
Parallel automated reasoning

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona

Verona, Italy, EU

Lecture at the Third International Summer School on Satisfiability,

Satisfiability Modulo Theories, and Automated Reasoning

(SAT/SMT/AR), Instituto Superior Técnico, Universidade de Lisboa,

Lisbon, Portugal, EU, July 2019

Maria Paola Bonacina Parallel automated reasoning

Motivation for parallel reasoning

I Problems from applications get bigger and bigger

I It is hard to improve sequential performance

I Parallel hardware is available

I Automated reasoning neatly separates inference and control:
from sequential to parallel organization of inferences?

Maria Paola Bonacina Parallel automated reasoning

Motivation for parallel reasoning

I Several SAT/SMT/AR systems are portfolio systems

I Multiple strategies by interleaving, time slicing,
or in parallel

I Portfolio system: framework for parallel experiments or
parallel prover/solver?

I Different degrees of integration/interaction

I What is a parallel prover/solver?

I Why is parallel reasoning challenging?

Maria Paola Bonacina Parallel automated reasoning

Focus of the lecture

Parallel strategies for

I Automated theorem proving (ATP) in

I First-order logic (FOL)

Further reading:

I Youssef Hamadi and Lakhdar Sais (Editors)

Handbook of Parallel Constraint Reasoning

Springer, May 2018

I Chapter 6: Maria Paola Bonacina. Parallel theorem proving

(with 230 references)

Maria Paola Bonacina Parallel automated reasoning

Theorem-proving
strategies

Maria Paola Bonacina Parallel automated reasoning

Theorem proving as inference + search

I Inference system: a set of inference rules

I Generate a derivation by applying the inference rules

I An inference system is non-deterministic

I Theorem-proving strategy: inference system + search plan

I A theorem-proving strategy is a deterministic procedure

I Refutationally complete inference system + fair search plan =
complete theorem-proving strategy

I Parallelism affects the search component

Maria Paola Bonacina Parallel automated reasoning

Taxonomy of theorem-proving strategies

I Ordering-based strategies

I Subgoal-reduction strategies

I Instance-based strategies

I This lecture: ordering-based and subgoal-reduction strategies
I Less work on parallelizing instance-based strategies
I That have some commonalities with subgoal-reduction

strategies from a parallelization viewpoint

Maria Paola Bonacina Parallel automated reasoning

Ordering-based strategies

Maria Paola Bonacina Parallel automated reasoning

Ordering-based strategies

I Expansion and contraction of a set of clauses
(e.g., resolution, subsumption, paramodulation/superposition,

simplification)

I Well-founded partial ordering � on terms, literals, clauses:
I Restrict expansion
I Define contraction and redundancy

I State of the art for quantifier reasoning + equality reasoning

I Provers: e.g., Otter, EQP, Prover9, Spass, Discount, E,
Gandalf, Vampire, Waldmeister, Zipperposition

Maria Paola Bonacina Parallel automated reasoning

Expansion inference scheme

An inference

A

B

where A and B are sets of clauses is an expansion inference if

I A ⊂ B: something is added

I Hence A ≺ B
(� extended by multiset extension)

I Soundness of expansion: what is added is a logical
consequence of what was already there
B \ A ⊆ Th(A) hence B ⊆ Th(A) hence Th(B) ⊆ Th(A)

Maria Paola Bonacina Parallel automated reasoning

Expansion inference rule: superposition

Example:

f (z , e) ' z f (l(x , y), y) ' x

l(x , e) ' x

I f (z , e)σ = f (l(x , y), y)σ

I σ = {z ← l(x , e), y ← e}
I f (l(x , e), e) � l(x , e) (by the subterm property)

I f (l(x , e), e) � x (by the subterm property)

I Superposition closes a peak:
l(x , e)← f (l(x , e), e)→ x

Maria Paola Bonacina Parallel automated reasoning

Expansion inference rule: superposition/paramodulation

S ∪ {l ' r ∨ C , L[s] ∨ D}
S ∪ {l ' r ∨ C , L[s] ∨ D, (L[r] ∨ C ∨ D)σ}

I s is not a variable

I lσ = sσ with σ mgu

I l ' r : para-from literal/clause

I L[s]: para-into literal/clause

I lσ 6� rσ and if L[s] is p[s] ./ q then pσ 6� qσ (./ is ' or 6')

