On fairness in theorem proving

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Talk given at Microsoft Research, Redmond, Washington, USA

26 June 2013

Outline

Motivation Uniform fairness for saturation Fairness for theorem proving Discussion

Motivation

Uniform fairness for saturation

Fairness for theorem proving

Discussion

メロト メロト メヨト メヨト

臣

The gist of this talk

- Theorem proving is search, not saturation
- The relevant property is fairness
- Fairness should earn less than saturation
- Fairness should consider both expansion and contraction

Image: A matrix

.

Fairness in computing

- Scheduling: no starvation of processes
- Search: no neglect of "useful" moves

Automated reasoning

- Inference system or Transition system: set of non-deterministic rules defines the search space of all possible steps
- Search plan: controls rules application guides search for proof/model adds determinism: given input, unique derivation

Procedure/Strategy = Rule system + Search plan

- System of rules: completeness there exist successful derivations
- Search plan: fairness ensure that the generated derivation succeeds

Image: A matrix

Theorem proving (TP)

- ► Inference system: refutational completeness if input set unsat there exist derivations yielding ⊥ (and a proof)
- Search plan: fairness ensure that the generated derivation yields ⊥

 Complete TP strategy = Refutationally complete inference system + Fair search plan

- Exhaustive: consider eventually all applicable steps trivial, brute force way to be fair
- How to be fair without being exhaustive?
- Non-trivial definitions of fairness?
- Non-trivially fair search plans?
- Non-trivial fairness: reduce gap between completeness and efficiency

Image: A matrix

Fairness and redundancy

- Consider eventually all needed steps: What is needed?
- Dually: what is not needed, or: what is redundant?
- Fairness and redundancy are related

Image: A matrix

- Resolution: generate resolvents by resolving complementary literals
- ▶ Subsumption: clause C eliminates less general clause D
- ► Subsumption ordering: $D \ge C$ if $C\sigma \subseteq D$ (as multisets) $D \ge C$ if $D \ge C$ and $C \not\ge D$
- D redundant in S (D ∈ Red(S)) if there exists C ∈ S that subsumes D (strictly) [Michäel Rusinowitch]

Redundancy II

- ▶ Well-founded ordering ≺ on terms and literals
- Superposition: resolution with equality built-in: superpose maximal side of maximal equation into maximal literal/side (maximal after mgu)
- Simplification: by well-founded rewriting
- Ground D redundant in S if for ground instances C₁...C_n of clauses in S, C₁...C_n ≺ D and C₁...C_n ⊨ D;
 D redundant in S (D ∈ Red(S)) if all its ground instances are [Leo Bachmair and Harald Ganzinger]

- From clauses to inferences
- Redundant inference: uses/generates redundant clause

Fairness is a global property

Derivation:

$$S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots$$

Limit: set of persistent clauses

$$S_{\infty} = \bigcup_{j\geq 0} \bigcap_{i\geq j} S_i$$

Uniform fairness

 $C \in I_E(S)$: C generated from S by expansion

$$S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots$$

- ▶ For all $C \in I_E(S_\infty)$ exists *j* such that $C \in S_j \cup Red(S_j)$
- ▶ For all $C \in I_E(S_\infty \setminus Red(S_\infty))$ exists j such that $C \in S_j$
- All non-redundant expansion inferences done eventually

[Leo Bachmair and Harald Ganzinger]

A weaker notion of fairness?

Uniform fairness is for saturationFairness for theorem proving?

イロト イヨト イヨト イヨト

臣

Proof orderings

[Leo Bachmair, Nachum Dershowitz and Jieh Hsiang]

- May reduce to formula ordering if we compare proofs by their premises
- But it is more flexible: small proofs may have large premises

Proof reduction

- Justification: set of proofs P
- Comparing justifications:
 Q better than P, written P ⊒ Q:
 ∀p ∈ P.∃q ∈ Q. p ≥ q

Image: A matrix

Comparing presentations by their proofs

- ► S presentation of Th(S)
- Proofs with premises in S: Pf(S)
- S' simpler than S, written $S \succeq S'$: $S \equiv S'$ and $Pf(S) \supseteq Pf(S')$

.

- Minimal proofs in a justification: $\mu(P)$
- Normal-form proofs of S:

$$Nf(S) = \mu(Pf(Th(S)))$$

the minimal proofs in the deductively closed presentation

Saturated vs. complete presentation

- Saturated: provides all normal-form proofs
- Complete: provides a normal-form proof for every theorem
- They coincide if minimal proofs are unique (e.g., total proof ordering)

Example I

$$\{a \simeq b, b \simeq c, a \simeq c\}$$

Minimal proofs: valley proofs: $s \xrightarrow{*} \circ \xleftarrow{} t$

►
$$a \succ b \succ c$$

Saturated:
$$\{a \simeq b, b \simeq c, a \simeq c\}$$

with both $a \rightarrow b$ and $a \rightarrow c \leftarrow b$

イロト イヨト イヨト イヨト

臣

Example II

$$\{a \simeq b, b \simeq c, a \simeq c\}$$

Minimal proofs: valley proofs: $s \xrightarrow{*} \circ \xleftarrow{} t$

• Complete:
$$\{b \simeq c, a \simeq c\}$$

イロト イヨト イヨト イヨト

э

Canonical presentation

Contracted: contains all and only the premises of its minimal proofs

• Canonical (S^{\sharp}) :

- Contains all and only the premises of normal-form proofs
- Saturated and contracted
- Smallest saturated presentation
- Simplest presentation

