
Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

On Theorem Proving for Program Checking
Historical perspective and recent developments

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona

Verona, Italy, EU

Invited talk
12th ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP)

Schloß Hagenberg, near Linz, Austria, EU

28 July 2010

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Introduction

Where is theorem proving in program checking

Inside theorem proving
Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Big and little engines together: a new theorem proving style

Decision procedures with speculative inferences

Current and future challenges

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Program checking and theorem proving

I Program checking:
Design computer programs that (help to) check
whether computer programs satisfy desired properties

I Theorem proving:
Design computer programs that (help to) check
whether formulæ follow from other formulæ

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Program checking and theorem proving

I Program checking:
Design computer programs that (help to) check
whether computer programs satisfy desired properties

I Theorem proving:
Design computer programs that (help to) check
whether formulæ follow from other formulæ

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Some motivation for program checking

I Software is everywhere

I Needed: Reliability
I Difficult goal: Software may be

I Artful
I Complex
I Huge
I Varied
I Old (and undocumented)
I Less standardized than hardware

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Historical roots: program checking

I John McCarthy. Towards a mathematical science of
computation. 1962.

I John McCarthy. A basis for a mathematical theory of
computation. 1963.

I Robert W. Floyd. Assigning meanings to programs. 1967.

I C. Anthony R. Hoare. An axiomatic basis for computer
programming. 1969.

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Historical roots: program checking

I John McCarthy. Towards a mathematical science of
computation. 1962.

I John McCarthy. A basis for a mathematical theory of
computation. 1963.

I Robert W. Floyd. Assigning meanings to programs. 1967.

I C. Anthony R. Hoare. An axiomatic basis for computer
programming. 1969.

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Historical roots: theorem proving

I J. Alan Robinson. A machine oriented logic based on the
resolution principle. 1965.

I G. Robinson and Larry Wos. Paramodulation and
theorem-proving in first-order theories with equality. 1969.

I Donald E. Knuth and Peter B. Bendix. Simple word problems
in universal algebras. 1970.

I John McCarthy, Marvin Minsky, Nathaniel Rochester, Claude
Shannon. Proposal for the 1956 Dartmouth Conference on AI.

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Historical roots: theorem proving

I J. Alan Robinson. A machine oriented logic based on the
resolution principle. 1965.

I G. Robinson and Larry Wos. Paramodulation and
theorem-proving in first-order theories with equality. 1969.

I Donald E. Knuth and Peter B. Bendix. Simple word problems
in universal algebras. 1970.

I John McCarthy, Marvin Minsky, Nathaniel Rochester, Claude
Shannon. Proposal for the 1956 Dartmouth Conference on AI.

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

After four decades of research ...

Many approaches to program checking:

I Testing: automated test case generation, (semi-)automated
testing ...

I Static analysis: type systems, data-flow analysis, control-flow
analysis, pointer analysis, symbolic execution, abstract
interpretation ...

I Dynamic analysis: traces, abstract interpretation ...

I Software model checking: BMC, CEGAR, SMT-MC ...

I Deductive verification: weakest precondition calculi,
verification conditions generation and proof ...

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

After four decades of research ...

Many approaches to program checking:

I Testing: automated test case generation, (semi-)automated
testing ...

I Static analysis: type systems, data-flow analysis, control-flow
analysis, pointer analysis, symbolic execution, abstract
interpretation ...

I Dynamic analysis: traces, abstract interpretation ...

I Software model checking: BMC, CEGAR, SMT-MC ...

I Deductive verification: weakest precondition calculi,
verification conditions generation and proof ...

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

After four decades of research ...

Many approaches to program checking:

I Testing: automated test case generation, (semi-)automated
testing ...

I Static analysis: type systems, data-flow analysis, control-flow
analysis, pointer analysis, symbolic execution, abstract
interpretation ...

I Dynamic analysis: traces, abstract interpretation ...

I Software model checking: BMC, CEGAR, SMT-MC ...

I Deductive verification: weakest precondition calculi,
verification conditions generation and proof ...

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

After four decades of research ...

Many approaches to program checking:

I Testing: automated test case generation, (semi-)automated
testing ...