I (l ' r)σ 6� Mσ for all M ∈ C

I L[s]σ 6� Mσ for all M ∈ D

Maria Paola Bonacina Parallel automated reasoning

Contraction inference scheme

An inference

A

B

where A and B are sets of clauses is a contraction inference if

I A 6⊆ B: something is deleted or replaced

I B ≺ A: if replaced, replaced by something smaller

I Soundness of contraction adds adequacy:
what is gone is logical consequence of what is kept
A \ B ⊆ Th(B) hence A ⊆ Th(B) hence Th(A) ⊆ Th(B)
(monotonicity)

I Every step sound and adequate: Th(A) = Th(B)

Maria Paola Bonacina Parallel automated reasoning

Contraction inference rule: simplification

S ∪ {s ' t, L[r] ∨ C}
S ∪ {s ' t, L[tσ] ∨ C}

I sσ = r and sσ � tσ

I L[tσ] ∨ C is entailed by the original set (soundness)

I L[r] ∨ C is entailed by the resulting set (adequacy)

I L[r] ∨ C is redundant

S ∪ {f (x , x) ' x , P(f (a, a)) ∨ Q(a)}
S ∪ {f (x , x) ' x , P(a) ∨ Q(a)}

Maria Paola Bonacina Parallel automated reasoning

Ordering-based strategies: derivation

I Input set S

I Inference system: a set of inference rules

I Derivation: S = S0 ` S1 ` . . . Si ` Si+1 ` . . .
∀i Si+1 is derived from Si by an inference

I Refutation: a derivation such that 2 ∈ Sk for some k

I Refutational completeness: for all unsat S there is refutation

I Persistent clauses: S∞ =
⋃

i≥0

⋂
j≥i Sj

I Once redundant always redundant

Maria Paola Bonacina Parallel automated reasoning

Ordering-based inference system

I Expansion rules: ordered resolution, ordered factoring,
superposition/ordered paramodulation, equational factoring,
reflection (resolution with x ' x)

I Contraction rules: subsumption, simplification, tautology
deletion, clausal simplification (unit resolution + subsumption)

I Refutationally complete

Maria Paola Bonacina Parallel automated reasoning

Contraction before expansion

I Simplification-first search plans

I Contraction-first search plans

I Eager-contraction search plans

I Keep sets of clauses interreduced

Maria Paola Bonacina Parallel automated reasoning

Forward and backward contraction I

I Forward contraction:
I Reduce new clause ϕ by older clauses
I Find all clauses ψ that can reduce ϕ

I Backward contraction:
I Reduce older clause ψ by new clause ϕ
I Find all clauses ψ that ϕ can reduce

Maria Paola Bonacina Parallel automated reasoning

Forward and backward contraction II

I Forward contraction before backward contraction
I Forward contraction implemented as pre-processing clause ϕ
I Forward contraction is part of the generation of ϕ
I Before forward contraction: raw clause
I Backward contraction implemented as post-processing ϕ:

detect that ψ can be reduced + forward contraction ψ
I Clauses generated by backward contraction treated like those

generated by expansion

I Backward contraction: highly dynamic database of clauses

Maria Paola Bonacina Parallel automated reasoning

Search plans for ordering-based strategies

I Lists To-Be-Selected and Already-Selected

I Given-clause algorithm: select a given-clause ϕ from
To-Be-Selected, do all expansion inferences between ϕ and
all ψ in Already-Selected, move ϕ to Already-Selected

I Apply forward contraction to each raw clause
I Two versions for backward contraction:

I Keep the union of the two lists interreduced
I Keep only Already-Selected interreduced

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction
strategies

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction strategies

I Linear resolution, model elimination (ME):
pick a goal clause and try to reduce it to 2

by reducing goals to subgoals

I ME-tableaux: Tableau as survey of interpretations
Try to eliminate them all
Tableau frontier ∼ goal clause

I Equality reasoning still an open problem

I Provers: e.g., Setheo, Protein, leanCoP, EKR-Hyper

Maria Paola Bonacina Parallel automated reasoning

Ordered linear resolution

I At each step: resolve current goal L ∨ C with side clause
L′ ∨ D such that Lσ = ¬L′σ

