Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Rewrite-based decision procedures

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Talk given at Microsoft Research, Redmond, Washington, USA

27 May 2008

Modularity of termination: combination of theories

 $\mathcal T\text{-}\mathsf{decision}$ procedures based on subterm-inactivity

 $\mathcal T\text{-}\mathsf{decision}$ procedures based on variable-inactivity

 $\mathcal{T}\text{-}\mathsf{decision}$ by decomposition

Outline Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Modularity of termination for combination of theories

Modularity of termination:

if $S\mathcal{P}_{\succ}$ -strategy terminates on \mathcal{T}_i -sat problems then it terminates on \mathcal{T} -sat problems for $\mathcal{T} = \bigcup_{i=1}^n \mathcal{T}_i$.

Hypotheses:

- No shared function symbols (shared constants allowed)
- Variable-inactive theories

Outline Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Variable-inactivity

Clause C variable-inactive: no maximal literal in C is equation $t \simeq x$ where $x \notin Var(t)$

Set of clauses variable-inactive: all its clauses are

 \mathcal{T} variable-inactive: the limit $S_{\infty} = \bigcup_{j \ge 0} \bigcap_{i \ge j} S_i$ of a fair derivation from $\mathcal{T} \cup S$ is variable-inactive

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \mathcal{T}\mbox{-decision procedures based on subterm-inactivity}\\ \mathcal{T}\mbox{-decision procedures based on variable-inactivity}\\ \mathcal{T}\mbox{-decision by decomposition} \end{array}$

Examples

$$\begin{array}{rcl} C_1 &=& \mathsf{car}(\mathsf{cons}(x,y)) \simeq x \\ C_2 &=& z \simeq w \lor \mathsf{select}(\mathsf{store}(x,z,v),w) \simeq \mathsf{select}(x,w) \\ C_3 &=& \bigvee_{1 \leq j < k \leq n} (x_j \simeq x_k) \end{array}$$

 C_1 variable-inactive C_2 variable-inactive C_3 not variable-inactive (*cardinality constraint clause*)

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \mathcal{T}\mbox{-decision procedures based on subterm-inactivity}\\ \mathcal{T}\mbox{-decision procedures based on variable-inactivity}\\ \end{array}$

The modularity theorem

Theorem: if

- T_i , $1 \le i \le n$, do not share function symbols
- \mathcal{T}_i , $1 \leq i \leq n$, variable-inactive
- ▶ SP_{\succ} -strategy is a T_i -satisfiability procedure, $1 \le i \le n$,

then it is a \mathcal{T} -satisfiability procedure for $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_{i}$.

All theories considered so far are variable-inactive.

 $\begin{array}{l} & \text{Outline} \\ & \text{Modularity of termination: combination of theories} \\ \mathcal{T}\text{-decision procedures based on subterm-inactivity} \\ & \mathcal{T}\text{-decision procedures based on variable-inactivity} \\ & \mathcal{T}\text{-decision by decomposition} \end{array}$

Explanation of the proof of the theorem

- No shared function symbol: no paramodulation from compound terms across theories
- Variable-inactivity: no paramodulation from variables across theories, since for t ≃ x where x ∈ Var(t) it is t ≻ x

Only paramodulations from constants into constants: finitely many.

Outline Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Comment on shared function symbols

- If T₁ contains an axiom where f occurs and T₂ contains another axiom where f occurs, we may have all possible inferences between two general clauses, of whom we know no special properties or restrictions.
- The symbols from the theories appear freely mixed in S, and are separated by flattening (does the job of "purification").

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \mathcal{T}\mbox{-decision procedures based on subterm-inactivity}\\ \mathcal{T}\mbox{-decision procedures based on variable-inactivity}\\ \end{array}$

Variable-inactive theories

- ► Purely equational theories: no trivial models ⇒ variable-inactive
- ► Horn theories: no trivial models + maximal unit strategy ⇒ variable-inactive
- Maximal unit strategy: restricts superposition to unit clauses and paramodulates unit clauses into maximal negative literals

Outline Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Variable inactivity and stable-infiniteness

Lemma: If S_0 is a finite satisfiable set of clauses, then S_0 admits no infinite models if and only if the limit S_{∞} of any fair $S\mathcal{P}_{\succ}$ -derivation from S_0 contains a cardinality constraint clause.

