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The CDSAT paradigm

I CDSAT: Conflict-Driven SATisfiability in a union of theories

I Orchestrates theory modules in a conflict-driven search

I Propositional logic is one of the theories: no hierarchy btw
Boolean reasoning and theory reasoning

I Assignments of values to terms: both Boolean and first-order

I Input first-order assignments:
Satisfiability Modulo Assignment

I Sound, terminating, and complete for disjoint theories

I Generalizes MCSAT, CDCL(T), and Nelson-Oppen
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From disjoint to nondisjoint theories

I Satisfiability of quantifier-free formulas

I In a union of theories

I Standard hypothesis: disjoint theories
I Not true in general, e.g.: length of arrays

I Two arrays are equal if they have the same length n and the
same elements at all indices between 0 and n − 1

I It forces the indices to be integers
I It forces arrays and integer arithmetic to share symbols

I Length is a bridging function

I Bridging functions make theories nondisjoint
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An abstract approach that minimizes sharing

I New: theory of arrays with abstract length (ArrL)
I Abstraction:

I Length is an integer ; can be but does not have to
I Index within bounds ; admissible index

I Predicate Adm(i , l): index i is admissible wrt length l
I Adm is shared:

I Adm uninterpreted in ArrL
I Adm interpreted in another theory (e.g., LIA)

I Minimum sharing: Adm and the sorts of its arguments indices
and lengths
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Example: integers still covered

I Theories: ArrL and LIA

I LIA interprets both lengths and indices as integers

I LIA defines admissibility as

Adm(i , n)↔ 0 ≤ i < n

I The set of admissible indices is the interval [0, n)
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More general example: admissibility as membership

I Theories: ArrL and T
I T interprets the sort of indices as a set S :

I Does not have to be a set of numbers
I Does not have to be a linearly ordered set
I Does not have to be an ordered set

I T interprets the sort of lengths as the powerset P(S)

I T defines admissibility as

Adm(i , n)↔ i ∈ n

I n ∈ P(S) is a set of admissible indices
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More concrete example: length with start address

I Theories: ArrL and T
I T interprets indices as integers and lengths as pairs (addr , n)

I addr : binary number representing the start address in memory

I n: integer representing the number of admissible indices

I T defines Adm by Adm(i , (addr , n))↔ 0 ≤ i < n

I Arrays a and b with the same set of admissible indices but
different start addresses are different
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The theory ArrL of arrays with abstract length: sorts

I Prop: sort of Booleans

I Ind : sort of indices

I Val : sort of values

I Len: sort of lengths

I A: sort of arrays with indices of sort Ind , elements of sort Val ,
and lengths of sort Len

I No loss of generality: e.g. a theory of matrices as a disjoint
union
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The theory ArrL of arrays with abstract length: symbols

I select : A× Ind → Val

I store : A× Ind × Val → A

I len : A→ Len

I Adm: Ind × Len→ Prop
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The theory ArrL of arrays with abstract length: axioms

I Congruence axioms for select, store, len, and Adm

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)

I A store at an inadmissible index has no effect:
I From: ∀a, v , i . select(store(a, i , v), i)' v

to: ∀a, v , i . Adm(i , len(a))→ select(store(a, i , v), i)' v
I ∀a, i , v . len(store(a, i , v))' len(a)

I Extensionality takes length into account:
∀a, b. [len(a)' len(b) ∧
(∀i . Adm(i , len(a))→ select(a, i)' select(b, i))]

→ a' b
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Alternative choices yield other theories

I What if a store at an inadmissible index i makes it admissible?
We get other theories:

I Maps:
I A is the sort of maps with keys of sort Ind , values of sort Val ,

and length of sort Len
I Hashmaps: as values are not allocated at consecutive

addresses in memory, abstracting away from intervals of indices
is essential

I Vectors or dynamic arrays:
I A is the sort of vectors with indices of sort Ind , values of sort

Val , and length of sort Len
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A theory of maps

I Congruence axioms for select, store, len, and Adm

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)

I ∀a, v , i . select(store(a, i , v), i)' v

I Store does not change length if the index is admissible:
∀a, i , v . Adm(i , len(a))→ len(store(a, i , v))' len(a)

I Store at an inadmissible index changes length by adding only
that index to the admissible set:
∀a, j , i , v . Adm(j , len(store(a, i , v)))↔ (Adm(j , len(a)) ∨ j ' i)

I Extensionality unchanged: ∀a, b. [len(a)' len(b) ∧
(∀i . Adm(i , len(a))→ select(a, i)' select(b, i))]