I Next goal: the resolvent (D ∨ C)σ

I Subgoal L reduced to a new bunch of subgoals Dσ

I Side clause: either input or ancestor

I Linear: at every step one parent is previous resolvent

I Ordered: literals in the goal reduced in fixed order
e.g., left-to-right (literal-selection rule)

Maria Paola Bonacina Parallel automated reasoning

Model elimination

I ME-extension: resolve current goal L ∨ C with side clause
L′ ∨ D such that Lσ = ¬L′σ

I Next goal: the resolvent (D ∨ [L] ∨ C)σ

I Reduced subgoal L saved as framed literal

I ME-reduction: reduce goal L′ ∨ D ∨ [L] ∨ C to (D ∨ [L] ∨ C)σ
when Lσ = ¬L′σ

I ME-contraction: reduce goal [L] ∨ C to C

I Side clause: input clause

I Linear input strategy for FOL

Maria Paola Bonacina Parallel automated reasoning

Why model elimination?

I L ∨ C and L′ ∨ D with Lσ = ¬L′σ:
no model can satisfy the two clauses by satisfying Lσ and L′σ

I (D ∨ [L] ∨ C)σ: the framed Lσ is added to the current
candidate model (satisfies (L ∨ C)σ)

I Something in Dσ must be satisfied to satisfy (L′ ∨ D)σ:
the literals of Dσ are subgoals of Lσ

I ME-reduction of L′ ∨ D ∨ [L] ∨ C to (D ∨ [L] ∨ C)σ
when Lσ = ¬L′σ:
a model with L cannot satisfy L′σ

I ME-contraction of [L] ∨ C to C : no model with L

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction strategies: derivation

I Derivation: (S ;ϕ0) ` (S ;ϕ1) ` . . . (S ;ϕi) ` . . .
ϕi : goal clauses

I Refutation: (S ;2) at some stage

I Refutational completeness: if S unsat and S \ {ϕ0} sat, there
is refutation from (S ;ϕ0)

I Redundancy: repeated subgoals

I Lemma learning: when ME-contracting [L] ∨ C to C
learn lemma ¬L

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction strategies: search plan

I Depth-first search (DFS)
I Literal-selection rule or And-rule
I Clause-selection rule or Or-rule

I Backtracking to get out of dead-end
(goal clause to which no inference applies)

I Iterative deepening on the number of inferences (resolution or
ME-extension) for fairness, hence completeness

Maria Paola Bonacina Parallel automated reasoning

Parallelism and deduction

Maria Paola Bonacina Parallel automated reasoning

Parallelism and deduction

Parallelism at the

I Term/literal level: fine-grain
Below the inference level

I Clause level: medium-grain
At the inference level: parallel inferences

I Search level: coarse-grain
Multiple processes cooperate searching in parallel for a proof

Maria Paola Bonacina Parallel automated reasoning

Fine-grain parallelism for subgoal-reduction

I And-parallelism: reduce in parallel distinct goal clause literals
or tableau leaves

I Literals of the same clause may share variables: conflict
I Example:

I Subgoals: ¬P(x) and ¬Q(x , y)
I Side clauses: P(a) ∨ C and Q(f (z), z) ∨ D
I Conflict between x ← a and x ← f (z)

And-parallelism not for theorem proving

Maria Paola Bonacina Parallel automated reasoning

Fine-grain parallelism for ordering-based strategies

I Rewrite in parallel subterms at distinct positions in a term
I The positions can be:

I Disjoint positions
I A variable overlap
I A non-variable overlap

Maria Paola Bonacina Parallel automated reasoning

Disjoint positions: parallel rewriting

I Example:
I i(i(x)) ' x
I f (x , y) ' f (y , x)
I h(i(i(a)), f (a, b))→‖ h(a, f (b, a))

I Parallel rewriting: at disjoint positions

Maria Paola Bonacina Parallel automated reasoning

Variable overlap: concurrent rewriting

I Example:
I h(x , x) ' x
I f (y , b) ' y
I a← h(a, a)← f (h(a, a), b)→ f (a, b)→ a

