SGGS: A CDCL-like first-order theorem-proving method¹

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Talk given at Microsoft Research, Redmond, Washington, USA

12 April 2016

¹Joint work with David A. Plaisted

Maria Paola Bonacina

< □ → < ⑦ → < ≧ → < ≧ → < ≧ → < ≧ → </p>
SGGS: A CDCL-like first-order theorem-proving method

Motivation

SGGS: model representation

SGGS: inferences

Completeness

Discussion

・ロト ・回ト ・ヨト ・ヨト

臣

Big picture: Model-based reasoning

- Derivation state includes candidate partial model
- Inference and search for model guide each other
- Inference as model transformation
- E.g., SAT-solving, SMT-solving, MBTC, MCsat, Model-based projections

Example: the CDCL procedure for PL

- Propositional logic
- A set of clauses S to be satisfied or refuted
- Model representation: trail of literals
- Search for model: decision, backjumping
- Inference: clausal propagation, explanation, learning

Semantics in first-order reasoning

- Semantic resolution
- Hyperresolution
- Resolution with set of support
- Model elimination and tableaux-based methods: an open branch is a candidate model
- Instance-based methods where instance generation is model driven

SGGS: Semantically-Guided Goal-Sensitive reasoning

- Model-based: It lifts CDCL to first-order logic
- Also semantically guided, goal sensitive, proof confluent
- ▶ Refutationally complete: S unsatisfiable, SGGS gets \bot
- Explicit model construction: S is satisfiable, the limit of the derivation is a model

Model representation in PL

- Propositional logic
- Propositional variable P is either true or false
- 2ⁿ interpretations for n propositional variables
- Guess P (or $\neg P$)

Model representation in FOL

- First-order logic
- Clausal form, Herbrand interpretations
- P(x) has infinitely many ground instances: P(a), P(f(a)),
 P(f(f(a))) ... infinite Herbrand base
- Infinitely many interpretations where each ground instance is either true or false: powerset of the Herbrand base
- What do we guess?! How do we get started?!
- Answer: Semantic guidance

Semantic guidance

- Take I with all positive ground literals true
- S: set of clauses to be satisfied or refuted
- $\mathcal{I} \models S$: done! $\mathcal{I} \not\models S$: modify \mathcal{I} to satisfy S
- How? Flipping literals from positive to negative
- SGGS discovers which negative literals are needed
- Initial interpretation I: starting point in the search for a model and default interpretation

SGGS basics

- Set S of clauses to refute or satisfy
- Initial fixed Herbrand interpretation \mathcal{I} , e.g.:
 - All negative (as in positive hyperresolution)
 - All positive (as in negative hyperresolution)
 - $\mathcal{I} \not\models SOS$, $\mathcal{I} \models T$ (as in resolution with set of support)
 - Other (e.g., I satisfies the axioms of a theory T and we have a model constructing T-solver acting as oracle)
- $\mathcal{I} \models S$: problem solved
- Otherwise: modify I to satisfy S
- How to represent this modified interpretation?

Uniform falsity

- Propositional logic: if P is true (e.g., it is in the trail), ¬P is false; if P is false, ¬P is true
- First-order logic: if P(x) is true, ¬P(x) is false, but if P(x) is false, we only know that there is a ground instance P(t) such that P(t) is false and ¬P(t) is true
- Uniform falsity: Literal L is uniformly false in an interpretation J if all ground instances of L are false in J
- If P(x) is true in J, ¬P(x) is uniformly false in J If P(x) is uniformly false in J, ¬P(x) is true in J

イロト イボト イヨト

Truth and uniform falsity in the initial interpretation

- \mathcal{I} -true: true in \mathcal{I}
- \mathcal{I} -false: uniformly false in \mathcal{I}
- If *L* is \mathcal{I} -true, $\neg L$ is \mathcal{I} -false if *L* is \mathcal{I} -false, $\neg L$ is \mathcal{I} -true

SGGS clause sequence

- F: sequence of clauses where every literal is either *I*-true or *I*-false (invariant)
- ▶ In every clause in Γ a literal is selected: $C = L_1 \lor L_2 \lor \ldots \lor L \lor \ldots \lor L_n$ denoted C[L]
- \mathcal{I} -false literals are preferred for selection (to change \mathcal{I})
- An *I*-true literal is selected only in a clause whose literals are all *I*-true: *I*-all-true clause