→ a' b

Maria Paola Bonacina The CDSAT Paradigm for SMT: Extension to Nondisjoint Theories



Motivation
The theory of arrays with abstract length

CDSAT for nondisjoint theories sharing predicate symbols
Discussion

A theory of vectors or dynamic arrays

I Congruence axioms for select, store, len, Adm, and <

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)

I ∀a, v , i . select(store(a, i , v), i)' v

I Store at an admissible index does not change length:
∀a, i , v . Adm(i , len(a))→ len(store(a, i , v))' len(a)

I Store at an inadmissible index makes that index and those in
between (requires < on indices) admissible:
∀a, j , i , v . Adm(j , len(store(a, i , v)))↔ (Adm(j , len(a)) ∨ j ≤ i)

I Extensionality unchanged: ∀a, b. [len(a)' len(b) ∧
(∀i . Adm(i , len(a))→ select(a, i)' select(b, i))]

→ a' b
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Satisfiability modulo theories and assignments

I Given a formula F and an initial assignment to some of its
terms (Boolean or first-order)

I Find a theory model that extends the assignment and satisfies
the formula F

I Or report that none exists

F can be written as F←true: everything is an assignment
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Assignments

I T -assignment: u←c

I u: term in the signature of the union of the theories

I c: T -value (constant provided by theory extension T + and used to

name an element in an intended model’s domain as needed)

I Boolean: (i ' j)←true or simply i ' j

I First-order: i←3 (not the same as (i ' 3)←true)

I In general: {u1←c1, . . . , um←cm} mixing values, e.g.:

I {i←3, i ' j , len(a)' n, n←5, select(store(a, i , v), j) 6' v}
I Plausible: does not contain both u←true and u←false
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Every theory has its view of a mixed assignment

I T∞: union of theories T1, . . . , Tn
I T : theory with set of sorts S

I H: T∞-assignment
I The T -view HT of H is the union of

I { u←c | u←c is a T -assignment in H}
I { u1' u2 | u1←c, u2←c in H of sort s ∈ S \ {Prop}}
I { u1 6' u2 | u1←c1, u2←c2 in H of sort s ∈ S \ {Prop}, c1 6=c2}

I Global view: the T∞-view (contains everything)
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Examples of theory views

I H =
{i←3, i ' j , len(a)' n, n←5, select(store(a, i , v), j) 6' v}

I LIA-view: H ∪ {i 6' n}
I ArrL-view: the Boolean assignments in H and {i 6' n}
I Global view: same as the LIA-view
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Assignments and models

I T +-model M and T-assignment J

I M |= J: M satisfies u' c for all (u←c) ∈ J

I {u←c, t←c} ⊆ J : M also satisfies u' t

I M |= JT : M also satisfies the disequalities u 6' t in JT
I J is satisfiable if there exists an M such that M |= JT
I For T∞: globally satisfiable

I L: singleton Boolean assignment

I J |= L: M |= L for all M such that M |= JT
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Theory modules

I A theory module Ik for every component theory Tk
I Theory module: abstraction of a reasoning procedure

I Inference rules: J `I L
J: T-assignment, L: singleton Boolean assignment

I Soundness: if J ` L then J |= L

I Inferences can generate new (non-input) terms
I For termination:

I Given finite set X of input terms
I Local basis basis(X ): finite superset of X
I New terms must be in basis(X )

I Global finite basis B built from the local bases
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Equality inference rules

Every T-module contains the equality inference rules

I ` t1' t1 (reflexivity)

I t1' t2 ` t2' t1 (symmetry)

I t1' t2, t2' t3 ` t1' t3 (transitivity)

I t1←c, t2←c ` t1' t2 (c is a T-value)

I t1←c1, t2←c2 ` t1 6' t2 (c1 and c2 are T-values, c1 6=c2)

and then adds its own theory-specific rules
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A theory module IArrL for ArrL

Rules corresponding to congruence axioms:

I a' b, i ' j , select(a, i) 6' select(b, j) `ArrL ⊥
I a' b, i ' j , u' v , store(a, i , u) 6' store(b, j , v) `ArrL ⊥
I a' b `ArrL len(a)' len(b)

I n'm, i ' j , Adm(i , n), ¬Adm(j ,m) `ArrL ⊥

Some rules generate ⊥ (conflict detection) and others do not:
balancing finite basis design and completeness
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A theory module IArrL for ArrL

For the select-over-store axioms

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)