I Same result in either order

I Concurrent rewriting: at disjoint positions and variable
overlaps

Maria Paola Bonacina Parallel automated reasoning

Non-variable overlap: conflict

I Example:
I f (z , e) ' z
I f (l(x , y), y) ' x
I l(a, e)← f (l(a, e), e)→ a

I Contraction/contraction Write-write conflict:
two contraction steps rewrite the same clause

I Parallel/concurrent rewriting assume non-overlapping
equations

Maria Paola Bonacina Parallel automated reasoning

Parallel/concurrent rewriting: summary I

Declarative programming languages:

I Fixed set E of input equations

I Goal is to rewrite a term t to its unique normal form

I Regular rewrite system R: non-overlapping and left-linear

I R: confluent, not terminating

I Compile R in ad hoc data structures for concurrent rewriting

I Rewrite engines: Elan, Maude

Maria Paola Bonacina Parallel automated reasoning

Parallel/concurrent rewriting: summary II

Theorem proving:

I Equations do overlap

I Goal is refutation

I Superposition (that closes the peak of a write-write rewriting
conflict) is necessary

I Large set of generated and kept clauses

I Dynamic set of clauses: growing by expansion and shrinking
by contraction

I Concurrent rewriting not for theorem proving

Maria Paola Bonacina Parallel automated reasoning

Take-home message

I Conflicts among parallel inferences

I Size and dynamicity of the database of generated and kept
clauses

stand in the way of fine-grain parallelism for theorem proving

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for subgoal-reduction I

I Or-parallelism: reduce distinct goal clauses in parallel

I Try in parallel the proof attempts that a sequential strategy
tries in sequence by backtracking

I Task (ϕ, j , k)
I ϕ: goal clause
I j : number of ME-extension steps used to generate ϕ
I k : limit of iterative deepening
I Reduce ϕ to 2 in at most k − j ME-extension steps
I Active iff k > j

I From (ϕi , j , k) to (ϕi+1, j + 1, k)

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for subgoal-reduction II

I Parallel derivation: (S ;G0) ` (S ;G1) ` . . . (S ;Gi) ` . . .
Gi : set of active tasks

I Processes p0, . . . , pn−1: all active as soon as |Gi | > n

I Each ph maintains a queue of its active tasks

I Distribution of tasks by task stealing

I Communication by message passing or in shared memory

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for subgoal-reduction: summary

I Static database of clauses S

I Compile S à la Prolog (Prolog Technology Theorem Proving)

I (ϕ, j , k) encoded as the operations that generate it

I Recall ratio of iterative deepening: in exponential search tree,
almost all nodes are on the frontier, re-expanding inner nodes
does not matter much

I Provers Partheo, Parthenon, and Meteor

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences in ordering-based strategies I

I Parallelize the Otter given-clause algorithm: ROO

I To-Be-Selected and Already-Selected in shared memory

I Task A: expansion (including forward contraction) with
given-clause ϕ

I Processes p0, . . . , pn−1 select given-clauses ϕ0, . . . , ϕn−1 and
each executes Task A

I Can ph append its set Nh of new clauses to
To-Be-Selected? No: ψ ∈ N1 not reduced w.r.t. N2

I ph appends them to a third list: K-list

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences in ordering-based strategies II

I Backward contraction in parallel? No, conflicts

I ph finds that ψ can be back-contracted: ψ in To-Be-Deleted

I Task B: inter-reduce K-list, move its clauses to
To-Be-Selected; backward-contraction of To-Be-Deleted

I If K-list != nil or To-Be-Deleted != nil and none’s
doing Task B, do it, else do Task A

I Only one ph does Task B: sequential backward-contraction

I Backward-contraction bottleneck

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences: more conflicts

1. Contraction/contraction write-read conflict: one rewrites a ϕ
that another one uses as premise to contract some other ψ

2. Contraction/expansion write-read conflict: one rewrites a ϕ
that an expansion step uses as premise

I Both due to backward contraction
(clauses subject to forward contraction not used as premises)

I Type (1) harmless as once redundant always redundant

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for ordering-based strategies: summary

I Backward contraction indispensable to counter space growth
I Impact of backward contraction:

I No read-only data: any clause can be contracted
I Highly dynamic database of generated and kept clauses
I Conflicts between parallel inferences

