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The gist of this talk

I Theorem proving is search, not saturation

I The relevant property is fairness

I Fairness should earn less than saturation

I Fairness should consider both expansion and contraction
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Fairness in computing

I Scheduling: no starvation of processes

I Search: no neglect of “useful” moves
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Automated reasoning

I Inference system or Transition system:
set of non-deterministic rules
defines the search space of all possible steps

I Search plan: controls rules application
guides search for proof/model
adds determinism: given input, unique derivation

Procedure/Strategy = Rule system + Search plan
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Requirements

I System of rules: completeness
there exist successful derivations

I Search plan: fairness
ensure that the generated derivation succeeds
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Theorem proving (TP)

I Inference system: refutational completeness
if input set unsat
there exist derivations yielding ⊥ (and a proof)

I Search plan: fairness
ensure that the generated derivation yields ⊥

I Complete TP strategy =
Refutationally complete inference system + Fair search plan
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Fairness?

I Exhaustive: consider eventually all applicable steps
trivial, brute force way to be fair

I How to be fair without being exhaustive?

I Non-trivial definitions of fairness?

I Non-trivially fair search plans?

I Non-trivial fairness: reduce gap between completeness and
efficiency
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Fairness and redundancy

I Consider eventually all needed steps: What is needed?

I Dually: what is not needed, or: what is redundant?

I Fairness and redundancy are related
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Redundancy I

I Resolution: generate resolvents by resolving complementary
literals

I Subsumption: clause C eliminates less general clause D

I Subsumption ordering: D •≥ C if Cσ ⊆ D (as multisets)
D •> C if D •≥ C and C 6•≥ D

I D redundant in S (D ∈ Red(S))
if there exists C ∈ S that subsumes D (strictly)
[Michäel Rusinowitch]
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Redundancy II

I Well-founded ordering ≺ on terms and literals

I Superposition: resolution with equality built-in: superpose
maximal side of maximal equation into maximal literal/side
(maximal after mgu)

I Simplification: by well-founded rewriting

I Ground D redundant in S if for ground instances C1 . . .Cn of
clauses in S , C1 . . .Cn ≺ D and C1 . . .Cn |= D;
D redundant in S (D ∈ Red(S)) if all its ground instances are
[Leo Bachmair and Harald Ganzinger]
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Redundancy III

I From clauses to inferences

I Redundant inference: uses/generates redundant clause
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Fairness is a global property

Derivation:

S0 ` S1 ` . . . Si ` Si+1 . . .

Limit: set of persistent clauses

S∞ =
⋃
j≥0

⋂
i≥j

Si
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Uniform fairness

C ∈ IE (S): C generated from S by expansion

S0 ` S1 ` . . . Si ` Si+1 . . .

I For all C ∈ IE (S∞) exists j such that C ∈ Sj ∪ Red(Sj)

I For all C ∈ IE (S∞ \ Red(S∞)) exists j such that C ∈ Sj
I All non-redundant expansion inferences done eventually

[Leo Bachmair and Harald Ganzinger]
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A weaker notion of fairness?

I Uniform fairness is for saturation

I Fairness for theorem proving?
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Proof orderings

I Well-founded proof ordering <

[Leo Bachmair, Nachum Dershowitz and Jieh Hsiang]

I May reduce to formula ordering if we compare proofs by their
premises

I But it is more flexible: small proofs may have large premises
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Proof reduction

I Justification: set of proofs P

I Comparing justifications:
Q better than P, written P w Q:
∀p ∈ P.∃q ∈ Q. p ≥ q
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Comparing presentations by their proofs

I S presentation of Th(S)

I Proofs with premises in S : Pf (S)

I S ′ simpler than S , written S % S ′:
S ≡ S ′ and Pf (S) w Pf (S ′)
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Best proofs

I Minimal proofs in a justification: µ(P)

I Normal-form proofs of S :

Nf (S) = µ(Pf (Th(S)))

the minimal proofs in the deductively closed presentation
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Saturated vs. complete presentation

I Saturated: provides all normal-form proofs

I Complete: provides a normal-form proof for every theorem

I They coincide if minimal proofs are unique
(e.g., total proof ordering)
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Example I

{a ' b, b ' c , a ' c}

Minimal proofs: valley proofs: s
∗→ ◦ ∗← t

I a � b � c

I Complete: {b ' c , a ' c}
with a→ c ← b as minimal proof of a ' b

I Saturated: {a ' b, b ' c , a ' c}
with both a→ b and a→ c ← b
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Example II

{a ' b, b ' c , a ' c}

Minimal proofs: valley proofs: s
∗→ ◦ ∗← t

I a#b, a � c , b � c

I Complete: {b ' c , a ' c}
I Saturated: {b ' c , a ' c}

because a↔ b not minimal
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Canonical presentation