Theorem: If \mathcal{T} is variable-inactive, then it is stably-infinite.

Lemma from:

Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise and Daniele Zucchelli. Decidability and undecidability results for Nelson-Oppen and rewrite-based decision procedures.

Proc. 3rd IJCAR, LNAI 4130:513-527, Springer 2006.

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

$\mathcal{T}\text{-}\mathsf{decision}$ procedure

 $\mathcal{T}\text{-}decision\ procedure:}$ decide satisfiability of a conjunction of ground clauses in theory \mathcal{T}

- S: set of ground clauses in the signature of \mathcal{T}
- \mathcal{T} : presentation of a theory

 \bowtie is either \simeq or $\not\simeq$

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Flat and strictly flat

Depth:

depth(t) = 0, if t is constant or variable $depth(t) = 1 + max{depth(t_i): 1 \le i \le n}$, if t is $f(t_1, ..., t_n)$ $depth(l \bowtie r) = depth(l) + depth(r)$

Term: *t* is flat if depth(t) ≤ 1 , strictly flat if depth(t) = 0

Literal: $l \simeq r$ is flat if $depth(l \simeq r) \le 1$ $l \not\simeq r$ is flat if $depth(l \not\simeq r) = 0$ $l \bowtie r$ is strictly flat if $depth(l \bowtie r) = 0$

Clause: C is (strictly) flat if all its literals are $Maxd(C) = max\{depth(t): t \text{ occurs in } C\}$

・ロン ・四 と ・ 回 と ・ 回 と

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Flattening

- S: given set of ground clauses
- S': flattened version of S such that
 - all unit clauses in S' are flat
 - ▶ all non-unit clauses in S' are strictly flat
 - ▶ $\mathcal{T} \cup S \equiv_{s} \mathcal{T} \cup S'$, where \equiv_{s} means equisatisfiable

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Example

$$S = \{f(f(a)) \simeq b \lor f(c) \not\simeq d\}$$

$S' = \{f(a) \simeq c_1, f(c_1) \simeq c_2, f(c) \simeq c_3, c_2 \simeq b \lor c_3 \not\simeq d\}$

イロト イヨト イヨト イヨト 三日

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

- Simplification ordering
- Complete: total on ground terms
- *"Good"*: t ≻ c for all ground compound terms t and constants c

Thus, we drop requirements such as $a \succ e \succ i$ for arrays.

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Intuition

In a \mathcal{T} -decision problem we distinguish:

- ► *T_g*: ground clauses
- T₁: non-ground clauses about properties that can be deduced using one interpreted function
- T₂: non-ground clauses about the interaction of two interpreted functions

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Example: Arrays

$$\begin{array}{ll} \forall x, z, v. & \text{select}(\text{store}(x, z, v), z) \simeq v \\ \forall x, z, w, v. & z \not\simeq w \supset \text{select}(\text{store}(x, z, v), w) \simeq \text{select}(x, w) \\ \forall x, y. & \forall z. \, \text{select}(x, z) \simeq \text{select}(y, z) \supset x \simeq y \end{array}$$

First two axioms: in \mathcal{T}_2 Third axiom (*extensionality*): in \mathcal{T}_1

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \mathcal{T}\mbox{-decision procedures based on subterm-inactivity}\\ \mathcal{T}\mbox{-decision procedures based on variable-inactivity}\\ \hline{\mathcal{T}\mbox{-decision by decomposition}} \end{array}$

Subterm-inactivity of a 3-tuple

 $\mathcal{T}_g, \mathcal{T}_1, \mathcal{T}_2 :$ disjoint sets of clauses

 $\langle \mathcal{T}_g, \mathcal{T}_1, \mathcal{T}_2
angle$ is subterm-inactive if

- \mathcal{T}_g is ground and flattened
- \$\mathcal{T}_1\$ is interaction-free from \$\mathcal{T}_2\$ and satisfies certain closure properties
- T_2 is saturated and satisfies certain closure properties

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Subterm-inactivity of a set

Set *P* is subterm-inactive if $P = T_g \uplus T_1 \uplus T_2$ such that $\langle T_g, T_1, T_2 \rangle$ is subterm-inactive.

Say P is presentation \mathcal{T} : typically $\mathcal{T}_g = \emptyset$.

