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Modularity of termination for combination of theories

Modularity of termination:
if SP�-strategy terminates on Ti -sat problems then it terminates
on T -sat problems for T =

⋃n
i=1 Ti .

Hypotheses:

I No shared function symbols (shared constants allowed)

I Variable-inactive theories
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Variable-inactivity

Clause C variable-inactive: no maximal literal in C is equation
t ' x where x 6∈ Var(t)

Set of clauses variable-inactive: all its clauses are

T variable-inactive: the limit S∞ =
⋃

j≥0

⋂
i≥j Si of a fair

derivation from T ∪ S is variable-inactive
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Examples

C1 = car(cons(x , y)) ' x

C2 = z ' w ∨ select(store(x , z , v),w) ' select(x ,w)

C3 =
∨

1≤j<k≤n
(xj ' xk)

C1 variable-inactive
C2 variable-inactive
C3 not variable-inactive (cardinality constraint clause)
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The modularity theorem

Theorem: if

I Ti , 1 ≤ i ≤ n, do not share function symbols

I Ti , 1 ≤ i ≤ n, variable-inactive

I SP�-strategy is a Ti -satisfiability procedure, 1 ≤ i ≤ n,

then it is a T -satisfiability procedure for T =
⋃n

i=1 Ti .

All theories considered so far are variable-inactive.
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Explanation of the proof of the theorem

I No shared function symbol: no paramodulation from
compound terms across theories

I Variable-inactivity: no paramodulation from variables across
theories, since for t ' x where x ∈ Var(t) it is t � x

Only paramodulations from constants into constants: finitely many.
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Comment on shared function symbols

I If T1 contains an axiom where f occurs and T2 contains
another axiom where f occurs, we may have all possible
inferences between two general clauses, of whom we know no
special properties or restrictions.

I The symbols from the theories appear freely mixed in S , and
are separated by flattening (does the job of “purification”).
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Variable-inactive theories

I Purely equational theories:
no trivial models ⇒ variable-inactive

I Horn theories:
no trivial models + maximal unit strategy ⇒ variable-inactive

I Maximal unit strategy:
restricts superposition to unit clauses and paramodulates unit
clauses into maximal negative literals
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Variable inactivity and stable-infiniteness

Lemma: If S0 is a finite satisfiable set of clauses, then S0 admits
no infinite models if and only if the limit S∞ of any fair
SP�-derivation from S0 contains a cardinality constraint clause.

Theorem: If T is variable-inactive, then it is stably-infinite.

Lemma from:
Maria Paola Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise and Daniele Zucchelli.
Decidability and undecidability results for Nelson-Oppen and rewrite-based decision procedures.

Proc. 3rd IJCAR, LNAI 4130:513-527, Springer 2006.
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T -decision procedure

T -decision procedure: decide satisfiability of a conjunction of
ground clauses in theory T

S : set of ground clauses in the signature of T

T : presentation of a theory

./ is either ' or 6'
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Flat and strictly flat

Depth:
depth(t) = 0, if t is constant or variable
depth(t) = 1 + max{depth(ti ) : 1 ≤ i ≤ n}, if t is f (t1, . . . , tn)
depth(l ./ r) = depth(l) + depth(r)

Term: t is flat if depth(t) ≤ 1, strictly flat if depth(t) = 0

Literal: l ' r is flat if depth(l ' r) ≤ 1
l 6' r is flat if depth(l 6' r) = 0
l ./ r is strictly flat if depth(l ./ r) = 0

Clause: C is (strictly) flat if all its literals are
Maxd(C ) = max{depth(t) : t occurs in C}
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Flattening

S : given set of ground clauses

S ′: flattened version of S such that

I all unit clauses in S ′ are flat

I all non-unit clauses in S ′ are strictly flat

I T ∪ S ≡s T ∪ S ′, where ≡s means equisatisfiable
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Example

S = {f (f (a)) ' b ∨ f (c) 6' d}

S ′ = {f (a) ' c1, f (c1) ' c2, f (c) ' c3, c2 ' b ∨ c3 6' d}

Maria Paola Bonacina Rewrite-based decision procedures



Outline
Modularity of termination: combination of theories
T -decision procedures based on subterm-inactivity
T -decision procedures based on variable-inactivity

T -decision by decomposition

“Good” CSO

I Simplification ordering

I Complete: total on ground terms

I “Good”: t � c for all ground compound terms t and
constants c

Thus, we drop requirements such as a � e � i for arrays.
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Intuition

In a T -decision problem we distinguish:

I Tg : ground clauses

I T1: non-ground clauses about properties that can be deduced
using one interpreted function

