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T -satisfiability procedure

T -satisfiability procedure: decide satisfiability of a conjunction of
ground literals in theory T

S : set of ground literals in the signature of T

T : presentation of a theory

Th(T ): the set of theorems of T

./ is either ' or 6'
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A “good” CSO

I Simplification ordering
I Stable: if l � r then lσ � rσ for all substitutions σ
I Monotonic: if l � r then t[l ] � t[r ] for all contexts t
I With the subterm property: if r is strict subterm of l (l � r)

then l � r

These properties imply well-founded

I Complete: total on ground terms

“Good”: t � c for all ground compound terms t and constants c
and possibly some simple additional condition for some theories
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Superposition

C ∨ l [u′] ' r D ∨ u ' t

(C ∨ D ∨ l [t] ' r)σ

σ is mgu of u and u′

u′ is not a variable
uσ 6� tσ

l [u′]σ 6� rσ
∀L ∈ D : (u ' t)σ 6� Lσ
∀L ∈ C : (l [u′] ' r)σ 6� Lσ
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Paramodulation

C ∨ l [u′] 6' r D ∨ u ' t

(C ∨ D ∨ l [t] 6' r)σ

σ is mgu of u and u′

u′ is not a variable
uσ 6� tσ

l [u′]σ 6� rσ
∀L ∈ D : (u ' t)σ 6� Lσ
∀L ∈ C : (l [u′] 6' r)σ 6� Lσ
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Reflection

Ordered resolution with x ' x :

C ∨ u′ 6' u

Cσ

σ is mgu of u and u′

∀L ∈ C : (u′ 6' u)σ 6≺ Lσ
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Equational Factoring

A generalization of ordered factoring:

C ∨ u ' t ∨ u′ ' t ′

(C ∨ t 6' t ′ ∨ u ' t ′)σ

σ is mgu of u and u′

uσ 6� tσ
∀L ∈ {u′ ' t ′} ∪ C : (u ' t)σ 6≺ Lσ
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Subsumption

C D

C
D •> C

D •> C if D •≥ C and C 6•≥ D

D •≥ C if Cσ ⊆ D (as multisets) for some substitution σ

In practice, theorem provers apply also subsumption of variants:
if D •≥ C and C •≥ D, the oldest clause is retained.
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Simplification

C [u] l ' r

C [rσ], l ' r

u = lσ
lσ � rσ

C [u] � (l ' r)σ
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Deletion

C ∨ t ' t
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Derivation and limit

SP�: SP with CSO �

Derivation:

S0 `
SP�

S1 `
SP�

. . . Si `
SP�

. . .

Limit: set of persistent clauses

S∞ =
⋃
j≥0

⋂
i≥j

Si
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Flat terms and literals

Terms:
depth(t) = 0, if t is constant or variable
depth(t) = 1 + max{depth(ti ) : 1 ≤ i ≤ n}, if t is f (t1, . . . , tn)
Term: flat if depth is 0 or 1

Literals:
depth(l ./ r) = depth(l) + depth(r)
Positive literal: flat if depth is 0 or 1
Negative literal: flat if depth is 0
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Flattening

S : given set of ground literals

S ′: flattened version of S

T ∪ S ≡s T ∪ S ′

where ≡s means equisatisfiable
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Records

Assume n fields denoted 1 ≤ i ≤ n:

∀x , v . rselecti (rstorei (x , v)) ' v 1 ≤ i ≤ n

∀x , v . rselectj(rstorei (x , v)) ' rselectj(x) 1 ≤ i 6= j ≤ n

∀x , y .
∧n

i=1 rselecti (x) ' rselecti (y) ⊃ x ' y

First two axioms: R
With third axiom (extensionality): Re
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Reduction of Re to R

Eliminate disequalities between records by resolution with∨n
i=1 rselecti (x) 6' rselecti (y) ∨ x ' y .

Let S = S ′ ] SN , where SN contains all the literals l 6' r , for l and
r records.

For all L = l 6' r ∈ SN let CL =
∨n

i=1 rselecti (l) 6' rselecti (r).

Then Re ∪ S ≡s R∪ S ′ ∪ {CL : L ∈ SN}.

