General theorem proving for satisfiability modulo theories: an overview

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Talk given at Microsoft Research, Redmond, Washington, USA

14 May 2008

< D > < B > < E</p>

∢ ≣⇒

Outline

Motivation Some reasoning methods/strengths General TP for SMT: our results Discussion

Motivation

Some reasoning methods/strengths

General TP for SMT: our results

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

Discussion

- Software is everywhere
- Needed: Reliability
- Difficult goal: Software may be
 - Artful
 - Complex
 - Huge
 - Varied
 - Old (and undocumented)
 - ... possibly reflecting some "natural" laws of computing?

- Software/hardware border: blurred, evolving

Some approaches to software reliability

- Testing (test case generation ...)
- Programmer assistants
- Program analyzers
- Static analysis (types, extended static checking, abstract interpretations ...)
- Dynamic analysis (traces ...)
- Software model checkers (+ theorem proving, e.g., BMC, CEGAR-SMC)

Reasoning about software

・ロト ・回ト ・ヨト

Reasoning about software

- Help find and remove bugs
- Find and remove bugs
- Prove a program free of certain bugs
- Prove a program correct

Systems with reasoning about software

Typical architecture:

- Front-end: interface, problem modelling, compiling
- Back-end: problem solving by reasoning engine

Focus of this talk: the reasoning engine

Reasoning: theorem proving, model building

Problems for the back-end reasoner

From programs to formulæ (via specifications, annotations ...)

Image: A mathematical states and a mathem

- Formula: $H \supset \varphi$
- Problems: determine whether

Ingredients of formulæ

- ▶ Propositional logic (PL): ∨, ¬, ∧
- Equality: \simeq , $\not\simeq$, $a, b, c, \ldots, f, g, h, \ldots$
- First-order theories, e.g.:
 - Theories of *data structures*, e.g.:
 - Lists
 - Recursive data structures (with constructors and selectors)

イロト イヨト イヨト イヨト

- Arrays
- Records
- Bitvectors

• Linear arithmetic: \leq , +, -, ... - 2, -1, 0, 1, 2, ...

First-order logic (FOL): \forall , \exists , P, Q, R, \dots

Reasoning procedures

- Semi-decidable problem: semi-decision procedure
- Decidable problem: decision procedure

Quantifier-free fragment: ground formulæ

- *T*-decision procedure: decide satisfiability of a ground formula (w.l.o.g. a set of ground clauses S) in a theory *T*
- *T*-satisfiability procedure: decide satisfiability of a conjunction of ground literals S in *T*

Desiderata for reasoning procedures

- Expressive: handle all ingredients (e.g., all theories) in formula
- Sound and complete: no false negatives, no false positives
- Efficient: each formula only a sub-task
- Scalable: practical problems generate huge formulæ
- Proof-producing: check proof, manipulate proof (e.g., extract info for predicate abstraction)
- Model-producing: model as counter-example, bug finding

Some reasoning methods

- Davis-Putnam-Logemann-Loveland (DPLL) procedure: case analysis
- Congruence closure (CC) algorithm
- ► Theory solvers, e.g., Simplex method
- DPLL(T) (e.g., DPLL(EUF) with CC)
- Combination of theory solvers (on top of CC): DPLL-based SMT-solvers
 - Nelson-Oppen method
 - Delayed theory combination
 - Model-based theory combination

More reasoning methods

- Rewriting/Simplification: well-founded ordering, normal/canonical form, matching
- Resolution (unification): deduce clauses (synthetic)
- E-matching, E-unification
- Instance generation
- ► Tableaux: subgoal-reduction (analytic), model elimination
- Knuth-Bendix completion (Rewriting+Superposition): deduce equations

・ロト ・回ト ・ヨト

 Resolution+Rewriting+Superposition/Paramodulation: deduce clauses with equations

Which problems may they be especially good for

- DPLL: SAT-problems; large non-Horn clauses
- CC: ground equations
- Theory solvers: e.g., linear arithmetic, bitvectors
- DPLL-based SMT-solvers: ground SMT-problems
- Rewriting and KB completion: non-ground equations Non-ground: with (implicitly) universally quantified variables

< = > < = >

- Resolution: non-ground FOL clauses, especially Horn
- Resolution+Paramodulation/Superposition+Rewriting: non-ground FOL+= clauses, especially Horn

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

General theorem proving

Inf: rewrite-based inference system for FOL+= (e.g., Resolution+Paramodulation/Superposition+Rewriting)

TP strategy: inference system + search plan (e.g., Inf-strategy)

Refutationally complete inference system + Fair search plan = Complete strategy

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

A rewrite-based approach to SMT: main idea

If Inf is guaranteed to terminate on any $\mathcal{T}\text{-satisfiability}$ problem, any complete Inf-strategy is a

decision procedure

for \mathcal{T} -satisfiability.

