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Motivation

A first-order theorem-proving method simultaneously

I DPLL-style model based

I Proof confluent

I Semantically guided

I Goal sensitive
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DPLL-style model based

I Derivation state includes candidate (partial) model

I Inference and search (for model) guide each other
(e.g., CDCL in DPLL)

I Inference as model transformation
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Proof confluent

I Confluence: diamond property: ↙ ↘ ⇒ ↘ ↙
I Proof confluence:

Committing to an inference never prevents proof

I No backtracking
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Semantically guided

I Semantic guidance by a given initial interpretation I
I In theory and manual examples: e.g., based on sign

I In practice: problems and knowledge bases may come with it

I SGGS: semantic guidance and model-based style connected;
I as starting point and default
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Goal sensitive

I Notion of goal:
I H |=? ϕ
I H ∪ {¬ϕ} `?⊥
I H ∪ {¬ϕ}; S set of clauses
I S = T ] iSOS where H ; T , {¬ϕ}; iSOS
I S = T ] iSOS , iSOS input set of support

I Alternatively: S = T ] iSOS with T consistent, iSOS = S \T

I Generate only clauses connected with iSOS
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Motivation summary

I A first-order reasoning method with all these properties?!

I Yes!!!

SGGS
Semantically Guided Goal Sensitive

reasoning
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Model Representation

Model representation from PL to FOL:

I DPLL: Trail of literals
L1, . . . , Ln

I SGGS:
I Initial interpretation I
I Sequence of constrained clauses with selected literals

Γ = A1 � C1[L1], . . . ,An � Cn[Ln]
I That modify I
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Example I: unit clauses

I I: all negative

I Sequence Γ: P(a, x),P(b, y),¬P(z , z),P(u, v)

I Interpretation I[Γ]:
I[Γ] |= P(a, t) for all ground terms t
I[Γ] |= P(b, t) for all ground terms t
I[Γ] 6|= P(t, t) for t other than a and b
I[Γ] |= P(u, v) for all distinct ground terms u and v
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Example II: non-unit clauses, selected literals

I I: all negative

I Sequence Γ:
[P(x)], ¬P(f (y))∨[Q(y)], ¬P(f (z)) ∨ ¬Q(g(z))∨[R(f (z), g(z))]

I Interpretation I[Γ]:
I[Γ] |= P(x)
I[Γ] |= Q(y)
I[Γ] |= R(f (z), g(z))
I[Γ] 6|= L for all other positive literals L
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What does a constrained clause represent?

Its constrained ground instances (cgi’s)
or ground instances satisfying the constraints

Example:

I x 6≡ y � P(x , y)

I P(a, b) ∈ Gr(x 6≡ y � P(x , y))

I P(b, b) 6∈ Gr(x 6≡ y � P(x , y))
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Constraints

I Atomic constraint: true, x ≡ y , top(t) = f

I Constraint: atomic, ¬,
∧

, or
∨

of constraints

I Standard form:
∧

of x 6≡ y , top(x) 6= f
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Literal selection

I Every literal in sequence is either I-true or I-false

I I-true: all cgi’s true in I
I I-false: all cgi’s false in I
I Literal tells truth value of all its cgi’s

I Prefer I-false literals for selection:
If clause has I-false literals, one is selected

I I-true literal selected only if all literals I-true
(I-all-true clause)
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SGGS clause sequence

I Initial interpretation I
I Sequence Γ = A1 � C1[L1], . . . ,An � Cn[Ln]

I Every literal is either I-true or I-false
I Literal Li in Ci is selected
I If Ai � Ci [Li ] has I-false literals, one is selected

Select I-false literals to modify I
I Empty sequence: ε
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Interpretation I[Γ] represented by clause sequence Γ

I Partial interpretation Ip(Γ|j) for prefix Γ|j
I For each clause Aj � Cj [Lj ] take its proper constrained ground

instances (pcgi):
I Not satisfied by Ip(Γ|j−1)
I Satisfiable by adding the pcgi of Lj

I I[Γ]: complete Ip(Γ) by consulting I whenever Ip(Γ) does
not determine truth value

I I[Γ] is I modified to satisfy the pcgi’s of the selected literals
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Example

I I: all negative

I Sequence Γ: [P(x)], top(y) 6= g�[Q(y)], z 6≡ c�[Q(g(z))]

I Interpretation I[Γ]:
I[Γ] |= P(x)
I[Γ] |= Q(t) for all ground terms t whose top symbol is not g
I[Γ] |= Q(g(t)) for all ground terms t other than c
I[Γ] 6|= L for all other positive literals L
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Induced partial interpretation I