I Static analysis: type systems, data-flow analysis, control-flow
analysis, pointer analysis, symbolic execution, abstract
interpretation ...

I Dynamic analysis: traces, abstract interpretation ...

I Software model checking: BMC, CEGAR, SMT-MC ...

I Deductive verification: weakest precondition calculi,
verification conditions generation and proof ...

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

After four decades of research ...

Many approaches to program checking:

I Testing: automated test case generation, (semi-)automated
testing ...

I Static analysis: type systems, data-flow analysis, control-flow
analysis, pointer analysis, symbolic execution, abstract
interpretation ...

I Dynamic analysis: traces, abstract interpretation ...

I Software model checking: BMC, CEGAR, SMT-MC ...

I Deductive verification: weakest precondition calculi,
verification conditions generation and proof ...

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

First summary

I A pipeline of tools for program checking, where
I Problems of increasing difficulty are attacked by
I Approaches of increasing power (and cost)

I Most methods for program checking apply logic

I Most can benefit from theorem proving

I Theorem proving is artificial intelligence

I Theorem proving for program checking is artificial intelligence

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

First summary

I A pipeline of tools for program checking, where
I Problems of increasing difficulty are attacked by
I Approaches of increasing power (and cost)

I Most methods for program checking apply logic

I Most can benefit from theorem proving

I Theorem proving is artificial intelligence

I Theorem proving for program checking is artificial intelligence

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

First summary

I A pipeline of tools for program checking, where
I Problems of increasing difficulty are attacked by
I Approaches of increasing power (and cost)

I Most methods for program checking apply logic

I Most can benefit from theorem proving

I Theorem proving is artificial intelligence

I Theorem proving for program checking is artificial intelligence

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

First summary

I A pipeline of tools for program checking, where
I Problems of increasing difficulty are attacked by
I Approaches of increasing power (and cost)

I Most methods for program checking apply logic

I Most can benefit from theorem proving

I Theorem proving is artificial intelligence

I Theorem proving for program checking is artificial intelligence

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Program checking and
theorem proving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Software model checking with predicate abstraction

I Original model checking: finite state machine

I Software: infinitely many states

I How to finitize? Abstraction

I Model check abstract program

I Abstract counter-example + formula ϕ sat iff also concrete
counter-example

I Apply theorem prover: if ϕ unsat refine abstraction with
predicates from proof

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

More theorem proving in model checking

I No abstraction: finite representation by formulæ with
quantifiers

I Backward reachability: from set of error states towards initial
states

I Does pre-image of error states intersect with set of initial
state?

I Did the computation of the pre-image reach a fixed point?

I Reduced to satisfiability of formulæ with quantifiers

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Deductive verification

I The program is annotated with assertions

I Program variables appear in assertions as free variables
(constants in refutational theorem proving)

I Program state: an assignment to free variables, hence an
interpretation

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Verifying compiler + theorem prover

I Given: annotated program

I Decomposition into basic paths

I Backward propagation by computing weakest pre-conditions

I Verification condition: the given pre-condition implies the
computed one

I If the verification conditions are valid, the annotations are
invariants

I Otherwise, counter-model is useful to find error in program or
annotations

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

From invariant checking to invariant generation

I Manual annotation of programs is tedious and expensive

I Programmers may appreciate writing functional specifications,
not loop invariants, run-time assertions, function call
assertions

I Automated annotation

I Automated generation of valid annotations, that is, invariants

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Static analysis for invariant generation

I Given: partially annotated program

I Decomposition into basic paths

I Forward propagation by computing strongest post-conditions

I Does the computed post-condition imply the given one?