- Input: $T \cup S$, where T is presentation of theory.
- \mathcal{T} can be union of presentations of theories.
- Non-ground formulæ may migrate from S to \mathcal{T} .

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

Image: A math and A

Some advantages

- Sound and complete inference system, complete strategies
- Expressivity: FOL+= (native quantifier reasoning)
- Combination of theories: give union of presentations as input
- Flexibility in drawing the line between theory and problem
- Use existing theorem provers "off the shelf"
- Proof generation: already there by default
- Model generation: final *T*-satisfiable set as starting point

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

・ロト ・回ト ・ヨト

Our results

- Termination: T-sat procedures for data structures theories, with cases of polynomial complexity
- Combination of theories: modularity of termination
- Some experimental evidence: *efficiency*, *scalability*
- ► Generalization from *T*-satisfiability to *T*-decision problems
- Decomposition approach: FOL+= prover | SMT-solver Choose

what to pre-process by prover,

what to pass on to solver (e.g., arithmetic, bitvectors)

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

イロト イポト イヨト イヨト

Termination results

 \mathcal{SP} : rewrite-based inference system for FOL+=

Complete simplification ordering (CSO) \succ such that $t \succ c$ for all compound terms t and constants c

Complete SP_{\succ} *-strategy* : SP_{\succ} + fair search plan

Theorem: A complete SP_{\succ} -strategy is a T-satisfiability procedure.

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

イロト イヨト イヨト イヨト

Covered theories

Lists

- non-empty possibly cyclic (polynomial time)
- possibly empty possibly cyclic
- Arrays with or without extensionality
- Records with or without extensionality (polynomial time)
- Fragments of linear arithmetic:
 - integer offsets (polynomial time)
 - integer offsets modulo (polynomial time)
- Recursive data structures with one constructor and k selectors:
 - k = 1: integer offsets (*pred* and *succ*)
 - k = 2: non-empty acyclic lists (*cons*, *car* and *cdr*)

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

イロン イヨン イヨン イヨン

臣

Integer offsets

 $\begin{array}{ll} \forall x. & \mathsf{s}(\mathsf{p}(x)) \simeq x \\ \forall x. & \mathsf{p}(\mathsf{s}(x)) \simeq x \\ \forall x. & \mathsf{s}^i(x) \not\simeq x \quad \text{for } i > 0 \end{array}$

s: successor p: predecessor

Infinitely many acyclicity axioms: Problem reduction.

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

• • • • • • • • • •

Modularity of termination for combination of theories

Modularity of termination:

if $S\mathcal{P}_{\succ}$ -strategy terminates on \mathcal{T}_i -sat problems then it terminates on \mathcal{T} -sat problems for $\mathcal{T} = \bigcup_{i=1}^n \mathcal{T}_i$.

Hypotheses:

- No shared function symbols (shared constants allowed): standard condition
- Variable-inactive theories: technical, but simple condition

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

イロト イヨト イヨト

The modularity theorem

Theorem: if

- ▶ T_i , $1 \le i \le n$, do not share function symbols
- ▶ T_i , $1 \le i \le n$, variable-inactive
- ▶ SP_{\succ} -strategy is a T_i -satisfiability procedure, $1 \le i \le n$,

then it is a \mathcal{T} -satisfiability procedure.

All above mentioned theories satisfy these hypotheses.

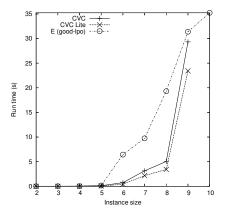
Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with \mathcal{T}-satisfiability problems** Decomposition: unite FOL+= and SMT strengths

Experiments

- Reasoners: E 0.82, CVC 1.0a, CVC Lite 1.1.0
- Six sets of synthetic parametric benchmarks to test scalability
- Both satisfiable and unsatisfiable instances
- Combinations of theories
- Large sets of literals from the UCLID suite

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with** \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

Benchmarks SWAP(n): unsat instances

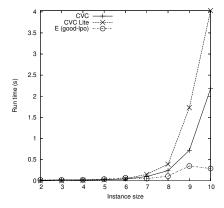


No system terminated for $n \ge 10$ Added lemma for E: additional flexibility

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with \mathcal{T}-satisfiability problems** Decomposition: unite FOL+= and SMT strengths