I ∀a, v , i . Adm(i , len(a))→ select(store(a, i , v), i)' v

the rules are:

i 6' j , k ' j , b' store(a, i , v), a' c , select(b, k) 6' select(c , j) `ArrL ⊥
i ' j , len(a)' n, Adm(i , n), b' store(a, i , v), select(b, j) 6' v `ArrL ⊥

where the premises are flattened:
it suffices to have b' store(a, i , v) and select(b, j) 6' v
not necessarily select(store(a, i , v), j) 6' v

(that the equality rules do not infer: no replacement rule for basis

finiteness)
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A theory module IArrL for ArrL

For the axiom saying that store does not change length:

∀a, i , v . len(store(a, i , v))' len(a)

the rule is

len(store(a, i , v)) 6' len(a) `ArrL ⊥
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A theory module IArrL for ArrL: extensionality

Reducing
∀a, b. [len(a)' len(b) ∧ (∀i . Adm(i , len(a))→
select(a, i)' select(b, i))]→ a' b

to clausal form yields two clauses with Skolem function symbol diff
that maps two arrays to an admissible index where they differ:

a 6' b, len(a)' len(b) `ArrL select(a, diff(a, b)) 6' select(b, diff(a, b))

a 6' b, len(a)' len(b) `ArrL Adm(diff(a, b), len(a))

A congruence rule also for diff :

a' c , b' d , diff(a, b) 6' diff(c , d) `ArrL ⊥
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CDSAT works on a trail containing the current assignment

I Trail Γ: sequence of distinct singleton assignments
I Decision: ?A
I Justified assignment: H`A

Justification H: assignments that appear before A in Γ

I Input assignments are justified assignments with empty H

I Justified assignments are Boolean
except for input first-order assignments

I Level of an assignment
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The CDSAT trail rule Decide

I Decide: Γ −→ Γ, ?A

if A is a T-assignment u←c that is acceptable for T-module I
in the T-view ΓT of the trail:

1. ΓT does not already assign a T -value to u
2. If u←c is first-order: for no inference J ′ ∪ {u←c} `I L with

J ′ ⊆ ΓT we have L ∈ ΓT
3. Term u is relevant to theory T in ΓT
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Predicate-sharing relevance

I T : theory

I J: T -assignment
I Term u is relevant to T in J if:

1. u occurs in J and T has values for its sort
2. u is an equality whose sides u1, u2 occur in J

but T does not have values for their sort
3. u is a Boolean term p(u1, . . . , um) such that

p is a shared predicate symbol and the ui ’s occur in J
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Example

I H =
{i←3, i ' j , len(a)' n, n←5, select(store(a, i , v), j) 6' v}

I LIA-view: H ∪ {i 6' n}
I ArrL-view: the Boolean assignments in H and {i 6' n}
I Adm(i , n) does not occur in either view, but its arguments do

I Adm(i , n) is relevant to both LIA and ArrL

I Having the definition of Adm, LIA can decide Adm(i , n)←true

I If ArrL decides Adm(i , n)←false, LIA detects a conflict
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The other CDSAT trail rules in words

I Deduce expands Γ with a justified assignment J`A
supported by a theory inference J ` A

I Deduce covers
I Propagation: adds consequences of decisions
I Conflict detection: detects a theory conflict
I Conflict explanation: transforms it into a Boolean conflict:

L can be derived and L is on the trail

I Boolean conflict at level 0: Fail reports unsatisfiability

I Boolean conflict at level > 0: ConflictSolve puts the system in
conflict state
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Example: Deduce as propagation

1. Decide: u2←yellow (level 1)

2. Decide: f (u1)←red (level 2)

3. Decide: u1←yellow (level 3)

4. Decide: f (u2)←blue (level 4)

5. Deduce: u1' u2 (level 3) /* equality inference */

6. Deduce: f (u1)' f (u2) (level 3) /* EUF-inference */

The Deduce steps are late propagations
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Example: a conflict emerges

1. Decide: u2←yellow (level 1)

2. Decide: f (u1)←red (level 2)

3. Decide: u1←yellow (level 3)

4. Decide: f (u2)←blue (level 4)

5. Deduce: u1' u2 (level 3) /* late propagation */

6. Deduce: f (u1)' f (u2) (level 3) /* late propagation */

7. {f (u1)←red, f (u2)←blue} ` f (u1) 6' f (u2): conflict
by any theory module since it is an equality inference

8. ConflictSolve . . . . . . . . .
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The CDSAT conflict state rules in words

I UndoClear: solves the conflict by undoing a 1st-order
assignment and clearing the trail of all its consequences