I Defined inductively over length of clause sequence

I Each constrained clause in sequence may contribute

I Prefix of length j , 1 ≤ j ≤ n:
Γ|j = A1 � C1[L1], . . . ,Aj � Cj [Lj ]
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Proper constrained ground instances

I A � C [L]

I Interpretation J
I Proper constrained ground instance (pcgi)

of A � C [L] wrt J :
constrained ground instance C ′[L′]:
I Not satisfied: J ∩ C ′[L′] = ∅
I Satisfiable by adding L′: ¬L′ 6∈ J
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Induced partial interpretation II

I Initial interpretation I
I Sequence Γ = A1 � C1[L1], . . . ,An � Cn[Ln]
I Induced partial interpretation Ip(Γ|j):

I j = 0: empty sequence: empty interpretation
I j > 0: Take pcgi’s of Aj � Cj [Lj ] wrt Ip(Γ|j−1)
I Take instances of Lj in those pcgi’s
I Add them to Ip(Γ|j−1) to build Ip(Γ|j)

I Each clause adds the pcgi’s of its selected literal
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Induced interpretation

I Initial interpretation I
I Sequence Γ = A1 � C1[L1], . . . ,An � Cn[Ln]
I Induced interpretation I[Γ]: to determine whether I[Γ] |= L:

I Consult first Ip(Γ):
atom of L in Ip(Γ): I[Γ] |= L iff L ∈ Ip(Γ)

I Otherwise use I:
I[Γ] |= L iff I |= L

I I[Γ] is I modified to satisfy the pcgi’s of the Li ’s
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SGGS-Derivation

I Input set of clauses S

I Initial interpretation I
I Derivation Γ0 ` Γ1 ` . . . Γj ` . . .
I Γ0 is empty, I[Γ0] is I
I Γj generated from Γj−1, S , and I by an SGGS inference rule

I Termination: either Γk contains empty clause (refutation)
or no rule applies
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Assignment function: intuition

I Propositional clauses: L and ¬L are complementary
If L is true in the current model, ¬L is not:
Boolean Constraint Propagation

I First-order constrained clauses: A�[L] and B�[M] have
complementary cgi’s

I Semantic guidance: reasoning relative to I: L is I-true and
M is I-false
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Assignment function: definition

I Every sequence Γ in derivation equipped with (a set of)
assignment functions (one per clause)

I Maps I-true literal L not selected in Ai � Ci [Li ] to preceding
clause Aj � Cj [Lj ] (j < i) with I-false selected literal

I All cgi’s of Ai�L appear negated among pcgi’s of Aj�Lj

I Ai � Ci [Li ] depends on Aj � Cj [Lj ]
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Assignment function: model-based BCP à la DPLL

I Consider an I-all-true clause with selected literal not assigned:
L1 ∨ . . . ∨ Lk−1∨[Lk ]

I By the assignment, L1 . . . Lk−1 are all false in I[Γ]
Thus Lk is implied
(like an implied literal by BCP in DPLL)
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Assignment function: conflict + explanation à la CDCL

I Consider an I-all-true clause with selected literal assigned:
L1 ∨ . . . ∨ Lk−1∨[Lk ]

I By the assignment, L1 . . . Lk−1[Lk ] are all false in I[Γ]
Thus we have a conflict (like in DPLL-CDCL)

I Explanation: by SGGS-resolution (coming soon)
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Main inference mechanisms

1. Instance generation: extend current candidate model

2. Resolution: amend candidate model removing inconsistencies
or generate ⊥ if impossible

3. Splitting inferences: amend candidate model pulling out
duplications
I Introduce constraints to capture different sets of ground

instances

4. Deletion of disposable clauses (model-based redundancy)
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SGGS-Extension

Γ ` Γ′

I Take input clause C and find instance E not satisfied by I[Γ]
and such that all its literals are either I-true or I-false

I Find a place in Γ where E can be inserted so that the I-true
literals can be assigned properly

I E satisfied by I[Γ′]

I Lifting Theorem:
For all ground instance Cµ not satisfied by I[Γ], there is
SGGS-extension of Γ into Γ′ so that Cµ satisfied by I[Γ′]
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Example of SGGS-Extension

I S contains {P(a),¬P(x) ∨ Q(f (y)),¬P(x) ∨ ¬Q(z)}
I I: all negative

I Γ: [P(a)], ¬P(a) ∨ [Q(f (y))]

I Instance ¬P(a)∨¬Q(f (f (a))) of ¬P(x)∨¬Q(z) false in I[Γ]

I SGGS-extension adds the I-all-true clause ¬P(a) ∨ ¬Q(f (w))
which has ¬P(a) ∨ ¬Q(f (f (a))) as ground instance