If presentation \mathcal{T} is subterm-inactive, then $\mathcal{T} \cup S$, where S is ground and flattened, is also: $\mathcal{T} \cup S = S \uplus \mathcal{T}_1 \uplus \mathcal{T}_2$

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

The subterm-inactivity theorem

If $\mathcal{T}_g \uplus \mathcal{T}_1 \uplus \mathcal{T}_2$ is *subterm-inactive*, then:

For all persistent clauses D generated by SP:

- ► Maxd(D) ≤ max{Maxd(C): C premise} (depth-preserving)
- If D is ground, $\langle T_g \cup \{D\}, T_1, T_2 \rangle$ is subterm-inactive
- ▶ If *D* is not ground, $\langle T_g, T_1 \cup \{D\}, T_2 \rangle$ is *subterm-inactive*
- SP_{\succ} -strategy is T-decision procedure
- T is variable-inactive (hence easy to combine)

 $\begin{array}{c} & \text{Outline} \\ & \text{Modularity of termination: combination of theories} \\ & \mathcal{T}\text{-decision procedures based on subterm-inactivity} \\ & \mathcal{T}\text{-decision procedures based on variable-inactivity} \\ & \mathcal{T}\text{-decision by decomposition} \end{array}$

Impact of subterm-inactivity on binary inferences

- An SP-inference between two clauses in T₁ generates a clause in T₁ or T_g (Closure properties)
- ► An SP-inference between two clauses in T₂ generates a clause that is deleted eventually (Saturation)
- No SP-inference applies to a clause in T₁ and a clause in T₂ (Interaction-freeness)
- An SP-inference between a clause in $T_1 \cup T_2$ and a clause in T_g generates a clause in T_1 or T_g (Closure properties + flatness)

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Impact of subterm-inactivity on unary inferences

- An SP-inference from a clause in T₁ generates a clause that is in T₁ or in T_g or is deleted eventually (Closure properties)
- An SP-inference from a clause in T₂ generates a clause that is deleted eventually (Saturation)

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Subterm-inactive theories

Equality

- Arrays with or without extensionality + two variations
- Recursive data structures (including integer offsets and acyclic lists)
- Finite sets with or without extensionality

Not included: Records, integer offsets modulo, possibly empty possibly cyclic lists

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \ensuremath{\mathcal{T}\mbox{-}decision procedures based on subterm-inactivity}\\ \ensuremath{\mathcal{T}\mbox{-}decision procedures based on variable-inactivity}\\ \ensuremath{\mathcal{T}\mbox{-}decision by decomposition} \end{array}$

Variations on the theory of arrays

Add to A an *injectivity predicate* to state than an array is injective:

 $\mathit{Inj}(x) \Leftrightarrow \forall z, w. \ (z \not\simeq w \supset \mathsf{select}(x, z) \not\simeq \mathsf{select}(x, w))$

► Add to
$$\mathcal{A}$$
 a swap predicate:
 $Swap(x, y, z_1, z_2) \Leftrightarrow$
 $select(x, z_1) \simeq select(y, z_2) \land$
 $select(x, z_2) \simeq select(y, z_1) \land$
 $\forall w. (w \neq z_1 \land w \neq z_2 \supset select(x, w) \simeq select(y, w))$

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Finite sets

$$\begin{array}{ll} \forall x, v. & \mathsf{member}(v, \mathsf{insert}(v, x)) \simeq true \\ \forall x, v, w. & v \not\simeq w \supset \mathsf{member}(v, \mathsf{insert}(w, x)) \simeq \mathsf{member}(v, x) \\ \forall x, y. & \forall v. \mathsf{member}(v, x) \simeq \mathsf{member}(v, y) \supset x \simeq y \end{array}$$

First two axioms: \mathcal{FS} With third axiom (*extensionality*): \mathcal{FS}^e

イロト イヨト イヨト イヨト

臣

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

A non-obvious example

If we add to \mathcal{A} the axiom: $Const_y(x) \Leftrightarrow \forall z. \text{ select}(x, z) \simeq y$ the resulting theory is not subterm-inactive.