I Resolve: explains the conflict by replacing H`A in the conflict
with H

I LearnBackjump: solves the conflict by flipping a Boolean
assignment (not necessarily unit: flips a cube into a clause
and learns it) and backjumping

I UndoDecide: preempts Resolve to avoid a Resolve, UndoClear,

Decide, Resolve loop; solves the conflict by undoing a 1st-order
assignment and all its consequences, and flipping a Boolean
one (a 1st-order assignment cannot be flipped)
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Example: UndoClear

1. Decide: u2←yellow (level 1)

2. Decide: f (u1)←red (level 2)

3. Decide: u1←yellow (level 3)

4. Decide: f (u2)←blue (level 4)

5. Deduce: u1' u2 (level 3) /* late propagation */

6. Deduce: f (u1)' f (u2) (level 3) /* late propagation */

7. Conflict: {f (u1)' f (u2), f (u1)←red, f (u2)←blue}
8. UndoClear: undoes f (u2)←blue /* max level in the conflict */

9. Decide: f (u2)←red (level 4) /* only acceptable value */
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Example: UndoDecide

Γ includes: x > 1 ∨ y < 0, x < −1 ∨ y > 0 (level 0)

1. Decide: x←0 (level 1)

2. Deduce4: (x > 1)←false with justification x←0 (level 1)

(x < −1)←false with justification x←0 (level 1)

y < 0 with justification {x > 1 ∨ y < 0, x > 1} (level 1)

y > 0 with justification {x < −1 ∨ y > 0, x < −1} (level 1)

3. Conflict: {y<0, y>0}
4. Resolve2: {x > 1 ∨ y < 0, x < −1 ∨ y > 0, x > 1, x < −1}
5. UndoDecide: x > 1 (level 1)

Maria Paola Bonacina The CDSAT Paradigm for SMT: Extension to Nondisjoint Theories



Motivation
The theory of arrays with abstract length

CDSAT for nondisjoint theories sharing predicate symbols
Discussion

Example: Resolve + LearnBackjump

Γ includes: (¬L4∨L5), (¬L2∨¬L4∨¬L5) (level 0)

1. Decide: A1 (level 1)

2. Decide: L2 (level 2)

3. Decide: A3 (level 3)

4. Decide: L4 (level 4)

5. Deduce: L5 with justification {¬L4∨L5, L4} (level 4)

6. Conflict: {¬L2∨¬L4∨¬L5, L2, L4, L5}
¬L2∨¬L4∨¬L5 is the CDCL conflict clause

7. Resolve: {¬L2∨¬L4∨¬L5, L2, L4, ¬L4∨L5}
¬L2∨¬L4 is the next CDCL conflict clause (resolvent of previous

one and CDCL justification ¬L4∨L5) and first assertion clause
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Example: Resolve + LearnBackjump

Conflict: {¬L2∨¬L4∨¬L5, L2, L4, ¬L4∨L5}
I LearnBackjump flips cube H = {L2, L4} into clause ¬L2∨¬L4,

learns it as a justified assignment with justification
E = {¬L2∨¬L4∨¬L5, ¬L4∨L5} (level 0)

I And backjumps to any level m (levelΓ(E ) ≤ m < levelΓ(H)):
I Destination level m = 2 (1stUIP):

I . . . (¬L4∨L5), (¬L2∨¬L4∨¬L5), A1, L2, (¬L2∨¬L4)
I Deduce: ¬L4 with justification {¬L2∨¬L4, L2}

I Destination level m = 0: restart from
. . . (¬L4∨L5), (¬L2∨¬L4∨¬L5), (¬L2∨¬L4)
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Summary: the CDSAT trail rules

I Decide: Γ −→ Γ, ?A
if A is a T-assignment u←c that is acceptable for I in ΓT

I Assume J ⊆ Γ, J ` L, and L 6∈ Γ:
I Deduce: Γ −→ Γ, J`L

if L 6∈ Γ and L is in B /* B is the finite global basis */
I Fail: Γ −→ unsat

if L ∈ Γ and levelΓ(J ∪ {L}) = 0
I ConflictSolve: Γ −→ Γ′

if L ∈ Γ, levelΓ(J ∪ {L}) > 0, and 〈Γ; J ∪ {L}〉 =⇒∗ Γ′

conflict state: 〈Γ;E 〉
E : conflict (unsatisfiable assignment)
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Summary: the CDSAT conflict state rules

I UndoClear: 〈Γ;E ] {A}〉 =⇒ Γ≤m−1

if A is a first-order decision of level m > levelΓ(E )