Reduction to DNF: exponential procedure (polynomial: next time).
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Rewrite-based R-satisfiability procedure

Theorem: A fair SP�-strategy is guaranteed to terminate when
applied to R∪ S , where S is a set of ground flat R-literals, and
therefore it is an R-satisfiability procedure.
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Case analysis of clauses in S∞ from S0 = R∪ S

(i) the empty clause

(ii) the clauses in R:

(ii.a) rselecti (rstorei (x , v)) ' v , 1 ≤ i ≤ n
(ii.b) rselectj(rstorei (x , v)) ' rselectj(x), 1 ≤ i 6= j ≤ n

(iii) ground flat unit clauses:

(iii.a) r ' r ′

(iii.b) e ' e′

(iii.c) e 6' e′

(iii.d) rstorei (r , e) ' r ′, for some i , 1 ≤ i ≤ n
(iii.e) rselecti (r) ' e, for some i , 1 ≤ i ≤ n

(iv) rselecti (r) ' rselecti (r ′), for some i , 1 ≤ i ≤ n

where: constants r ’s: records; constants e’s: elements of appropriate

sort.
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Integer offsets modulo

Presentation Ik , k ≥ 1:

∀x . s(p(x)) ' x

∀x . p(s(x)) ' x

∀x . si (x) 6' x for 1 ≤ i ≤ k − 1

∀x . sk(x) ' x

s: successor p: predecessor

Finitely many acyclicity axioms
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Additional (dual) axioms

Presentation I ′k , k ≥ 1:

∀x . s(p(x)) ' x

∀x . p(s(x)) ' x

∀x . si (x) 6' x for 1 ≤ i ≤ k − 1

∀x . sk(x) ' x

∀x . pi (x) 6' x for 1 ≤ i ≤ k − 1

∀x . pk(x) ' x
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Rewrite-based I ′k-satisfiability procedure

Theorem: A fair SP�-strategy is guaranteed to terminate when
applied to I ′k ∪ S , where S is a set of ground flat I ′k -literals, and
therefore it is an I ′k -satisfiability procedure.

Proof sketch: the only persistent clauses, that can be generated by
SP� from I ′k ∪ S , are unit clauses l ./ r , such that l and r are
terms in the form sj(u) or pj(u), where 0 ≤ j ≤ k − 1 and u is
either a constant or a variable.
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Arrays

∀x , z , v . select(store(x , z , v), z) ' v

∀x , z ,w , v . z 6'w ⊃ select(store(x , z , v),w) ' select(x ,w)

∀x , y . ∀z . select(x , z) ' select(y , z) ⊃ x ' y

First two axioms: A
With third axiom (extensionality): Ae
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Reduction of Ae to A

Eliminate disequalities between arrays by resolution with
select(x , sk(x , y)) 6' select(y , sk(x , y)) ∨ x ' y .

Let S = S ′ ] SN , where SN contains all the literals l 6' r , for l and
r arrays.

For all L = l 6' r ∈ SN let L′ = select(l , sk(l , r)) 6' select(r , sk(l , r)).
It is safe to replace sk(l , r) with skl ,r .

Ae ∪ S ≡s A ∪ S ′ ∪ {L′ : L ∈ SN}.
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Rewrite-based A-satisfiability procedure

A-good �: add
a � e � j for all array constants a, element constants e and index
constants j .

Theorem: A fair SP�-strategy is guaranteed to terminate when
applied to A ∪ S , where S is a set of ground flat A-literals, and
therefore it is an A-satisfiability procedure.
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Case analysis of clauses in S∞ from S0 = A ∪ S

(i) the empty clause

(ii) the clauses in A

(iii) ground flat unit clauses:

(iii.a) a ' a′

(iii.b) c1 ' c2
(iii.c) c1 6' c2
(iii.d) store(a, i, e) ' a′

(iii.e) select(a, i) ' e and

(iv) non-unit clauses:

(iv.a) select(a, x) ' select(a′, x) ∨ x ' i1 ∨ . . . ∨ x ' in ∨ j1 ./ j′1 ∨ . . . ∨ jm ./ j′m
(iv.b) select(a, i) ' e ∨ i1 ./ i′1 ∨ . . . ∨ in ./ i′n
(iv.c) e ' e′ ∨ i1 ./ i′1 ∨ . . . ∨ in ./ i′n
(iv.d) e 6' e′ ∨ i1 ./ i′1 ∨ . . . ∨ in ./ i′n
(iv.e) i1 ' i′1 ∨ i2 ./ i′2 ∨ . . . ∨ in ./ i′n
(iv.f) i1 6' i′1 ∨ i2 ./ i′2 ∨ . . . ∨ in ./ i′n