I: all negative

- ► A sequence of unit clauses: [P(a, x)], [P(b, y)], [¬P(z, z)], [P(u, v)]
- A sequence of non-unit clauses: $[P(x)], \neg P(f(y)) \lor [Q(y)], \neg P(f(z)) \lor \neg Q(g(z)) \lor [R(f(z), g(z))]$
- ▶ A sequence of constrained clauses: $[P(x)], top(y) \neq g \triangleright [Q(y)], z \neq c \triangleright [Q(g(z))]$

Candidate partial model represented by $\boldsymbol{\Gamma}$

- Get a partial model $\mathcal{I}^{p}(\Gamma)$ by consulting Γ from left to right
- Have each clause C_i[L_i] contribute the ground instances of L_i that satisfy ground instances of C_i not satisfied thus far
- Such ground instances are called proper
- Literal selection in SGGS corresponds to decision in CDCL

Candidate partial model represented by Γ

- If Γ is empty, $\mathcal{I}^{p}(\Gamma)$ is empty
- If $\Gamma = C_1[L_1], \ldots, C_i[L_i]$, and $\mathcal{I}^p(\Gamma|_{i-1})$ is the partial model represented by $C_1[L_1], \ldots, C_{i-1}[L_{i-1}]$, then $\mathcal{I}^p(\Gamma)$ is $\mathcal{I}^p(\Gamma|_{i-1})$ plus the ground instances $L_i\sigma$ such that

•
$$C_i \sigma$$
 is ground

$$\mathcal{I}^{p}(\Gamma|_{i-1}) \not\models C_{i}\sigma$$

$$\neg L_i \sigma \notin \mathcal{I}^p(\Gamma|_{i-1})$$

 $L_i \sigma$ is a proper ground instance

Sequence Γ : $[P(a,x)], [P(b,y)], [\neg P(z,z)], [P(u,v)]$

Partial model $\mathcal{I}^{p}(\Gamma)$: $\mathcal{I}^{p}(\Gamma) \models P(a, t)$ for all ground terms t $\mathcal{I}^{p}(\Gamma) \models P(b, t)$ for all ground terms t $\mathcal{I}^{p}(\Gamma) \models \neg P(t, t)$ for t other than a and b $\mathcal{I}^{p}(\Gamma) \models P(s, t)$ for all distinct ground terms s and t

Model represented by Γ

Consult first $\mathcal{I}^{p}(\Gamma)$ then \mathcal{I} :

Ground literal L

• Determine whether $\mathcal{I}[\Gamma] \models L$:

- If $\mathcal{I}^{p}(\Gamma)$ determines the truth value of *L*: $\mathcal{I}[\Gamma] \models L$ iff $\mathcal{I}^{p}(\Gamma) \models L$
- Otherwise: $\mathcal{I}[\Gamma] \models L$ iff $\mathcal{I} \models L$
- ► I[Γ] is I modified to try to satisfy the clauses in Γ by satisfying the proper ground instances of their selected literals
- ▶ *I*-false selected literals makes the difference

I: all negative

Sequence $\Gamma: [P(a, x)], [P(b, y)], [\neg P(z, z)], [P(u, v)]$

▶ Represented model $\mathcal{I}[\Gamma]$: $\mathcal{I}[\Gamma] \models P(a, t)$ for all ground terms t $\mathcal{I}[\Gamma] \models P(b, t)$ for all ground terms t $\mathcal{I}[\Gamma] \models \neg P(t, t)$ for t other than a and b $\mathcal{I}[\Gamma] \models P(s, t)$ for all distinct ground terms s and t $\mathcal{I}[\Gamma] \not\models L$ for all other positive literals L

Disjoint prefix

The disjoint prefix $dp(\Gamma)$ of Γ is

- ► The longest prefix of Γ where every selected literal contributes to *I*[Γ] all its ground instances
- That is, where all ground instances are proper
- No two selected literals in the disjoint prefix intersect
- Intuitively, a polished portion of

 $[P(a,x)], [P(b,y)], [\neg P(z,z)], [P(u,v)]:$ the disjoint prefix is [P(a,x)], [P(b,y)]

 $[P(x)], \neg P(f(y)) \lor [Q(y)], \neg P(f(z)) \lor \neg Q(g(z)) \lor [R(f(z), g(z))]:$ the disjoint prefix is the whole sequence