イロト イヨト イヨト イヨト

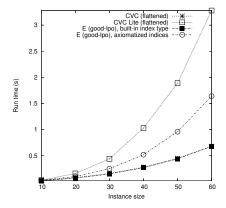
Benchmarks SWAP(n): sat instances



Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with** \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

イロト イヨト イヨト イヨト

Benchmarks STORECOMM(n): unsat instances



Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with \mathcal{T}-satisfiability problems** Decomposition: unite FOL+= and SMT strengths

イロト イヨト イヨト イヨト

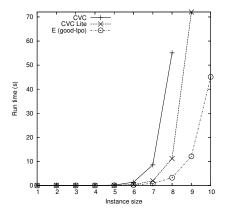
Benchmarks STORECOMM(n): sat instances



Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with \mathcal{T}-satisfiability problems** Decomposition: unite FOL+= and SMT strengths

イロト イヨト イヨト イヨト

Benchmarks STOREINV(*n*): unsat instances



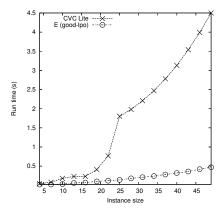
E(std-kbo) does it in nearly constant time

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with \mathcal{T}-satisfiability problems** Decomposition: unite FOL+= and SMT strengths

< <p>Image: A matrix

∢ ≣⇒

Benchmarks CIRCULAR_QUEUE(n, k) instances k = 3

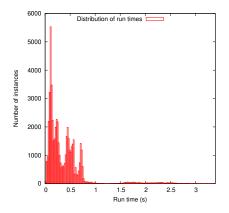


CVC did not handle integers mod k

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories **Experiments with \mathcal{T}-satisfiability problems** Decomposition: unite FOL+= and SMT strengths

< ∃⇒

Run time distribution for E(auto) on UCLID set



Auto mode: prover chooses search plan by itself

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

From \mathcal{T} -satisfiability to \mathcal{T} -decision problems

From S conjunction of ground unit clauses to S conjunction of ground clauses.

Theorem: if

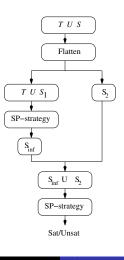
- \blacktriangleright T is variable inactive
- SP≻-strategy is T-satisfiability procedure

then it is also \mathcal{T} -decision procedure.

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

・ロト ・回ト ・ヨト ・ヨト

\mathcal{T} -decision scheme



Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

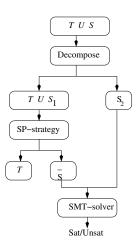
Decomposition: unite FOL+= and SMT strengths

- Decomposition: definitional and operational part
- Theory compilation: apply FOL+= prover to "compile" the definitional part: theory reasoning, non-ground equational reasoning
- Decision: apply SMT-solver to subset of saturated set (without T-axioms) + operational part
- Sufficient conditions to preserve satisfiability

Termination results for \mathcal{T} -satisfiability problems Modularity of termination for combination of theories Experiments with \mathcal{T} -satisfiability problems Decomposition: unite FOL+= and SMT strengths

・ロト ・回ト ・ヨト ・ヨト

\mathcal{T} -decision by stages



- Termination results: *T*-sat procedures based on generic reasoning
- Modularity theorem for combination of theories
- Experiments on *T*-sat problems with prover *taken off the shelf* and optimized for very different search problems
- ► *Generalization* to *T*-decision procedures
- Decision by stages: pipeline of FOL+= prover and SMT-solver

Some current and future work

- Experiments with *T*-decision problems
- More termination results for more (powerful) decision procedures
- ► Search plans for *T*-sat and *T*-decision problems
- Integration with automated model building, especially in combinations of theories

References

- Alessandro Armando, Maria Paola Bonacina, Silvio Ranise and Stephan Schulz. New results on rewrite-based satisfiability procedures. ACM Trans. on Computational Logic, To appear. (Presented in part at FroCoS 2005 and PDPAR 2005)
- Maria Paola Bonacina and Mnacho Echenim. On variable-inactivity and polynomial T-satisfiability procedures. Journal of Logic and Computation, 18(1): 77-96, Feb. 2008. (Presented in part at PDPAR 2006)
- Maria Paola Bonacina and Mnacho Echenim. Theory decision by decomposition. Submitted to journal, April 2008. (Presented in part at CADE 2007)

イロト イヨト イヨト イヨト

Thanks

Many thanks to Alessandro Armando, Mnacho Echenim, Silvio Ghilardi, Silvio Ranise, Michael Rusinowitch, Stephan Schulz ...

Looking for more

- friends to work with, including post-doc's, students,
- problems, applications, theories to try ...

Thank you!