It is not variable-inactive either:

$$S = \{store(a, i, e_1) \simeq a', Const_e(a), Const_{e'}(a')\} \Leftrightarrow \{store(a, i, e_1) \simeq a', select(a, z) \simeq e, select(a', z) \simeq e'\}$$

Superposition of store(a, i, e_1) $\simeq a'$ into axiom $z \simeq w \lor$ select(store(x, z, v), w) \simeq select(x, w) generates $w \simeq i \lor$ select(a, w) \simeq select(a', w) which is simplified to $w \simeq i \lor e \simeq e'$ which is not variable-inactive because $w \simeq i$ is maximal. $\begin{array}{l} & \text{Outline} \\ & \text{Modularity of termination: combination of theories} \\ & \mathcal{T}\text{-decision procedures based on subterm-inactivity} \\ & \mathcal{T}\text{-decision procedures based on variable-inactivity} \\ & \mathcal{T}\text{-decision by decomposition} \end{array}$

Discussion

- Termination results for T-satisfiability procedures were obtained by analyzing all possible SP-inferences
- Subterm-inactivity is obtained by generalizing those analyses
- Its conditions are syntactic and most of them could be tested automatically
- However, they are very complicated, inter-twined and not intuitive
- Simpler, hence better, approach: T-decision procedures assuming only variable-inactivity

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \mathcal{T}\mbox{-decision procedures based on subterm-inactivity}\\ \mathcal{T}\mbox{-decision procedures based on variable-inactivity}\\ \mathcal{T}\mbox{-decision by decomposition} \end{array}$

Flattening again

- S: given set of ground clauses
- $S_1 \uplus S_2$: flattened version of S such that
 - ► S₁: unit flat clauses
 - ► S₂: strictly flat non-unit clauses
 - ▶ $T \cup S \equiv_s T \cup S_1 \cup S_2$, where \equiv_s means equisatisfiable

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Example

$$S = \{f(a) \not\simeq f(b) \lor f(a) \not\simeq f(c)\}$$

$$S_1 = \{f(a) \simeq a', f(b) \simeq b', f(c) \simeq c'\}$$

$$S_2 = \{a' \not\simeq b' \lor a' \not\simeq c'\}$$

where a', b', c' are new constants

イロト イヨト イヨト イヨト

臣

$\mathcal{T}\text{-}\mathsf{decision}$ procedures based on variable-inactivity

Theorem: if

- \mathcal{T} is variable inactive
- ▶ SP_{\succ} -strategy is T-satisfiability procedure

then it is also \mathcal{T} -decision procedure.

$\mathcal T\text{-}\mathsf{decision}$ scheme

イロン 不同 とくほと 不良 とう

æ

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \mathcal{T}\mbox{-decision procedures based on subterm-inactivity}\\ \mbox{$\mathcal{T}\mbox{-decision procedures based on variable-inactivity}\\ \mbox{$\mathcal{T}\mbox{-decision by decomposition}} \end{array}$

Explanation: analysis of inferences

Lemma:

- C: variable-inactive clause
- C': strictly flat ground clause
 - 1. C' paramodulates into C:

$$C = I[a] \bowtie r \lor D$$

$$C' = a \simeq a'' \lor D'$$

Generated clause: $I[a''] \bowtie r \lor D \lor D'$

2. C paramodulates into C':

$$C = a \simeq a' \lor D$$
 (also strictly flat)

$$C' = a \bowtie a'' \lor D'$$

Generated clause: $a' \bowtie a'' \lor D \lor D'$ (also strictly flat)

In both cases mgu is empty.

 $\begin{array}{l} \mbox{Modularity of termination: combination of theories}\\ \mathcal{T}\mbox{-decision procedures based on subterm-inactivity}\\ \mathcal{T}\mbox{-decision procedures based on variable-inactivity}\\ \mathcal{T}\mbox{-decision by decomposition} \end{array}$

Proof of the \mathcal{T} -decision theorem

- S_{∞} limit of derivation from $\mathcal{T} \cup S_1$ is
 - finite
 - variable-inactive
- S₂ is strictly flat
- ▶ All inferences between S_{∞} and S_2 are paramodulations from constants into constants: finitely many in a finite signature

Rewrite-based decision procedures

Putting it all together

- Variable-inactivity is the fundamental requirement for both
 - Combination of theories
 - Generalization to *T*-decision problems

Maria Paola Bonacina

- The *T*-decision scheme applies also when *T* is a union of variable-inactive theories
- The two applications of SP are only for clarity: if S_∞ limit of derivation from T ∪ S₁ is finite and variable-inactive, it will be such also in a single run from T ∪ S₁ ∪ S₂, and it will have only finitely many inferences with strictly flat S₂.