 $[P(x)], top(y) \neq g \triangleright [Q(y)], z \neq c \triangleright [Q(g(z))]:$ the disjoint prefix is the whole sequence

Propositional clausal propagation

Conflict clause:

 $L_1 \vee L_2 \vee \ldots \vee L_n$

for all literals the complement is in the trail

Unit clause:

 $C = L_1 \lor L_2 \lor \ldots \lor L_j \lor \ldots \lor L_n$ for all literals but one (L_i) the complement is in the trail

• Implied literal: add L_j to trail with C as justification

イロト イボト イラト イラト

First-order clausal propagation

- Consider a literal *M* selected in clause C_j in Γ, and a literal L in C_i, i > j:
 ..., ... ∨ [M] ∨ ..., ..., ∨ L ∨ ..., ...
 If all ground instances of L appear negated among the proper ground instances of M, L is uniformly false in *I*[Γ]
- L depends on M, like $\neg L$ depends on L in propositional clausal propagation when L is in the trail
- Since every literal in Γ is either *I*-true or *I*-false, *M* will be one and *L* the other

イロト イボト イヨト

- I: all negative
- Sequence Γ : $[P(x)], \neg P(f(y)) \lor [Q(y)], \neg P(f(z)) \lor \neg Q(g(z)) \lor [R(f(z), g(z))]$
- $\neg P(f(y))$ depends on [P(x)]
- $\neg P(f(z))$ depends on [P(x)]
- $\neg Q(g(z))$ depends on [Q(y)]

First-order clausal propagation

Conflict clause:

- $L_1 \vee L_2 \vee \ldots \vee L_n$
- all literals are uniformly false in $\mathcal{I}[\Gamma]$

Unit clause:

 $C = L_1 \lor L_2 \lor \ldots \lor L_j \lor \ldots \lor L_n$ all literals but one (L_j) are uniformly false in $\mathcal{I}[\Gamma]$

• Implied literal: L_j with $C[L_j]$ as justification

Semantically-guided first-order clausal propagation

- ► SGGS employs assignments to keep track of the dependences of *I*-true literals on selected *I*-false literals
- ▶ Non-selected *I*-true literals are assigned (invariant)
- Selected *I*-true literals are assigned if possible
- *I*-all-true clauses in *Γ* are either conflict clauses or justifications with their selected literal as implied literal
- All justifications are in the disjoint prefix

- Set S of clauses to refute or satisfy
- Initial interpretation I
- $\blacktriangleright (S; \mathcal{I}; \Gamma_0) \vdash (S; \mathcal{I}; \Gamma_1) \vdash \dots (S; \mathcal{I}; \Gamma_i) \vdash (S; \mathcal{I}; \Gamma_{i+1}) \vdash \dots$
- $\blacktriangleright \ \ \Gamma_0 \vdash \Gamma_1 \vdash \ldots \Gamma_i \vdash \Gamma_{i+1} \vdash \ldots$

How does SGGS build clause sequences?

- Main inference rule: SGGS-extension
- $\mathcal{I}[\Gamma] \not\models C$ for some clause $C \in S$
- $\mathcal{I}[\Gamma] \not\models C'$ for some ground instance C' of C
- Then SGGS-extension uses Γ and C to generate a (possibly constrained) clause A ▷ E such that
 - E is an instance of C
 - C' is a ground instance of $A \triangleright E$

and adds it to Γ to get Γ'

How can a ground clause be false I

$\mathcal{I}[\Gamma] \not\models C'$ For each literal *L* of *C*':

- Either L is *I*-true and it depends on an *I*-false selected literal in Γ
- Or *L* is \mathcal{I} -false and it depends on an \mathcal{I} -true selected literal in Γ
- Or *L* is \mathcal{I} -false and not interpreted by $\mathcal{I}^{p}(\Gamma)$

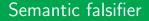
The SGGS-extension inference scheme

• Clause
$$C \in S$$
: main premise

- Unify literals L₁,..., L_n (n ≥ 1) of C with *I*-false selected literals M₁,..., M_n of opposite sign in dp(Γ): most general unifier α
- Clauses where the M_1, \ldots, M_n are selected: side premises
- Generate instance $C\alpha$