I UndoDecide: 〈Γ;E ] {H`L}〉 =⇒ Γ≤m−1, ?L
if for a first-order decision A′ ∈ H,

m = levelΓ(E ) = levelΓ(L) = levelΓ(A′)

I Resolve: 〈Γ;E ] {H`A}〉 =⇒ 〈Γ;E ∪ H〉
if for no first-order decision A′ ∈ H, levelΓ(A′) = levelΓ(E ] {A})

I LearnBackjump: 〈Γ;E ] H〉 =⇒ Γ≤m, E`L
if L is a clausal form of H, L ∈ B, L /∈ Γ, L /∈ Γ, and

levelΓ(E ) ≤ m < levelΓ(H)
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Soundness, termination, and completeness of CDSAT

I Soundness: whenever a derivation reaches unsat, the input is
unsatisfiable
It suffices that the theory modules are sound (unchanged wrt the

disjoint case)

I Termination: every derivation is guaranteed to halt
It suffices that there exists a finite global basis B containing all input

terms (only the construction of B changes wrt the disjoint case)

I Completeness: whenever a derivation halts in a state other
than unsat, there exists a T +

∞ -model of the trail (and hence of
the input) (re-proved for the predicate-sharing case)
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Sufficient conditions for completeness

I Predicate-sharing union T∞ of theories T1, . . . , Tn:
I Disjoint or sharing predicate symbols
I Leading theory T1 that has all sorts and all shared symbols

I Complete collection of theory modules I1, . . . , In:
I I1 is complete for T1: if it cannot expand (with a trail rule)

ΓT1 , there exists a T +
1 -model M1 of ΓT1

I For all k , 2 ≤ k ≤ n, Ik is leading-theory-complete:
if it cannot expand ΓTk , there exists a T +

k -model Mk of ΓTk
that agrees with M1 on the interpretation of shared predicates
and on the cardinalities of shared sorts
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How ArrL fits in predicate-sharing completeness

The interpretation of arrays:

I Array: updatable function

I Updatable function set: every function obtained by a finite
number of updates to a member is a member

I Array sort A: updatable function set

With abstract length:

I Array: partial updatable function
Domain of definition: the set of admissible indices

I Array sort A: a collection of updatable function sets (Xn)n,
one for every length n (value in the interpretation of Len)
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How ArrL fits in predicate-sharing completeness

I Thm.: Module IArrL is leading-theory-complete for all
ArrL-suitable leading theories

I A leading theory T1 is ArrL-suitable if
I T1 has all the sorts of ArrL
I T1 shares with ArrL only the symbol Adm (and equality)
I For all T1-models M1 there exists a collection of updatable

function sets (Xn)n∈LenM1 such that

|AM1 | = |
⊎

n∈LenM1

Xn|

Xn is an updatable function set from
In = {i | i ∈ IndM1 ∧ AdmM1 (i , n)} to ValM1

that interprets the arrays of length n
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Example with ArrL and LIA revisited

I LIA interprets Len and Ind as Z
I LIA defines Adm by Adm(i , n)↔ 0 ≤ i < n

I Suppose ArrL interprets also Val as Z
I T1 interpreting Len, Ind , and Adm like LIA, and Val like ArrL

is ArrL-suitable:
for all n ∈ Z, In = {i | i ∈ Z ∧ 0 ≤ i < n}
for all n, n > 0, Xn is countably infinite
Cardinality of the interpretation of A: countably infinite

I A theory interpreting A as being finite: not ArrL-suitable
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Example with ArrL and bitvectors

I BV interprets Ind as BV[1], Len as BV[2]
Adm as true everywhere except (0, 00), (1, 00), and (1, 01)

I Suppose that ArrL and BV share also Val
and BV interprets it as BV[1]

I T1 interpreting Len, Ind , Adm, and Val like BV is
ArrL-suitable:
I00 = ∅, I01 = {0}, and I10 = I11 = {0, 1}
|X00| = 20 = 1, |X01| = 21 = 2, and |X10| = |X11| = 22 = 4
Cardinality of the interpretation of A: 11

I A theory interpreting A as countably infinite: not ArrL-suitable
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Current and future work

I Develop this abstract approach to nondisjointness due to
bridging functions for
I Maps
I Vectors aka dynamic arrays
I Arrays (ArrL) enriched with concatenation
I Lists with length (generalizable to recursive data structures)

I Implementation of CDSAT in Rust
(by Xavier Denis)

I Extend CDSAT with quantifier reasoning
(with Christophe Vauthier)
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