I Stand in the way of medium-grain parallelism for
ordering-based strategies

Maria Paola Bonacina Parallel automated reasoning

Take-home message

I Subgoal-reduction strategies: somewhat amenable to parallel
inferences

I Ordering-based strategies: not amenable to parallel inferences

I From parallel inferences to parallel search

Maria Paola Bonacina Parallel automated reasoning

Parallel search

Maria Paola Bonacina Parallel automated reasoning

Parallelism at the search level

I Parallelism at the term/literal or clause levels:
find proof sooner by speeding-up the same search
that would be done sequentially

I Parallelism at the search level:
find proof sooner by generating
multiple different communicating searches

Maria Paola Bonacina Parallel automated reasoning

Parallel search I

I Parallel processes p0, . . . , pn−1

I Each builds its own derivation and its own database of
generated and kept clauses

I Success when one ph finds a proof

I Communication

I Separate databases: no conflicts, no backward-contraction
bottleneck

I Duplication harmless for soundness if inferences are sound

Maria Paola Bonacina Parallel automated reasoning

Parallel search II

How to differentiate the searches of p0, . . . , pn−1?

I Distributed search: subdivide the search space among the
processes (divide and conquer)

I Multi-search: let the processes use different search plans or
different inference systems or both

I Both with communication

I The two can be combined

Maria Paola Bonacina Parallel automated reasoning

Parallel search III

I Ordering-based strategies:
I Distributed search
I Multi-search
I Their combination

I Subgoal-reduction strategies:
I Multi-search

Maria Paola Bonacina Parallel automated reasoning

Multi-search

Maria Paola Bonacina Parallel automated reasoning

Multi-search for subgoal-reduction I

Differentiate the searches of p0, . . . , pn−1 by

I Different literal-selection rules

I Different clause-selection rules

I Different limits for iterative deepening

I Different initial goal clauses

I Combinations of these

Maria Paola Bonacina Parallel automated reasoning

Multi-search for subgoal-reduction II

I Derivation: (S ;G k
0) ` (S ;G k

1) ` . . . (S ;G k
i) ` . . .

G k
i : set of active tasks at process pk at stage i

I Communication of tasks

I If pk has (ϕ, j , q) and (ϕ′, j ′, q′) with q < q′, (ϕ, j , q) has
higher priority for completeness

I Successors of Partheo prover: SEtheo, E-SEtheo,
SPtheo, CPtheo, and P-SEtheo

Maria Paola Bonacina Parallel automated reasoning

Heterogeneous multi-search for subgoal-reduction

I Model-elimination (ME) prover

I Resolution engine (e.g., binary resolution, hyperresolution,
unit-resulting resolution)

I Used to generate lemmas for ME

I Heuristics to pick best lemmas

I Provers: Hpds, CPtheo

Maria Paola Bonacina Parallel automated reasoning

Multi-search for ordering-based strategies I

I Different search plans
(e.g., different evaluation functions to select the given-clause)

I Derivation: Sk
0 ` Sk

1 ` . . . Sk
i ` . . .

Sk
i : set of clauses at process pk at stage i

I Communication:
I Periodic resync: interleave search plans
I Share heuristically chosen “good” clauses: combine search

plans, “learning”

I Method and prover: Team-Work

Maria Paola Bonacina Parallel automated reasoning

Distributed search

Maria Paola Bonacina Parallel automated reasoning

Distributed search for ordering-based strategies

I All processes with the same inference system

I Distribute work: subdivide the data or the operations?

I Theorem proving: few inference rules, many clauses

I Subdivide the clauses

I Subdivision of inferences follow

I Notion of subdividing the search space

I Method: theorem proving by Clause-Diffusion

Maria Paola Bonacina Parallel automated reasoning

Distributed search: the Clause-Diffusion method

I Deductive processes p0, . . . , pn−1 that are peers

I All pj ’s get input problem, same inference system

I Basic version: also same search plan

I Asynchronous processes: sync on halt, e.g., one found proof

I Search space subdivided by a notion of ownership of clauses:
every clause is owned by a process

Maria Paola Bonacina Parallel automated reasoning

Clause-Diffusion derivation

I (O0;NO0)j ` (O1;NO1)j ` . . . (Oi ;NO i)
j ` . . .