The SGGS-extension inference scheme

- The $L_1\alpha, \ldots, L_n\alpha$ are \mathcal{I} -true
- The M₁,..., M_n are those that make the *I*-true literals of C' false in *I*[Γ]
- The M₁,..., M_n are *I*-false but true in *I*[**Γ**]: instance generation is guided by the current model *I*[**Γ**]



- ▶ ϑ semantic falsifier for C: all literals in $C\vartheta$ are \mathcal{I} -false
- Most general semantic falsifier

The SGGS-extension inference scheme

- β most general semantic falsifier of $(C \setminus \{L_1, \ldots, L_n\})\alpha$
- Generate instance $C\alpha\beta$ where the $L_1\alpha\beta, \ldots, L_n\alpha\beta$ are \mathcal{I} -true and all other literals are \mathcal{I} -false
- Assign the \mathcal{I} -true literals of $C\alpha\beta$ to the side premises
- $C\alpha\beta$ is called extension clause

 β not-empty only for ${\mathcal I}$ not based on sign

Examples

- ► S contains $\{P(a), \neg P(x) \lor Q(f(y)), \neg P(x) \lor \neg Q(z)\}$
- I: all negative
- $\Gamma_0 \text{ is empty}$ $\mathcal{I}[\Gamma_0] = \mathcal{I} \not\models P(a)$

•
$$\Gamma_1 = [P(a)]$$
 with α and β empty

$$\blacktriangleright \mathcal{I}[\Gamma_1] \not\models \neg P(x) \lor Q(f(y))$$

$$\Gamma_2 = [P(a)], \ \neg P(a) \lor [Q(f(y))]$$
with $\alpha = \{x \leftarrow a\}$ and β empty

How can a ground clause be false II

 $\mathcal{I}[\Gamma] \not\models C'$:

- Either C' is *I*-all-true: all its literals are assigned and depend on selected *I*-false literals in Γ;
 C' is instance of an *T* all true conflict clause
 - C' is instance of an \mathcal{I} -all-true conflict clause
- Or C' has *I*-false literals and all of them depend on selected *I*-true literals in Γ;
 C' is instance of a non-*I*-all-true conflict clause
- Or C' has *I*-false literals and at least one of them is not interpreted by *I*^p(Γ): C' is a proper ground instance of some clause

イロト イボト イヨト

Three kinds of SGGS-extension

The extension clause is

- ► Either an *I*-all-true conflict clause
- ► Or a non-*I*-all-true conflict clause
- Or a clause that is not in conflict and extends *I*[*\Gamma*] into *I*[*\Gamma*] by adding the proper ground instances of its selected literal

SGGS-extension with \mathcal{I} -all-true conflict clause

The extension clause $E = C\alpha\beta$ is an *I*-all-true conflict clause:

 $\frac{\Gamma}{\Gamma A \triangleright E[L]}$

- Constraints may be inherited from the side premises
- L is the literal assigned to the side premise of largest index: the selected literal in an *I*-all-true conflict clause is assigned rightmost

SGGS-extension with non- $\overline{\mathcal{I}}$ -all-true conflict clause

All *I*-false literals in the extension clause $E = C\alpha\beta$ intersect \mathcal{I} -true selected literals in $dp(\Gamma)$:

 $\frac{\Gamma}{\Gamma A \lambda \triangleright E[L] \lambda}$

- Extension substitution λ : most general substitution that let the *I*-false literals in the extension clause depend on *I*-true selected literals in $dp(\Gamma)$; in practice: most general unifier
- L is an arbitrary *I*-false literal: heuristic choice

Non-conflicting SGGS-extension

The extension clause $E = C\alpha\beta$ has \mathcal{I} -false literals with proper ground instances w.r.t. Γ :

$$\frac{\Gamma}{\Gamma A \triangleright E[L]}$$

L is an arbitrary *I*-false literal with proper ground instances: heuristic choice

Non-conflicting SGGS-extension

The extension clause $E = C\alpha\beta$ has an *I*-false literal *L* with proper ground instances w.r.t. a prefix Γ^1 of Γ :

 $\frac{\Gamma^1 J \rhd N[\mathbf{0}]\Gamma^2}{\Gamma^1 A \rhd E[\mathbf{L}]\Gamma^2}$

- A ▷ E[L] has smaller proper ground instances than J ▷ N[O] in a total well-founded ordering on ground literals that extends the size ordering
- All side premises are in Γ^1
- \triangleright Γ^1 is the shortest such prefix