I Answer by theorem proving

I If not, update the post-condition

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Abstract interpretation

I Trade-off between precision and termination: abstraction

I Abstract interpretation: restrict language of admissible
formulæ to an abstract domain (syntactically restricted class
of formulæ)

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Second summary

I There is much theorem proving in SW model checking

I Program checking use theorem prover as back-end reasoner

I Theorem prover must be decision procedure

I Model building as important as proof building

I Abstraction as a way to make satisfiability decidable

I However, problems may contain quantifiers: tension between
expressivity and decidability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Inside theorem proving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Decision procedures

I Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT

I T -solver: Satisfiability procedure for T
Equality: congruence closure (CC)

I DPLL(T)-based SMT-solver: Decision procedure for
T =

⋃n
i=1 Ti with

I Nelson-Oppen combination of Ti -sat procedures

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

DPLL

I Propositional logic

I Build candidate model M

I Decision procedure:
model found: return sat;
failure: return unsat

I Depth-first search with backtracking

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

DPLL

State of derivation: M ||F
I Decide: guess L is true, add it to M (decided literal)
I UnitPropagate: propagate consequences of assignment

(implied literals)
I Conflict: detect L1 ∨ . . . ∨ Ln all false
I Explain: unfold implied literals in conflict clause by resolution
I Learn conflict clause C ∨ L
I Backjump: when only L assigned at current decision level,

jump back to least recent level where C false and L
unassigned, undo at least one decision, make L true (implied
by C ∨ L)

I Unsat: conflict clause is 2 (nothing else to try)

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

DPLL(T)

State of derivation: M ||F

I T -Propagate: add to M an L that is T -consequence of M

I T -Conflict: detect that L1, . . . , Ln in M are T -inconsistent

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Equality sharing method (Nelson-Oppen)

I Ti ’s disjoint: no shared function/predicate symbols beside '
I Mixed terms separated by introducing new constants

I Ti -solvers generate and propagate all entailed (disjunctions of)
equalities between shared constants

I Ti ’s stably infinite: every Ti -sat ground formula has Ti -model
with infinite cardinality
(ensures existence of quantifier-free interpolants hence that
propagation suffices in completeness proof)

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Model-based theory combination

A variant of equality sharing (rule PropagateEq):

I Generating (disjunctions of) equalities true in all Ti -models
consistent with M may be expensive

I If each Ti -solver builds a candidate Ti -model Mi

I Generate and propagate equalities true in Mi

I Optimistic: if equality turns out to be inconsistent, backtrack

[Leonardo de Moura and Nikolaj Bjørner 2007]

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Third summary

I SMT-solvers are theorem provers

I They do model building: both DPLL and CC

I Model-driven or context-driven deduction and simplification

I Especially good at theories such as linear arithmetic and
bit-vectors, and integrating them with SAT

I Conceived for SAT and ground problems, not for quantifiers

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Superposition-based inference system Γ

I Generic, FOL+=, axiomatized theories

I Deduce clauses from clauses (expansion)

I Remove redundant clauses (contraction)

I Well-founded ordering � on terms and literals to restrict
expansion and define contraction

I Semi-decision procedure

I No backtracking

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Inference system Γ

State of derivation: set of clauses F

I Resolution

I Superposition/Paramodulation: resolution with equality
built-in

I Simplification: by well-founded rewriting

I Subsumption: eliminate less general clauses

I Other rules: e.g., Factoring rules, Deletion of trivial clauses

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Big engines as little engines

I Termination results by analysis of inferences: Γ is
T -satisfiability procedure

I Covered theories include: lists, arrays and records with or
without extensionality, recursive data structures

Joint works with Alessandro Armando, Mnacho Echenim, Michaël

Rusinowitch, Silvio Ranise and Stephan Schulz

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Also for combination of theories

I Theorem (Modularity of termination): if Γ terminates on
Ri -sat problems, it terminates also on R-sat problems for
R =

⋃n
i=1Ri , if the Ri ’s are disjoint and variable-inactive

I Variable-inactivity: no maximal literals of the form t ' x
where x 6∈ Var(t) (no paramodulation from variables)

I The only inferences across theories are superpositions from
shared constants (correspond to equalities between shared
constants in equality sharing)

Joint work with Alessandro Armando, Silvio Ranise and Stephan Schulz

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Variable inactivity implies stable infiniteness

I Theorem: if R is variable-inactive, then it is stably infinite

I Γ reveals lack of stable infiniteness by generating a cardinality
constraint (e.g., y ' x ∨ y ' z) which is not variable-inactive

Joint work with Silvio Ghilardi, Enrica Nicolini, Daniele Zucchelli 2006

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures: Little engines of proof
Semi-decision procedures: Big engines of proof

Fourth summary

I Resolution/superposition-based engines good for reasoning on
formulæ with quantified variables: automated instantiation