Modularity of termination: combination of theories T-decision procedures based on subterm-inactivity T-decision procedures based on variable-inactivity T-decision by decomposition

Decomposition: unite FOL+= and SMT strengths

- Decomposition: definitional and operational part
- Theory compilation: apply FOL+= prover to "compile" the definitional part: theory reasoning, non-ground equational reasoning
- Decision: apply SMT-solver to subset of saturated set (without T-axioms) + operational part
- Sufficient conditions to preserve satisfiability

Outline Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Decomposition

Decomposition: generalization of flattening, where S is decomposed into S_1 and S_2 ; it suffices that S_1 be made of *flat unit clauses*.

- ► Records: S₁ contains the clauses rstore_i(a, e) ≃ b and S₂ contains everything else
- Integer offsets: same as flattening
- ► Arrays: S₁ contains the clauses store(a, i, e) ≃ a' and S₂ contains everything else

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Framework of sufficient conditions

 \mathcal{T} -compatibility: A is \mathcal{T} -compatible with S if A entails every clause generated from premise in S and premise in \mathcal{T}

Theorem: \overline{S} is \mathcal{T} -compatible with S where $S_{\infty} = \mathcal{T} \cup \overline{S}$ is the limit generated by $S\mathcal{P}$ from $\mathcal{T} \cup S$

 $\mathcal{T}\mbox{-stability:}$ ensures that $\mathcal{T}\mbox{-compatibility}$ is preserved by all inferences:

if A is \mathcal{T} -compatible with S and $\mathcal{T} \cup S \vdash \mathcal{T} \cup S'$ then A is \mathcal{T} -compatible with S'.

Outline Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

$\mathcal T\text{-}\mathsf{decision}$ by stages: the main theorem

Theorem: under \mathcal{T} -stability, if A and A' are sets of clauses such that

$$\blacktriangleright \mathcal{T} \cup S_1 \models A$$

$$\blacktriangleright \mathcal{T} \cup S_2 \models A'$$

- A is \mathcal{T} -compatible with S_1
- A' is \mathcal{T} -compatible with S_2

then $\mathcal{T} \cup S_1 \cup S_2 \equiv_{\mathrm{s}} A \cup A'$.

Instance of the theorem: A' is S_2 itself; A is \overline{S} where $S_{\infty} = \mathcal{T} \cup \overline{S}$ is the limit generated by $S\mathcal{P}$ from $\mathcal{T} \cup S_1$

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

\mathcal{T} -decision by stages

æ

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Application to the theories

- ▶ **Records**: $\overline{S} \cup S_2$ is ground: its satisfiability can be decided by decision procedure for equality (reduction to EUF)
- Integer offsets: same as for records
- ► Arrays: \$\overline{S} \cup S_2\$ is not ground: \$\overline{S}\$ contains select(\$a, x\$) \$\simes\$ select(\$a', x\$) \$\forall x\$ \$\simes\$ is possibly empty, ground, strictly flat lt falls in the array property fragment.

Modularity of termination: combination of theories \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

Postponing theories

How about theories such as arithmetic or bitvectors that do not lend themselves to general first-order deduction?

Those parts of the problem can be left into S_2 and passed on directly to the SMT-solver.

Outline \mathcal{T} -decision procedures based on subterm-inactivity \mathcal{T} -decision procedures based on variable-inactivity \mathcal{T} -decision by decomposition

References

- Alessandro Armando, Maria Paola Bonacina, Silvio Ranise and Stephan Schulz. New results on rewrite-based satisfiability procedures. ACM Trans. on Computational Logic, To appear. (Presented in part at FroCoS 2005 and PDPAR 2005)
- Maria Paola Bonacina and Mnacho Echenim. Rewrite-based decision procedures. Proc. 6th STRATEGIES Workshop, FLoC 2006, ENTCS 174(11):27-45, Elsevier 2007.
- Maria Paola Bonacina and Mnacho Echenim. On variable-inactivity and polynomial T-satisfiability procedures. Journal of Logic and Computation, 18(1): 77-96, Feb. 2008. (Presented in part at PDPAR 2006)
- Maria Paola Bonacina and Mnacho Echenim. Theory decision by decomposition. Submitted to journal, April 2008. (Presented in part at CADE 2007)