals A-labeled: $\widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \vee \widehat{P I}\left(p_{2}\right)\right) \sigma$
- Both literals B-labeled: $\widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \wedge \widehat{P I}\left(p_{2}\right)\right) \sigma$
- Positive \mathbf{A}-labeled and negative \mathbf{B}-labeled:
$\widehat{P I}(c)=\left[\left(L \vee \widehat{P I}\left(p_{1}\right)\right) \wedge \widehat{P I}\left(p_{2}\right)\right] \sigma$
- Positive B-labeled and negative A-labeled:
$\widehat{P I}(c)=\left[\widehat{P I}\left(p_{1}\right) \wedge\left(\neg L^{\prime} \vee \widehat{P I}\left(p_{2}\right)\right)\right] \sigma$

Provisional interpolation system 「î

- Factor $c:(L \vee C) \sigma$ of $p: L \vee L^{\prime} \vee C$:

$$
\widehat{P I}(c)= \begin{cases}\widehat{P I}(p) \sigma & \text { if label }(L, p)=\text { label }\left(L^{\prime}, p\right) \\ (L \vee \widehat{P I}(p)) \sigma & \text { otherwise }\end{cases}
$$

Provisional interpolation system 「 \hat{I}

- Paramodulation/Superposition/Simplification:
$(C \vee L[r] \vee D) \sigma$ generated by paramodulating $p_{1}: s \simeq r \vee C$ into $p_{2}: L\left[s^{\prime}\right] \vee D$:
- Both literals A-labeled: $\widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \vee \widehat{P I}\left(p_{2}\right)\right) \sigma$
- Both literals B-labeled: $\widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \wedge \widehat{P I}\left(p_{2}\right)\right) \sigma$
- Para-from A-labeled and para-into B-labeled: $\widehat{P I}(c)=\left[\left(s \simeq r \vee \widehat{P I}\left(p_{1}\right)\right) \wedge \widehat{P I}\left(p_{2}\right)\right] \sigma$
- Para-from B-labeled and para-into A-labeled:
$\widehat{P I}(c)=\left[\widehat{P I}\left(p_{1}\right) \wedge\left(s \nsim r \vee \widehat{P I}\left(p_{2}\right)\right)\right] \sigma$

Example

$A=\{f(x) \simeq g(a, x)\} \quad B=\{P(f(b)), \neg P(g(y, b))\}$
\succ : recursive path ordering based on precedence $f>g>a$

1. $f(x) \simeq g(a, x)_{(\mathbf{A})}[\perp]$ paramodulates into $P(f(b))_{(\mathbf{B})}[\top]$ to yield $P(g(a, b))_{(\mathbf{B})}[f(b) \simeq g(a, b)]$
$\widehat{P I}(P(g(a, b)))=(f(b) \simeq g(a, b) \vee \perp) \wedge \top=f(b) \simeq g(a, b)$
2. $P(g(a, b))_{(\mathbf{B})}[f(b) \simeq g(a, b)]$ and $\neg P(g(y, b))_{(\mathbf{B})}[\top]$ resolve to yield $\square[f(b) \simeq g(a, b)]$
$\hat{l}=\widehat{P I}(\square)=f(b) \simeq g(a, b) \wedge \top=f(b) \simeq g(a, b)$

A complete provisional interpolation system

- 「î builds provisional interpolant mostly by adding instances of A-labeled literals resolved, factorized, or paramodulated with B-labeled ones: communication interface
- Theorem: The provisional interpolation system $\Gamma \hat{l}$ is complete
- Lemma: The provisional interpolants generated by $\Gamma \hat{l}$ are in negation normal form with \forall-quantified variables and all predicate symbols are either transparent or interpreted (e.g., equality)

Second stage: lifting

- A closed formula is color-flat if its only colored symbols are constant symbols
- Equivalently: all function symbols are interpreted or transparent
- Lifting replaces A-colored constants by \exists-quantified variables and B-colored constants by \forall-quantified variables
- If \hat{l} is color-flat, $\operatorname{Lift}(\hat{l})$ is transparent
- Since only constants are replaced the order of introduced quantifiers is immaterial: different orders yield different interpolants

Example (continued)

$A=\{f(x) \simeq g(a, x)\} \quad B=\{P(f(b)), \neg P(g(y, b))\}$
a is A-colored, P and b are B-colored, f and g are transparent

1. Provisional interpolant:

$$
\hat{l}=f(b) \simeq g(a, b) \wedge \top=f(b) \simeq g(a, b)
$$

The only colored symbols are constants
2. Two interpolants:

$$
\begin{aligned}
& I_{1}=\operatorname{Lift}(\hat{l})=\forall v . \exists w . f(v) \simeq g(w, v) \\
& I_{2}=\operatorname{Lift}(\hat{l})=\exists w . \forall v \cdot f(v) \simeq g(w, v)
\end{aligned}
$$

From provisional interpolants to interpolants

- Lemma: If \hat{l} is a color-flat, $B \wedge \hat{l} \vdash \perp$ implies $B \wedge \operatorname{Lift}(\hat{l}) \vdash \perp$ BWOC: assume $B \wedge \operatorname{Lift}(\hat{l})$ has model \mathcal{M}; \mathcal{M} satisfies also the instance of $\operatorname{Lift}(\hat{l})$ where the \forall-quantified vars are replaced by the B-colored constants originally in \hat{l}; we build model \mathcal{M}^{\prime} of $B \wedge \hat{l}$;
\mathcal{M}^{\prime} interprets B-colored and transparent symbols like \mathcal{M}; the only difference is given by the A-colored constants in \hat{l} that are new for \mathcal{M} :
let \mathcal{M}^{\prime} interpret them with the individuals picked by \mathcal{M} for the \exists-quantified vars in $\operatorname{Lift}(\hat{l})$.