I Contracted: contains all and only the premises of its minimal
proofs

I Canonical (S ]):
I Contains all and only the premises of normal-form proofs
I Saturated and contracted
I Smallest saturated presentation
I Simplest presentation

[Nachum Dershowitz and Claude Kirchner]
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Equational theories

I Normal-form proof of ∀x̄ s ' t:
valley proof ŝ

∗→ ◦ ∗← t̂ by rewriting
ŝ and t̂ are s and t with variables replaced by Skolem
constants

I Saturated: convergent (confluent and terminating)

I Contracted: inter-reduced

I Canonical: convergent and inter-reduced

I Finite and canonical: decision procedure
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Proof-ordering based redundancy

I C redundant in S (C ∈ Red(S)) if adding it does not improve
minimal proofs:
µ(Pf (S)) = µ(Pf (S ∪ {C}))

I C redundant in S (C ∈ Red(S)) if removing it does not
worsen proofs:
S % S \ {C} or Pf (S) w Pf (S \ {C})
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Inference as proof reduction I

S0 ` S1 ` . . . Si ` Si+1 . . .

I Good: Si % Si+1 for all i

I Once redundant always redundant:
Si+1 ∩ Red(Si ) ⊆ Red(Si+1)
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Inference as proof reduction II

S0 ` S1 ` . . . Si ` Si+1 . . .

I Expansion: A ` A ∪ B with B ⊆ Th(A)

I Contraction: A ∪ B ` A with A ∪ B % A

I Expansions and contractions are good
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Derivations

S0 ` S1 ` . . . Si ` Si+1 . . .

I Saturating: S∞ is saturated

I Completing: S∞ is complete

I Contracting: S∞ is contracted

I Canonical: saturating and contracting
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Proof-ordering based fairness I

S0 ` S1 ` . . . Si ` Si+1 . . .

I Whenever a minimal proof of the target theorem is reducible
by inferences, it is reduced eventually

I For all i ≥ 0 and p ∈ µ(Pf (Si ))
if there are inferences Si ` . . . ` S ′ and q ∈ µ(Pf (S ′))
such that q < p
then there exist j > i and r ∈ µ(Pf (Sj)) such that r ≤ q

I Applies to both expansion and contraction

I Contraction is not only deletion
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Proof-ordering based fairness II

S0 ` S1 ` . . . Si ` Si+1 . . .

I Critical proof: minimal proof, not in normal form, all proper
subproofs in normal form
(E.g.: peak ŝ ← ◦ → t̂ yielding critical pair)

I C (S): critical proofs of S

I Critical proofs with persistent premises: C (S∞)

I Fairness: All strictly reduced eventually:
C (S∞) = Pf (

⋃
i≥0 Si )
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Uniform fairness

I Trivial proof: made of the theorem itself

I Ŝ : trivial proofs of S

I Trivial proofs with persistent premises: Ŝ∞
I Uniform fairness: All strictly reduced eventually (unless

canonical): Ŝ∞ \ Ŝ ] = Pf (
⋃

i≥0 Si )
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Results about good derivations

I If fair then completing

I Uniformly fair iff saturating

I Fairness sufficient for theorem proving (proof search):
no need to add all consequences of critical proofs
only enough to provide a smaller proof for each critical proof
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Properties of the search plan

I Schedule enough expansion and contraction to be fair hence
completing

I Schedule enough contraction to be contracting

I Schedule contraction before expansion: eager contraction
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Implementation of contraction

I Forward contraction:
contract new C wrt already existing clauses: C ′

I Backward contraction:
contract already existing clauses wrt C ′

I Implement backward contraction by forward contraction:
reducible clause as new clause
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Implementation of eager contraction

I Red(Si ) = ∅ for all i : not if every step is single inference

I Red(Si ) = ∅ for some i (periodically):
given-clause loop with active ∪ passive inter-reduced

I Red(Bi ) = ∅ for some Bi ⊆ Si and some i :
given-clause loop with active inter-reduced
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Example I: conditional equations

Also conditions rewrite:

{a ' b ⊃ f (a) ' c , a ' b ⊃ f (b) ' c}

f � a � b � c

a ' b ⊃ f (a) ' c reduces to a ' b ⊃ c ' c which is deleted
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Example II

I a � b � c

I {a ' b ⊃ b ' c , a ' b ⊃ a ' c} is saturated

I {a ' b ⊃ b ' c} is equivalent, complete and reduced

I a ' b ⊃ a ' c self-reduces to a ' b ⊃ b ' c which is
subsumed
or is reduced to a ' c ⊃ a ' c which is deleted
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Discussion

I Fairness should earn something weaker than saturation

I Proof orderings vs. formula orderings

I Non-trivially fair and eager contracting search plans
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