I T2: non-ground clauses about the interaction of two
interpreted functions

Maria Paola Bonacina Rewrite-based decision procedures



Outline
Modularity of termination: combination of theories
T -decision procedures based on subterm-inactivity
T -decision procedures based on variable-inactivity

T -decision by decomposition

Example: Arrays

∀x , z , v . select(store(x , z , v), z) ' v

∀x , z ,w , v . z 6'w ⊃ select(store(x , z , v),w) ' select(x ,w)

∀x , y . ∀z . select(x , z) ' select(y , z) ⊃ x ' y

First two axioms: in T2

Third axiom (extensionality): in T1
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Subterm-inactivity of a 3-tuple

Tg , T1, T2: disjoint sets of clauses

〈Tg , T1, T2〉 is subterm-inactive if

I Tg is ground and flattened

I T1 is interaction-free from T2 and satisfies certain closure
properties

I T2 is saturated and satisfies certain closure properties
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Subterm-inactivity of a set

Set P is subterm-inactive if P = Tg ] T1 ] T2 such that 〈Tg , T1, T2〉
is subterm-inactive.

Say P is presentation T : typically Tg = ∅.

If presentation T is subterm-inactive, then T ∪ S , where S is
ground and flattened, is also: T ∪ S = S ] T1 ] T2

Maria Paola Bonacina Rewrite-based decision procedures



Outline
Modularity of termination: combination of theories
T -decision procedures based on subterm-inactivity
T -decision procedures based on variable-inactivity

T -decision by decomposition

The subterm-inactivity theorem

If Tg ] T1 ] T2 is subterm-inactive, then:
I For all persistent clauses D generated by SP:

I Maxd(D) ≤ max{Maxd(C ) : C premise} (depth-preserving)
I If D is ground, 〈Tg ∪ {D}, T1, T2〉 is subterm-inactive
I If D is not ground, 〈Tg , T1 ∪ {D}, T2〉 is subterm-inactive

I SP�-strategy is T -decision procedure

I T is variable-inactive (hence easy to combine)
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Impact of subterm-inactivity on binary inferences

I An SP-inference between two clauses in T1 generates a clause
in T1 or Tg (Closure properties)

I An SP-inference between two clauses in T2 generates a clause
that is deleted eventually (Saturation)

I No SP-inference applies to a clause in T1 and a clause in T2

(Interaction-freeness)

I An SP-inference between a clause in T1 ∪ T2 and a clause in
Tg generates a clause in T1 or Tg (Closure properties +
flatness)
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Impact of subterm-inactivity on unary inferences

I An SP-inference from a clause in T1 generates a clause that is
in T1 or in Tg or is deleted eventually (Closure properties)

I An SP-inference from a clause in T2 generates a clause that is
deleted eventually (Saturation)
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Subterm-inactive theories

I Equality

I Arrays with or without extensionality + two variations

I Recursive data structures (including integer offsets and acyclic
lists)

I Finite sets with or without extensionality

Not included: Records, integer offsets modulo, possibly empty
possibly cyclic lists
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Variations on the theory of arrays

I Add to A an injectivity predicate to state than an array is
injective:
Inj(x)⇔ ∀z ,w . (z 6'w ⊃ select(x , z) 6' select(x ,w))

I Add to A a swap predicate:
Swap(x , y , z1, z2)⇔
select(x , z1) ' select(y , z2)∧
select(x , z2) ' select(y , z1)∧
∀w . (w 6' z1 ∧ w 6' z2 ⊃ select(x ,w) ' select(y ,w))
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Finite sets

∀x , v . member(v , insert(v , x)) ' true

∀x , v ,w . v 6'w ⊃ member(v , insert(w , x)) ' member(v , x)

∀x , y . ∀v .member(v , x) ' member(v , y) ⊃ x ' y

First two axioms: FS
With third axiom (extensionality): FSe
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A non-obvious example

If we add to A the axiom:
Consty (x)⇔ ∀z . select(x , z) ' y
the resulting theory is not subterm-inactive.

It is not variable-inactive either:
S = {store(a, i , e1) ' a′, Conste(a), Conste′(a′)} ⇔
{store(a, i , e1) ' a′, select(a, z) ' e, select(a′, z) ' e ′}

Superposition of store(a, i , e1) ' a′ into axiom
z ' w ∨ select(store(x , z , v),w) ' select(x ,w)
generates w ' i ∨ select(a,w) ' select(a′,w)
which is simplified to
w ' i ∨ e ' e ′

which is not variable-inactive because w ' i is maximal.
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Discussion

I Termination results for T-satisfiability procedures were
obtained by analyzing all possible SP-inferences

I Subterm-inactivity is obtained by generalizing those analyses

I Its conditions are syntactic and most of them could be tested
automatically

I However, they are very complicated, inter-twined and not
intuitive

I Simpler, hence better, approach: T-decision procedures
assuming only variable-inactivity
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Flattening again