イロト イヨト イヨト

Lifting theorem for SGGS-extension

- If $\mathcal{I}[\Gamma] \not\models C$ for some clause $C \in S$
- $(\mathcal{I}[\Gamma] \not\models C' \text{ for } C' \text{ ground instance of } C)$

then there is a (possibly constrained) clause $A \triangleright E$ such that

- E is an instance of C
- C' is a ground instance of $A \triangleright E$
- $A \triangleright E$ can be added to Γ by SGGS-extension to get Γ'

Example

- ► S contains $\{P(a), \neg P(x) \lor Q(f(y)), \neg P(x) \lor \neg Q(z)\}$
- I: all negative
- After two non-conflicting SGGS-extensions:
 Γ₂ = [P(a)], ¬P(a) ∨ [Q(f(y))]

$$\blacktriangleright \mathcal{I}[\Gamma_2] \not\models \neg P(x) \lor \neg Q(z)$$

- ► $\Gamma_3 = [P(a)], \neg P(a) \lor [Q(f(y))], \neg P(a) \lor [\neg Q(f(w))]$ with $\alpha = \{x \leftarrow a, z \leftarrow f(y)\}$ plus renaming
- Conflict! with *I*-all-true conflict clause

- Conflict-driven clause learning
- ► Explanation: conflict clause A ∨ B ∨ C and ¬A in the trail with justification ¬A ∨ D: resolve them
- Resolvent $D \lor B \lor C$ is new conflict clause
- Any resolvent is a logical consequence and can be kept: how many? Heuristic
- Backjump: undoes at least a guess, jumps back as far as possible to state where learnt resolvent can be satisfied

Conflict handling in SGGS

The conflict clause is

- ► *I*-all-true: solve the conflict
- ▶ Non-*I*-all-true: explain and solve the conflict

First-order conflict explanation: SGGS-resolution

- It resolves a non-*I*-all-true conflict clause *E* with a justification *D*[*M*]
- ► The literals resolved upon are an *I*-false literal *L* of *E* and the *I*-true selected literal *M* that *L* depends on

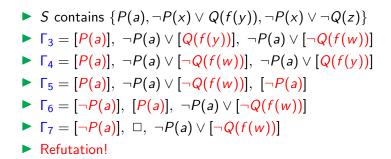
First-order conflict explanation: SGGS-resolution

- Each resolvent is still a conflict clause and it replaces the previous conflict clause in Γ
- It continues until all *I*-false literals in the conflict clause have been resolved away (thanks to extension substitution) and it gets either □ or an *I*-all-true conflict clause
- If \Box arises, S is unsatisfiable

First-order conflict-solving: SGGS-move

- It moves the *I*-all-true conflict clause *E*[*L*] to the left of the clause *D*[*M*] such that *L* depends on *M*
- It does not bother other assignments because L was assigned rightmost
- It flips at once from false to true the truth value in *I*[Γ] of all ground instances of *L*
- The conflict is solved, L is implied, E[L] is satisfied, it becomes the justification of L and it enters the disjoint prefix

Example (continued)



Bundled derivation

All conflicting SGGS-extension are followed by (bundled with) explanation by SGGS-resolution and conflict solving by SGGS-move

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method

Further elements

- There's more to SGGS: first-order literals may intersect having ground instances with the same atom
- SGGS uses splitting inference rules to partition clauses and isolate intersections that can then be removed by SGGS-resolution (different sign) or SGGS-deletion (same sign)
- Splitting introduces constraints that are a kind of Herbrand constraints (e.g., x ≠ y ▷ P(x, y), top(y) ≠ g ▷ Q(y))
- SGGS works with constrained clauses

SGGS makes progress

For all states $(S, I; \Gamma)$:

- If I[Γ] ⊭ C for some clause C ∈ S and Γ = dp(Γ), SGGS-extension applies to Γ
- If Γ ≠ dp(Γ), an SGGS inference rule other than SGGS-extension applies to Γ

Refutational completeness and goal-sensitivity

SGGS is

- Refutationally complete, regardless of the choice of \mathcal{I}
- Goal sensitive if $\mathcal{I} \not\models SOS$ and $\mathcal{I} \models T$ for $S = T \uplus SOS$

Refutational completeness

- S: input set of clauses
- S unsatisfiable: any fair SGGS-derivation terminates with refutation
- S satisfiable: derivation may be infinite; its limiting sequence represents a model