I Not for large non-Horn clauses

I Not for theories such as linear arithmetic or bit-vectors

I Unexpected: they are satisfiability-procedures for theories such
as lists, arrays, records and their combinations

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Big and little engines
together: a new theorem

proving style

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Problem statement

I Decide satisfiability of first-order formulæ generated by
verifying compilers or static analyzer

I Satisfiability w.r.t. background theories
I With quantifiers to write, e.g.,

I invariants about loops, heaps, data structures ...
I axioms of type systems or application-specific theories without

decision procedure

I Emphasis on automation: prover called by other tools

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Typical verification problem

I Background theory T
I T =

⋃n
i=1 Ti , e.g., linear arithmetic

I Set of formulæ: R∪ P
I R: set of non-ground clauses without T -symbols
I P: large ground formula (set of ground clauses) with
T -symbols

I Determine whether R∪ P is satisfiable modulo T
(Equivalently: determine whether T ∪ R ∪ P is satisfiable)

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

A new theorem proving style

I Given the kind of problem

I Given the complementary strengths of SMT-solvers and
resolution/superposition based theorem provers

I Put them together!
I A few approaches

I DPLL(Γ+T)
I LASCA ([Konstatin Korovin and Andrei Voronkov 2007-09]),

SUP(LA) ([Christoph Weidenbach et al. 2009]) ...

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

DPLL(Γ+T): integrate Γ in DPLL(T)

I Idea: literals in M can be premises of Γ-inferences

I Stored as hypotheses in inferred clause

I Hypothetical clause: (L1 ∧ . . . ∧ Ln) . (L′1 ∨ . . . L′m)
interpreted as ¬L1 ∨ . . . ∨ ¬Ln ∨ L′1 ∨ . . . ∨ L′m

I Inferred clauses inherit hypotheses from premises

Joint work with Leonardo de Moura and Chris Lynch

building on top of work by Nikolaj Bjørner and Leonardo de Moura

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

DPLL(Γ+T) inferences

State of derivation: M ||F
I Expansion: take as pemises non-ground clauses from F and
R-literals (unit clauses) from M and add result to F

I Backjump: remove hypothetical clauses depending on undone
assignments

I Contraction: as above + scope level to prevent situation
where clause is deleted, but clauses that make it redundant
are gone because of backjumping

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Completeness of DPLL(Γ+T)

I Refutational completeness of the inference system:
I from that of Γ, DPLL(T) and equality sharing
I made combinable by variable-inactivity

I Fairness of the search plan:
I depth-first search fair only for ground SMT problems;
I add iterative deepening on inference depth

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Fifth summary

Use each engine for what is best at:

I DPLL(T) works on ground clauses

I Γ not involved with ground inferences and built-in theories

I Γ works on non-ground clauses and ground unit clauses taken
from M: also Γ-inferences are context-driven

I Γ works on R-sat problem

I Completeness: showed how to integrate Nelson-Oppen built-in
theories and variable-inactive axiomatized theories

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Decision procedures with
speculative inferences

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Problematic axioms do occur in relevant inputs

Example:

1. ¬(x v y) ∨ f (x) v f (y) (Monotonicity)

2. a v b generates by resolution

3. {f i (a) v f i (b)}i≥0

E.g. f (a) v f (b) or f 2(a) v f 2(b) often suffice to show
satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Idea: Allow speculative inferences

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Terminate and detect satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Idea: Allow speculative inferences

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Terminate and detect satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Idea: Allow speculative inferences

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Terminate and detect satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Speculative inferences in DPLL(Γ+T)

I Speculative inference to induce termination on sat input

I What if it makes problem unsat?!
I Detect conflict and backjump:

I Keep track by adding dCe . C
I dCe: new propositional variable (a “name” for C)
I Speculative inferences are reversible

I Rule SpeculativeIntro also bounded by iterative deepening

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)
2. a v b
3. a v f (c)
4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x
2. Rewrite a v f (c) into df (x) ' xe . a v c
3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x
5. a v b yields only f (a) v f (b)
6. a v f (c) yields only f (a) v f (f (c))

rewritten to df (f (x)) = xe . f (a) v c
7. Terminate and detect satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)
2. a v b
3. a v f (c)
4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x
2. Rewrite a v f (c) into df (x) ' xe . a v c