I Γ′: [P(a)], ¬P(a) ∨ [Q(f (y))], ¬P(a) ∨ ¬Q(f (w))
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Resolution

I Ground resolution: resolves literals that cannot be
simultaneously true in any interpretation

I First-order resolution: resolves literals with ground instances
that cannot be simultaneously true in any interpretation

I SGGS-resolution: Model-based resolution
resolution in the current candidate model;
amend candidate model removing inconsistencies or generate
⊥ if impossible
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SGGS-Resolution

I Model-based: resolution in the current candidate model

I Resolves clauses B � D[M] and A � C [L] in the sequence, not
in the input set

I Only selected literals are resolved upon

I One I-true and one I-false

I B � D[M] is I-all-true and precedes A � C [L]

I SGGS-resolution uses matching: L = ¬Mϑ and A ⊃ Bϑ

I Resolvent A�[(C \ {L}) ∪ (D \ {M})ϑ] replaces A � C [L]

Maria Paola Bonacina SGGS Theorem Proving: an Exposition



Outline
Motivation: Why SGGS?

Model representation
Inferences

Refutational Completeness
Goal Sensitivity

Discussion

Inside SGGS-Resolution

Theorem:
Under the hypotheses of SGGS-resolution:

I A�L has no pcgi’s

I The atoms of the cgi’s of A�L that A � C [L] would capture
are covered by B � D[M]

I A � C [L] replaced by resolvent
which captures the cgi’s of C \ {L}
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Example of SGGS-Resolution

I I: all negative

I Γ ` Γ′

I Γ: [P(x)], [Q(y)], x 6≡ c � ¬P(f (x)) ∨ ¬Q(g(x)) ∨
[R(x)], [¬R(c)], ¬P(f (c)) ∨ ¬Q(g(c)) ∨ [R(c)]

I Γ′: [P(x)], [Q(y)], x 6≡ c � ¬P(f (x)) ∨ ¬Q(g(x)) ∨
[R(x)], [¬R(c)], ¬P(f (c)) ∨ [¬Q(g(c))]
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Assignment function + SGGS-resolution: explanation

I Recall that an I-all-true clause with selected literal assigned is
a conflict clause: L1 ∨ . . . ∨ Lk−1∨[Lk ]

I It moves to the left of the clause C to which Lk was assigned
(if assigned, a selected I-true literal is assigned rightmost, so that

the move does not affect the other assignments)

I Thus, Lk enters I[Γ]: model fixing

I Then it SGGS-resolves with following clause replacing it by
SGGS-resolvent amending the model further
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Splitting inferences

I Amend candidate model pulling out duplications

I Replace a clause by its partition

I Partition of a clause: a set of clauses that capture the same
cgi’s, and have disjoint selected literals

I Clause: true �P(x , y) (or simply P(x , y))

I Partition: true �P(f (z), y), top(x) 6= f �P(x , y)
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Partition: example

I Clause: true � Q(x , y)∨[P(x , y)]

I Partition:
true � Q(f (z), y)∨[P(f (z), y)], top(x) 6= f � Q(x , y)∨[P(x , y)]

I Not partition:
true � P(f (z), y)∨[Q(f (z), y)], top(x) 6= f � P(x , y)∨[Q(x , y)]
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Splitting inferences

I Γ = . . .B � D[M], . . .A � C [L], . . .

I L and M intersect
I Replace A � C [L] by a splitting of A � C [L] by B � D[M]:

I Partition of A � C [L], where all cgi’s of L that are also cgi’s of
M are isolated in one clause
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Splitting: examples

I Splitting of C = true � P(x , y) by D = true � P(f (w), g(z)):

I true � P(f (w), g(z)), top(x) 6= f � P(x , y), top(y) 6=
g � P(f (x), y)

I Not splitting:
true � P(f (w), g(z)), top(x) 6= f � P(x , y), top(y) 6=
g � P(x , y)
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Example of splitting inference

I Γ ` Γ′

I Γ: [P(x)], [Q(y)], x 6≡ c � ¬P(f (x)) ∨ ¬Q(g(x)) ∨
[R(x)], [¬R(c)], ¬P(f (c)) ∨ [¬Q(g(c))]

I Γ′:
[P(x)], top(y) 6= g�[Q(y)], z 6≡ c�[Q(g(z))], [Q(g(c))], x 6≡
c � ¬P(f (x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)], ¬P(f (c)) ∨
[¬Q(g(c))]
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Deletion of disposable clauses (model-based redundancy)