Proof of refutational completeness: building blocks

- A convergence ordering >^c on clause sequences: ensures that there is no infinite descending chain of sequences of bounded length
- A notion of fairness for SGGS-derivations: ensures that the procedure does not ignore inferences on shorter prefixes to work on longer ones
- A notion of limiting sequence for SGGS-derivations: every prefix stabilizes eventually

イロト イヨト イヨト

Convergence ordering I

- ► Quasi-orderings ≥_i and equivalence relations ≈_i on clause sequences of length up to i
- Convergence ordering $>^{c}$: lexicographic combination of $>_{i}$'s
- ► Equivalence relation ≈^c: same length and all prefixes in the ≈_i's

Convergence ordering II

Theorem:

 $>_i$ is well-founded on clause sequences of length at least *i*

Corollary:

Descending chain $\Gamma^1 >^c \Gamma^2 >^c \dots \Gamma^j >^c \Gamma^{j+1} >^c \dots$ of sequences of bounded length (for all j, $|\Gamma^j| \leq n$) is finite

No infinite descending chain of sequences of bounded length


```
• Index of inference \Gamma \vdash \Gamma':
```

the shortest prefix that gets reduced the smallest *i* such that $\Gamma|_i >^c \Gamma'|_i$

Index(Γ): minimum index of any inference applicable to Γ

イロト イボト イラト イラト

Fairness II

Fair derivation $\Gamma_0 \vdash \Gamma_1 \vdash \ldots \Gamma_j \vdash \ldots$ $\forall i, i > 0$, if for infinitely many Γ_j 's $index(\Gamma_j) \le i$ for infinitely many Γ_i 's the applied inference has index $\le i$

Any SGGS-inference that is infinitely often possible is eventually done

The minimal index SGGS-strategy that always selects an inference of minimal index is fair

Limiting sequence

- ► Derivation $\Gamma_0 \vdash \Gamma_1 \vdash \ldots \vdash \Gamma_j \vdash \ldots$ admits limit if there exists a Γ (limit) such that for all lengths $i, i \leq |\Gamma|$ there is an integer n_i such that for all indices $j \geq n_i$ in the derivation if $|\Gamma_j| \geq i$ then $\Gamma_j|_i \approx^c \Gamma|_i$
- Every prefix stabilizes eventually
- The longest such sequence Γ_{∞} is the limiting sequence
- Both derivation and Γ_{∞} may be finite or infinite

Convergence and descending chain theorems

- Convergence theorem: A derivation that is a non-ascending chain admits limiting sequence
- Descending chain theorem:
 A bundled derivation forms a descending chain

Completeness theorem

Theorem:

For all initial interpretations \mathcal{I} and sets S of first-order clauses, if S is unsatisfiable, any fair bundled SGGS-derivation is a refutation

Idea of proof:

If not, infinitely many SGGS-extensions apply; infinite derivation with infinite limiting sequence Γ_{∞} ; Γ_j gets reduced in $>^c$ in a finite prefix $(\Gamma_j)|_n$ that had already converged $((\Gamma_j)|_n = (\Gamma_{\infty})|_n)$: contradiction

SGGS is possibly unique in being simultaneously

- First order
- Model based à la CDCL
- Semantically guided
- Refutationally complete
- Goal sensitive (when deemed desirable)
- Proof confluent

References on SGGS

- Semantically-guided goal-sensitive reasoning: model representation. Journal of Automated Reasoning 56(2):113–141, February 2016.
- Semantically-guided goal-sensitive reasoning: inference system and completeness. Submitted, 58 pages.
- SGGS theorem proving: an exposition. 4th Workshop on Practical Aspects in Automated Reasoning (PAAR), Vienna, July 2014. EPiC 31:25-38, July 2015.
- Constraint manipulation in SGGS. 28th Workshop on Unification (UNIF), Vienna, July 2014. TR 14-06, RISC, 47–54, 2014.

Future work on SGGS

- Implementation: algorithms and strategies
- Heuristic choices: literal selection, assignments
- Simpler SGGS?
- Initial interpretations not based on sign
- Extension to equality?
- SGGS for model building?
- SGGS for decision procedures for decidable fragments?

Towards a semantically-oriented style of theorem proving that may pay off for hard problems or new domains