3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x
5. a v b yields only f (a) v f (b)
6. a v f (c) yields only f (a) v f (f (c))

rewritten to df (f (x)) = xe . f (a) v c
7. Terminate and detect satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)
2. a v b
3. a v f (c)
4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x
2. Rewrite a v f (c) into df (x) ' xe . a v c
3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe

4. Add df (f (x)) ' xe . f (f (x)) ' x
5. a v b yields only f (a) v f (b)
6. a v f (c) yields only f (a) v f (f (c))

rewritten to df (f (x)) = xe . f (a) v c
7. Terminate and detect satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)
2. a v b
3. a v f (c)
4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x
2. Rewrite a v f (c) into df (x) ' xe . a v c
3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x
5. a v b yields only f (a) v f (b)
6. a v f (c) yields only f (a) v f (f (c))

rewritten to df (f (x)) = xe . f (a) v c
7. Terminate and detect satisfiability

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

How to get decision procedures

To decide satisfiability modulo T of R∪ P:

I Find sequence of “speculative axioms” U
I Show that there exists k s.t. k-bounded DPLL(Γ+T) is

guaranteed to terminate
I with Unsat if R∪ P is T -unsat
I in a state which is not stuck at k if R∪ P is T -sat

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Axiomatizations of type systems

Reflexivity x v x (1)

Transitivity ¬(x v y) ∨ ¬(y v z) ∨ x v z (2)

Anti-Symmetry ¬(x v y) ∨ ¬(y v x) ∨ x ' y (3)

Monotonicity ¬(x v y) ∨ f (x) v f (y) (4)

Tree-Property ¬(z v x) ∨ ¬(z v y) ∨ x v y ∨ y v x (5)

Multiple inheritance: MI = {(1), (2), (3), (4)}
Single inheritance: SI = MI ∪ {(5)}

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Concrete examples of decision procedures

DPLL(Γ+T) with SpeculativeIntro adding f j(x) ' f k(x) for j > k
decides the satisfiability modulo T of problems

I MI ∪ P

I SI ∪ P

Joint work with Leonardo de Moura and Chris Lynch

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Current and future challenges in program checking

I Improve expressivity, scalability, precision and automation

I Integration of model checking and theorem proving

I Integration of abstract interpretation and theorem proving

I Cooperation of verification and synthesis

I Software/hardware border: blurred, evolving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Current and future challenges in program checking

I Improve expressivity, scalability, precision and automation

I Integration of model checking and theorem proving

I Integration of abstract interpretation and theorem proving

I Cooperation of verification and synthesis

I Software/hardware border: blurred, evolving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Current and future challenges in program checking

I Improve expressivity, scalability, precision and automation

I Integration of model checking and theorem proving

I Integration of abstract interpretation and theorem proving

I Cooperation of verification and synthesis

I Software/hardware border: blurred, evolving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Current and future challenges in theorem proving

I For DPLL(Γ+T):
I A top-notch implementation
I More decision procedures

I Automation and interaction

I Embedded theorem proving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Current and future challenges in theorem proving

I For DPLL(Γ+T):
I A top-notch implementation
I More decision procedures

I Automation and interaction

I Embedded theorem proving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Current and future challenges in theorem proving

I For DPLL(Γ+T):
I A top-notch implementation
I More decision procedures

I Automation and interaction

I Embedded theorem proving

Maria Paola Bonacina On Theorem Proving for Program Checking

Outline
Introduction

Where is theorem proving in program checking
Inside theorem proving

Big and little engines together: a new theorem proving style
Decision procedures with speculative inferences

Current and future challenges

Acknowledgements

Thanks to my co-authors

and

Thank you!

Maria Paola Bonacina On Theorem Proving for Program Checking

	Outline
	Introduction
	Where is theorem proving in program checking
	Inside theorem proving
	Decision procedures: Little engines of proof
	Semi-decision procedures: Big engines of proof

	Big and little engines together: a new theorem proving style
	Decision procedures with speculative inferences
	Current and future challenges