I ∀pj , 0 ≤ j ≤ n − 1, ∀i , i ≥ 0:

I O j
i is the set of clauses owned by pj

I NO j
i is the set of clauses not owned by pj

I S j
i = O j

i] NO j
i is the local database of clauses at pj

I S0
0 = S input set: p0 reads the input

I
⋃n−1

j=0 S j
i is the global database at stage i

I Every clause is owned by a process:
⋃n−1

j=0 O j
i =

⋃n−1
j=0 S j

i

And only one: O j
i ∩ Ok

i = ∅ (exceptions in practice)

Maria Paola Bonacina Parallel automated reasoning

Subdivision and diffusion of clauses I

I pj reads or generates ψ by expansion or backward contraction

I Forward contraction: ϕ = ψ ↓
I pj determines owner pk of ϕ by an allocation criterion

I Say ϕ is the m-th clause generated by pj
I ϕ’s id: 〈k ,m, j〉 globally unique

I k = j : ϕ enters O j

I k 6= j : ϕ enters NO j

Maria Paola Bonacina Parallel automated reasoning

Subdivision and diffusion of clauses II

I pj applies ϕ to backward-contract clauses in S j

I pj broadcasts inference message 〈ϕ, k ,m, j〉
I pq, q 6= j , receives 〈ϕ, k ,m, j〉
I Forward contraction: α = ϕ ↓
I k = q: α enters Oq

I k 6= q: α enters NOq

I pq applies α to backward-contract clauses in Sq

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: allocation criteria I

I Round-robin
I Input clauses by round-robin then work-load based

I Measured as number of generated clauses
I Estimated based on inference messages

I Syntax-based: weight-based

I Variant of any of these: assign a fixed fraction to self

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: allocation criteria II

I Try to minimize the overlap of the searches by p0, . . . , pn−1

I Each ϕ carries id’s of parents for proof reconstruction
I Ancestor-graph oriented (AGO) heuristics, e.g.:

I Input clauses by round-robin then by majority
I Assign ϕ to the process that owns the most of its ancestors

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: subdivision of inferences

I No subdivision of forward-contraction inferences

I No subdivision of backward-contraction inferences that delete
clauses (e.g., subsumption)

I Subdivision of expansion inferences:
pj performs the inference if it owns the clause paramodulated
or superposed into or the negative-literal parent in resolution

I Subdivision of backward-contraction inferences that simplify
clauses: ψ ∈ S j can backward-simplify ϕ ∈ S j :
pj generates ϕ ↓ if it owns ϕ, only deletes ϕ otherwise

Maria Paola Bonacina Parallel automated reasoning

Distributed fairness

I Fairness of a distributed derivation

I Sufficient conditions: local fairness +
broadcast eventually all persistent irredundant clauses

I Clause-Diffusion satisfies the second one eagerly because of
distributed proof reconstruction

Maria Paola Bonacina Parallel automated reasoning

Distributed proof reconstruction

I Proof reconstruction at the end of a refutation

I Ordering-based strategies: save clauses deleted by backward
contraction

I Proof reconstruction in a distributed derivation:
I Make sure that whoever finds 2 can do it alone
I Sufficient condition:

Broadcast eventually all clauses ever used as premises

I Otherwise: proof reconstruction in post-processing

Maria Paola Bonacina Parallel automated reasoning

Distributed global contraction

I If ϕ redundant w.r.t. the global database at some stage,
ϕ recognized redundant eventually by every process

I If ϕ redundant in
⋃n−1

j=0 S j
i , for all pj there is a stage l , l ≥ i ,

such that ϕ redundant in S j
l

I Guaranteed by broadcasting mechanism:
global redundancy/contraction reduced to local

I Subdivision of backward contraction:
All delete ϕ and only one generates ϕ ↓

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: summary

I A methodology to turn a sequential ordering-based strategy
into a distributed one

I Each process executes the sequential strategy, modified with
subdivision of work and communication

I If the requirements for distributed fairness are met:
if the sequential strategy is complete,
so is the distributed one

Maria Paola Bonacina Parallel automated reasoning

The Clause-Diffusion provers I

I Aquarius:
I Parallelization of Otter
I PCN for message passing
I Also multi-search (e.g., different heuristic evaluation functions)