(iv.g) t ' a′ ∨ i1 ./ i′1 ∨ . . . ∨ in ./ i′n where t is either a or store(a, i, e)

where: constants a’s: arrays, i ’s and j ’s: indices, e’s: elements, and c’s: either indices or elements.
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Lists

Presentation LSh:

∀x , y . car(cons(x , y)) ' x

∀x , y . cdr(cons(x , y)) ' y

∀y . cons(car(y), cdr(y)) ' y

Presentation LNO : replace the third axiom above by

∀y . ¬ atom(y) ⊃ cons(car(y), cdr(y)) ' y

∀x , y . ¬ atom(cons(x , y))
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Possibly empty lists

Presentation L:

∀x , y . car(cons(x , y)) ' x

∀x , y . cdr(cons(x , y)) ' y

∀y . y 6' nil ⊃ cons(car(y), cdr(y)) ' y

∀x , y . cons(x , y) 6' nil

car(nil) ' nil

cdr(nil) ' nil
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Rewrite-based L-satisfiability procedure

L-good �:add
t � nil for all terms t whose root symbol is cons.

Theorem: A fair SP�-strategy is guaranteed to terminate when
applied to L ∪ S , where S is a set of ground flat L-literals, and
therefore it is an L-satisfiability procedure.
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Case analysis of clauses in S∞ from S0 = L ∪ S

(i) empty clause

(ii) clauses in L

(iii) ground flat unit clauses:

(iii.a) c1 ' c2
(iii.b) c1 6' c2
(iii.c) car(c1) ' c2
(iii.d) cdr(c1) ' c2

(iii.e) cons(c1, c2) ' c3

(iv) non-unit clauses:

(iv.a) cons(e1, cdr(e2)) ' e3 ∨
∨

i ci ./ di
(iv.b) cons(car(e1), e2) ' e3 ∨

∨
i ci ./ di

(iv.c) cons(car(e1), cdr(e2)) ' e3 ∨
∨

i ci ./ di
(iv.d) cons(e1, e2) ' e3 ∨

∨
i ci ./ di

(iv.e) car(e1) ' car(e2) ∨
∨

i ci ./ di
(iv.f) cdr(e1) ' cdr(e2) ∨

∨
i ci ./ di

(iv.g) car(e1) ' e2 ∨
∨

i ci ./ di
(iv.h) cdr(e1) ' e2 ∨

∨
i ci ./ di

(iv.i)
∨

i ci ./ di

e1, e2, e3, ci , di , for all i , 1 ≤ i ≤ n: constants (including nil).
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Integer offsets

Presentation I:

∀x . s(p(x)) ' x

∀x . p(s(x)) ' x

∀x . si (x) 6' x for i > 0

s: successor p: predecessor

Infinitely many acyclicity axioms: Problem reduction.
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Some notation for integer offsets

AI = {s(p(x)) ' x , p(s(x)) ' x}

Ac(n) = {si (x) 6' x : 0 < i ≤ n}

Ac =
⋃

n≥0 Ac(n)
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Reduction to finitely many acyclicity axioms

Set of constants whose successor is defined by S :

CS = {c : s(c) ' c ′ ∈ S ∨ p(c ′) ' c ∈ S}

Theorem: For all n, n ≥ |CS |, if AI ∪ Ac(n) ∪ S is satisfiable,
then AI ∪ Ac ∪ S is satisfiable.
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Rewrite-based I-satisfiability procedure

Theorem: A fair SP�-strategy is guaranteed to terminate when
applied to AI ∪Ac(n)∪ S , where S is a set of ground flat I-literals
and n = |CS |, and therefore it is an I-satisfiability procedure.
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Case analysis of clauses in S∞ from S0 = AI ∪ Ac(n) ∪ S

(i) the empty clause,

(ii) the clauses in AI

(iii) clauses si (x) 6' pj(x), i ≥ 0, j ≥ 0, 1 ≤ i + j ≤ n

(iv) ground unit clauses:

(iv.a) c ' c ′,
(iv.b) s(c) ' c ′,
(iv.c) p(c) ' c ′,

(v) clauses si (c) 6' pj(c ′), i ≥ 0, j ≥ 0, 0 ≤ i + j ≤ n − 1.
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