S : given set of ground clauses

S1 ] S2: flattened version of S such that

I S1: unit flat clauses

I S2: strictly flat non-unit clauses

I T ∪ S ≡s T ∪ S1 ∪ S2, where ≡s means equisatisfiable
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Example

S = {f (a) 6' f (b) ∨ f (a) 6' f (c)}

S1 = {f (a) ' a′, f (b) ' b′, f (c) ' c ′}

S2 = {a′ 6' b′ ∨ a′ 6' c ′}

where a′, b′, c ′ are new constants
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T -decision procedures based on variable-inactivity

Theorem: if

I T is variable inactive

I SP�-strategy is T -satisfiability procedure

then it is also T -decision procedure.
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T -decision scheme

T  U  S

Flatten

T  U  S 1 S
2

SP−strategy

S
inf

S
inf

S
2

U

SP−strategy

Sat/Unsat
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Explanation: analysis of inferences

Lemma:
C : variable-inactive clause
C ′: strictly flat ground clause

1. C ′ paramodulates into C :
C = l [a] ./ r ∨ D
C ′ = a ' a′′ ∨ D ′

Generated clause: l [a′′] ./ r ∨ D ∨ D ′

2. C paramodulates into C ′:
C = a ' a′ ∨ D (also strictly flat)
C ′ = a ./ a′′ ∨ D ′

Generated clause: a′ ./ a′′ ∨ D ∨ D ′ (also strictly flat)

In both cases mgu is empty.
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Proof of the T -decision theorem

I S∞ limit of derivation from T ∪ S1 is
I finite
I variable-inactive

I S2 is strictly flat

I All inferences between S∞ and S2 are paramodulations from
constants into constants: finitely many in a finite signature

Maria Paola Bonacina Rewrite-based decision procedures



Outline
Modularity of termination: combination of theories
T -decision procedures based on subterm-inactivity
T -decision procedures based on variable-inactivity

T -decision by decomposition

Putting it all together

I Variable-inactivity is the fundamental requirement for both
I Combination of theories
I Generalization to T -decision problems

I The T -decision scheme applies also when T is a union of
variable-inactive theories

I The two applications of SP are only for clarity: if S∞ limit of
derivation from T ∪ S1 is finite and variable-inactive, it will be
such also in a single run from T ∪ S1 ∪ S2, and it will have
only finitely many inferences with strictly flat S2.
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Decomposition: unite FOL+= and SMT strengths

I Decomposition: definitional and operational part

I Theory compilation: apply FOL+= prover to “compile” the
definitional part: theory reasoning, non-ground equational
reasoning

I Decision: apply SMT-solver to subset of saturated set
(without T -axioms) + operational part

I Sufficient conditions to preserve satisfiability
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Decomposition

Decomposition: generalization of flattening, where S is
decomposed into S1 and S2; it suffices that S1 be made of flat unit
clauses.

I Records: S1 contains the clauses rstorei (a, e) ' b and S2

contains everything else

I Integer offsets: same as flattening

I Arrays: S1 contains the clauses store(a, i , e) ' a′ and S2

contains everything else
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Framework of sufficient conditions

T -compatibility: A is T -compatible with S if A entails every clause
generated from premise in S and premise in T

Theorem: S̄ is T -compatible with S where S∞ = T ∪ S̄ is the
limit generated by SP from T ∪ S

T -stability: ensures that T -compatibility is preserved by all
inferences:
if A is T -compatible with S and T ∪ S ` T ∪ S ′ then A is
T -compatible with S ′.
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T -decision by stages: the main theorem

Theorem: under T -stability, if A and A′ are sets of clauses such
that

I T ∪ S1 |= A

I T ∪ S2 |= A′

I A is T -compatible with S1

I A′ is T -compatible with S2

then T ∪ S1 ∪ S2 ≡s A ∪ A′.

Instance of the theorem:A′ is S2 itself; A is S̄ where S∞ = T ∪ S̄ is
the limit generated by SP from T ∪ S1
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T -decision by stages
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Application to the theories

I Records: S̄ ∪ S2 is ground: its satisfiability can be decided by
decision procedure for equality (reduction to EUF)

I Integer offsets: same as for records

I Arrays: S̄ ∪ S2 is not ground: S̄ contains
select(a, x) ' select(a′, x) ∨ x ' i1 ∨ . . . ∨ x ' in ∨ B
where B is possibly empty, ground, strictly flat
It falls in the array property fragment.
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Postponing theories

How about theories such as arithmetic or bitvectors that do not
lend themselves to general first-order deduction?

Those parts of the problem can be left into S2 and passed on
directly to the SMT-solver.
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