I Peers:
I Parallelization of code from Otter Parts Store
I Equational theories possibly with AC function symbols
I p4 for message passing
I Pairs algorithm instead of given-clause algorithm

Maria Paola Bonacina Parallel automated reasoning

The Clause-Diffusion provers II

Peers-mcd:

I Parallelization of EQP

I Equational theories possibly with AC function symbols

I Blocking, Basic paramodulation

I MPI for message passing

I AGO allocation criteria

I Both given-clause and pairs algorithms

Maria Paola Bonacina Parallel automated reasoning

The first big proof: the Robbins theorem

I The Robbins conjecture: Robbins algebra are Boolean
open in mathematics since 1933
a challenge for theorem provers since 1990

I EQP proved the Robbins conjecture
I Peers-mcd exhibited super-linear speedup in, e.g.:

I Two out of three parts of the Robbins proof and almost
super-linear speedup in the third

I The Levi commutator problem in group theory

Maria Paola Bonacina Parallel automated reasoning

The Clause-Diffusion provers III

I Peers-mcd: both distributed search and multi-search,
distributed mode, multi-search mode, hybrid mode

I Different search plans: given-clause and pairs, different
heuristic evaluation functions, different pick-given-ratio

I Moufang identities in alternative rings with cancellation laws
built-in

I Peers-mcd.d proved them without cancellation laws, with
super-linear speedup (w.r.t. EQP) in distributed and hybrid
mode with hybrid doing best (no speed-up by multi-search)

Maria Paola Bonacina Parallel automated reasoning

Discussion

Maria Paola Bonacina Parallel automated reasoning

Lessons learned from experiments I

I Super-linear speed-up possible as sequential and distributed
strategies generate different searches

I Fewer clauses generated, higher percentage of retained
clauses, different proof

I Effective subdivision of the search space

I The searches by the pk ’s do not overlap too much, the
successful one finds a proof much sooner

I The proof is not necessarily smaller

I Sub-optimal sequential search plan

Maria Paola Bonacina Parallel automated reasoning

Lessons learned from experiments II

I Different search: irregular scalability

I As the point is not to use more computers to do the same
steps, no guarantee of scalability

I The problem may not be hard enough to justify using more
processes

I Oscillations: the subdivision of the search space depends on
the number of processes

I Combining distributed search and multi-search may smooth
this effect

Maria Paola Bonacina Parallel automated reasoning

Take-home message

I Ordering-based strategies: parallel search
I Team-Work pioneered multi-search
I Clause-Diffusion pioneered distributed search

I Parallel ATP compounds the complications of first-order
reasoning with those of parallelism

Maria Paola Bonacina Parallel automated reasoning

Parallel ATP and parallel SAT-solving

I Distributed search ∼ Divide-and-conquer

I Multi-search ∼ Portfolio approach

Maria Paola Bonacina Parallel automated reasoning

Multi-search for parallel SAT-solving

I Different heuristics for decisions

I Different heuristics for restart

I Randomization

Maria Paola Bonacina Parallel automated reasoning

Distributed search for parallel SAT-solving

I Cube-and-conquer as an instance of satisfiability modulo
assignment

I Communicating “good” learned clauses

I Activity-based heuristics “intensify” search

Maria Paola Bonacina Parallel automated reasoning

More theorem-proving strategies

I Semantically-guided strategies

I Goal-sensitive strategies
I Strategies that combine proof search and model search:

I Model-based strategies: the state of the derivation contains a
representation of a candidate partial model

I Conflict-driven strategies: nontrivial inferences only to explain
and solve conflicts between clauses and candidate model

Maria Paola Bonacina Parallel automated reasoning

Future: parallelism and model-based ATP?

I Instance-based strategies (e.g., Inst-Gen, MEC, SGGS)

I Strategies that hybridize tableaux and instance-generation
(e.g., hypertableaux)

I SGGS: Semantically-Guided Goal-Sensitive reasoning:
model-based and conflict-driven

I Strategies that generalize CDCL to EPR (e.g., NRCL,
DPLL(SX)) or FOL (SGGS)

Maria Paola Bonacina Parallel automated reasoning

Thank you!

Maria Paola Bonacina Parallel automated reasoning