I pcgi’s: cgi’s of selected literal that can be added to current
candidate model

I ccgi’s: cgi’s of selected literal that contradict current
candidate model:
I cgi of clause not satisfied by induced partial interpretation
I cgi of selected literal appears negated in induced partial

interpretation

I A clause with neither is useless for model search, and
therefore disposable, because all its cgi’s are true in I[Γ]

I When deleted, all clauses depending on it also deleted
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Inference control

I Bundled derivations: all inferences are bundled

I Bundled inferences: macro-inferences, e.g.: an
SGGS-extension followed by a series of SGGS-resolutions until
an I-all-true resolvent is generated

I Recall that an I-all-true clause gives us either a lemma
(implied literal) or a conflict
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Refutational completeness

I S : input set of clauses

I S unsatisfiable: any fair SGGS-derivation terminates
with refutation

I S satisfiable: derivation may be infinite;
its limiting sequence represents model
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Proof of refutational completeness: building blocks

I A convergence ordering >c on clause sequences: ensures that
there is no infinite descending chain of sequences of bounded
length

I A notion of fairness for SGGS-derivations: ensures that the
procedure does not get stuck working on longer prefixes when
shorter ones can be reduced

I A notion of limiting sequence for SGGS-derivations: every
prefix stabilizes eventually
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Convergence ordering I

I Quasi-orderings ≥i and equivalence relations ≈i on clause
sequences of length up to i

I Convergence ordering >c : lexicographic combination of >i ’s
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Convergence ordering II

Theorem:
>i is well-founded on clause sequences of length at least i

Theorem:
Descending chain Γ1 >c Γ2 >c . . . Γj >c Γj+1 >c . . .
of sequences of bounded length (for all j , |Γj | ≤ n) is finite

No infinite descending chain of sequences of bounded length
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Fairness I

I Index of inference Γ ` Γ′:
the shortest prefix that gets reduced
the smallest i such that Γ|i >c Γ′|i

I Index(Γ): minimum index of any inference applicable to Γ
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Fairness II

Fair derivation Γ0 ` Γ1 ` . . . Γj ` . . .:
∀i , i > 0, if for infinitely many Γj ’s index(Γj) ≤ i
for infinitely many Γj ’s the applied inference has index ≤ i

Derivation does not get stuck working on longer prefixes when
shorter ones can be reduced
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Limiting sequence

I Derivation Γ0 ` Γ1 ` . . . ` Γj ` . . . admits limit
if there exists a Γ (limit)
such that for all lengths i , i ≤ |Γ|
there is an integer ni

such that for all indices j ≥ ni in the derivation
if |Γj | ≥ i then Γj |i ≈ Γ|i

I Every prefix stabilizes eventually

I The longest such sequence Γ∞ is the limiting sequence

I Both derivation and Γ∞ may be finite or infinite
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Convergence and decreasingness theorems

I Convergence theorem:
A derivation that is a non-ascending chain admits limiting
sequence

I Decreasingness theorem:
A bundled derivation forms a non-ascending chain
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Convergence theorem

Theorem:

I Derivation Γ0 ` Γ1 ` . . . Γj ` . . .
I ∀j ≥ 1, Γj ≥c Γj+1

derivation is non-ascending chain

Then:

I Derivation admits limit Γ∞
I If Γ∞ is finite, at most finitely many of the ≥c are strict
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Completeness theorem

Theorem:
For all initial interpretations I and sets S of first-order clauses,
if S is unsatisfiable, any fair bundled SGGS-derivation is a
refutation

Idea of proof:
If not, infinitely many irredundant SGGS-extensions apply; infinite
derivation with infinite limiting sequence, that gets reduced in a
finite prefix that had already converged: contradiction
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Goal sensitivity I

I I |= T and I 6|= iSOS

I Two ground clauses connected: complementary literals

I Goal-relevant clauses: closure of the set of ground instances
of clauses in iSOS wrt connection and resolution

I Γ is goal-relevant if all ground instances of all its clauses are

Maria Paola Bonacina SGGS Theorem Proving: an Exposition



Outline
Motivation: Why SGGS?

Model representation
Inferences

Refutational Completeness
Goal Sensitivity

Discussion

Goal sensitivity II

Theorem: SGGS only generates goal-relevant clause sequences

Idea of proof:
use assignments of I-true literals to I-false ones to connect literals
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Summary

SGGS is simultaneously

I First order

I DPLL-style model based

I Proof confluent

I Semantically guided

I Refutationally complete

I Goal sensitive
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Future work

I SGGS as an abstract transition system

I Practical inference control (e.g., partitioning inferences)

I Implementation

I Non-trivial initial interpretations

I SGGS for model building and decision procedures

I Extension to equality and theory reasoning

Towards a semantically-oriented style of theorem proving
which may pay off for hard problems or new domains
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