From provisional interpolants to interpolants

- Lemma: If \hat{l} is a color-flat, $A \vdash \hat{l}$ implies $A \vdash \operatorname{Lift}(\hat{l})$
$A \wedge \neg \hat{l} \vdash \perp$ implies $A \wedge \neg \operatorname{Lift}(\hat{l}) \vdash \perp$
BWOC: assume $A \wedge \neg \operatorname{Lift}(\hat{l})$ has model \mathcal{M};
\mathcal{M} satisfies also the instance of $\operatorname{Lift}(\hat{l})$ where the \forall-quantified vars (after negation!) are replaced by the A-colored constants originally in \hat{l}; we build model \mathcal{M}^{\prime} of $A \wedge \neg \hat{I}$;
\mathcal{M}^{\prime} interprets A-colored and transparent symbols like \mathcal{M}; the only difference is given by the B-colored constants in $\neg \hat{l}$ that are new for \mathcal{M} :
let \mathcal{M}^{\prime} interpret them with the individuals picked by \mathcal{M} for the \exists-quantified vars (after negation!) in $\neg \operatorname{Lift}(\hat{l})$.

A complete interpolation system

- Theorem: If \hat{l} is a color-flat provisional interpolant of (A, B), then $\operatorname{Lift}(\hat{l})$ is an interpolant of (A, B)
- Corollary: Complete provisional interpolation system + lifting = complete interpolation system

Summary

- Interpolation systems for non-ground proofs
- The color-based approach does not work
- The two-stage approach does
- Other approaches: trasform the proof; but none works for non-ground proofs with colored uninterpreted function symbols
- The two-stage approach covers also $\operatorname{DPLL}(\Gamma+\mathcal{T})$

$\operatorname{DPLL}(\Gamma+\mathcal{T})$

- Integrates SMT-solver $\operatorname{DPLL}(\mathcal{T})$ and first-order inference system 「
- Combines built-in and axiomatized theories
- Makes first-order inferences model-driven by the candidate model built by the SMT-solver
- Yields some decision procedures for satisfiability of first-order formulæ

DPLL $(\Gamma+\mathcal{T})$

- Works with hypothetical clauses $H \triangleright C$, where C is a clause, and H a set of ground literals from the trail used to infer C
- When $H \triangleright C$, with C ground, is in conflict, it generates the ground conflict clause $\neg H \vee C$
- $\neg H \vee C$ may enter a $\operatorname{DPLL}(\Gamma+\mathcal{T})$-refutation, with its Γ-proof tree as subproof
- The Γ-proof tree is not necessarily ground

Refutation by DPLL $(\Gamma+\mathcal{T})$

- DPLL-CDCL-refutation: propositional resolution
- $\operatorname{DPLL}(\mathcal{T})$-refutation: propositional resolution $+\mathcal{T}$-lemmas (\mathcal{T}-conflict clauses are \mathcal{T}-lemmas)
- $\operatorname{DPLL}(\Gamma+\mathcal{T})$-refutation: $\operatorname{DPLL}(\mathcal{T})$-refutation $+\Gamma$-proof trees as subtrees

Model-based theory combination in DPLL $(\Gamma+\mathcal{T})$

- Each \mathcal{T}_{i}-solver builds a candidate \mathcal{T}_{i}-model M_{i}
- Generate and propagate ground equalities $t \simeq s$ true in M_{i}
- If inconsistent, backtrack
- $t \simeq s$ may end up in \mathcal{T}-lemmas or hypothetical clauses, hence in the $\operatorname{DPLL}(\Gamma+\mathcal{T})$-refutation
- No guarantee that $t \simeq s$ is not $A B$-mixed

Interpolation for DPLL $(\Gamma+\mathcal{T})$

- $\Gamma \hat{l}+($ provisional $)$ interpolation system for $\operatorname{DPLL}(\mathcal{T})=$ provisional interpolation system for $\operatorname{DPLL}(\Gamma+\mathcal{T})$
- Color-flat provisional interpolants: interpolants via lifting
- Provisional interpolants do not need to be transparent: no need to restrict \mathcal{T} to convex equality-interpolating theories to avoid $A B$-mixed literals
- Model-based theory combination also allowed

References

- Maria Paola Bonacina and Moa Johansson. On interpolation in automated theorem proving. Journal of Automated Reasoning, 54(1):69-97, 2015 [providing 61 references]
- Maria Paola Bonacina. Two-stage interpolation systems (Abstract). Notes of the First International Workshop on Interpolation: from Proofs to Applications (IPrA), St. Petersburg, Russia, July 2013; TR TU-Wien 2013

[^0]: ${ }^{1}$ Joint work with Moa Johansson