[Nachum Dershowitz and Claude Kirchner]

Equational theories

- Normal-form proof of ∀x̄ s ≃ t: valley proof ŝ → ◦ ← t̂ by rewriting ŝ and t̂ are s and t with variables replaced by Skolem constants
- Saturated: convergent (confluent and terminating)
- Contracted: inter-reduced
- Canonical: convergent and inter-reduced
- Finite and canonical: decision procedure

Proof-ordering based redundancy

- C redundant in S (C ∈ Red(S)) if adding it does not improve minimal proofs: μ(Pf(S)) = μ(Pf(S ∪ {C}))
- C redundant in S (C ∈ Red(S)) if removing it does not worsen proofs: S ≿ S \ {C} or Pf(S) ⊒ Pf(S \ {C})

Inference as proof reduction I

$$S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots$$

• Good:
$$S_i \succeq S_{i+1}$$
 for all *i*

• Once redundant always redundant: $S_{i+1} \cap Red(S_i) \subseteq Red(S_{i+1})$

Image: A match the second s

Inference as proof reduction II

$$S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots$$

- **Expansion**: $A \vdash A \cup B$ with $B \subseteq Th(A)$
- Contraction: $A \cup B \vdash A$ with $A \cup B \succeq A$
- Expansions and contractions are good

Image: A matrix

Derivations

$$S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots$$

- **Saturating**: S_{∞} is saturated
- Completing: S_{∞} is complete
- Contracting: S_{∞} is contracted
- Canonical: saturating and contracting

Proof-ordering based fairness I

 $S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots$

- Whenever a minimal proof of the target theorem is reducible by inferences, it is reduced eventually
- For all i ≥ 0 and p ∈ µ(Pf(S_i)) if there are inferences S_i ⊢ ... ⊢ S' and q ∈ µ(Pf(S')) such that q < p then there exist j > i and r ∈ µ(Pf(S_i)) such that r ≤ q
- Applies to both expansion and contraction
- Contraction is not only deletion

Proof-ordering based fairness II

$$S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots$$

- Critical proof: minimal proof, not in normal form, all proper subproofs in normal form (E.g.: peak ŝ ← ○ → t̂ yielding critical pair)
- C(S): critical proofs of S
- Critical proofs with persistent premises: $C(S_{\infty})$
- ► Fairness: All strictly reduced eventually: $C(S_{\infty}) \supseteq Pf(\bigcup_{i\geq 0} S_i)$

Uniform fairness

- Trivial proof: made of the theorem itself
- \hat{S} : trivial proofs of S
- Trivial proofs with persistent premises: $\hat{S_{\infty}}$
- ▶ Uniform fairness: All strictly reduced eventually (unless canonical): $\widehat{S_{\infty}} \setminus \widehat{S^{\sharp}} \sqsupset Pf(\bigcup_{i \ge 0} S_i)$

Results about good derivations

- If fair then completing
- Uniformly fair iff saturating
- Fairness sufficient for theorem proving (proof search): no need to add all consequences of critical proofs only enough to provide a smaller proof for each critical proof

Properties of the search plan

- Schedule enough expansion and contraction to be fair hence completing
- Schedule enough contraction to be contracting
- Schedule contraction before expansion: eager contraction

Implementation of contraction

Forward contraction:

contract new C wrt already existing clauses: C'

Backward contraction:

contract already existing clauses wrt C'

Implement backward contraction by forward contraction: reducible clause as new clause

Implementation of eager contraction

- $Red(S_i) = \emptyset$ for all *i*: not if every step is single inference
- *Red*(S_i) = Ø for some *i* (periodically): given-clause loop with *active* ∪ *passive* inter-reduced
- Red(B_i) = Ø for some B_i ⊆ S_i and some i: given-clause loop with active inter-reduced

- 4 回 ト 4 ヨ ト 4 ヨ ト

Example I: conditional equations

Also conditions rewrite:

$$\{a \simeq b \supset f(a) \simeq c, a \simeq b \supset f(b) \simeq c\}$$

 $f\succ a\succ b\succ c$

 $a \simeq b \supset f(a) \simeq c$ reduces to $a \simeq b \supset c \simeq c$ which is deleted

Example II

a ≻ b ≻ c
{a ≃ b ⊃ b ≃ c, a ≃ b ⊃ a ≃ c} is saturated
{a ≃ b ⊃ b ≃ c} is equivalent, complete and reduced
a ≃ b ⊃ a ≃ c self-reduces to a ≃ b ⊃ b ≃ c which is

subsumed

or is reduced to $a \simeq c \supset a \simeq c$ which is deleted

- Fairness should earn something weaker than saturation
- Proof orderings vs. formula orderings
- Non-trivially fair and eager contracting search plans

References

- Maria Paola Bonacina and Nachum Dershowitz. Canonical ground Horn theories. In Andrei Voronkov and Christoph Weidenbach (Eds.) Programming Logics: Essays in Memory of Harald Ganzinger. Springer, Lecture Notes in Artificial Intelligence 7797, 35–71, March 2013.
- Maria Paola Bonacina and Nachum Dershowitz. Abstract canonical inference. ACM Transactions on Computational Logic, 8(1):180-208, January 2007.
- Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of completion procedures as semidecision procedures. *Theoretical Computer Science*, 146:199-242, July 1995.
- Maria Paola Bonacina. Distributed Automated Deduction. PhD Thesis, Dept. of CS, SUNY at Stony Brook, December 1992.