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Fairness: what’s in a word

Fairness: to be fair

I beautiful, attractive, comely, handsome, pretty

I equitable, just, candid, frank, honest, impartial, unbiased,
upright (e.g., fair play)

I mediocre, middling, passable, promising, tolerable

I distinct, open, plain, unobstructed (e.g., fair view)

I bright, clear, cloudless, dry, unclouded (i.e., fair weather)

I blond, clean, clear, light, not dark, unblemished, unspotted,
untarnished, white (e.g., fair complexion)
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Fairness in computer science

I equitable, just, honest, impartial, unbiased

I scheduling: no starvation (e.g., of processes)

I theorem proving ?
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What is theorem proving

S : set of assumptions
properties of the object of study
(e.g., system, circuit, program, data type, communication protocol,

mathematical structure)

ϕ: conjecture
a property to be verified

Problem: does ϕ follow from S?

S |=? ϕ
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Theorem proving: building proofs or models

S |=? ϕ

I Refutational theorem proving:
find a proof that S ∪ {¬ϕ} `⊥ and answer affirmatively

I Model building or theorem disproving:
find a model of S ∪ {¬ϕ}, or a counter-model
(counter-example) of S |= ϕ, and answer negatively
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Some applications of theorem proving

I Analysis, verification, synthesis of SW and HW, e.g.:
I Static analyses: e.g., test case generation, abstraction

refinement, invariant generation
I Proof of verification conditions for invariant checking
I Synthesis, e.g.: example generation, invariant generation

I Natural language processing, question answering

I Mathematics: Proving non-trivial theorems in, e.g.,
Boolean algebras, theories of rings, groups, quasigroups, loops,

many-valued logic

Theorem proving based on logic: Fairness in natural deduction?
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An example: Smullyan analytic tableaux for PL

I Signed formulæ (e.g., TA, FA)

I Completeness theorem: if A is a tautology, then every
complete tableau for FA must close
where
I closed tableau: all branches closed
I complete tableau: all branches either closed or complete
I complete branch: if α then both α1 and α2 (e.g., Ta ∧ b)

if β then at least one of β1 and β2 (e.g., Ta ∨ b)
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Smullyan analytic tableaux for FOL

Completeness theorem:
if A is valid, there exists a closed tableau for FA;
if A is valid, the systematic tableau for FA must close in finitely
many steps, where systematic tableau:

I step 1: FA

I step n + 1: node Y of minimum depth not marked “used”
for every branch through Y : if α then add α1 and α2

if β then branch with β1 and β2

if δ then add δ(a) (e.g., T∃x .A)
if γ then add γ(a) and γ (e.g., T∀x .A)
mark Y “used”
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Comparison of the examples

I PL: every complete tableau for FA must close
every: may proceed blindly
(decidable problem, finite search space)
complete tableau: do everything, neglect nothing

I FOL: there exists a closed tableau
there exists: need to search for one
(semi-decidable problem, infinite search space)
systematic tableau: do everything, neglect nothing
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First intuition about fairness

I Complete, systematic, exhaustive:
trivial, brute force ways to be fair

I Propositional logic: finite (huge) search space
search needed for efficiency

I First-order logic: infinite search space
search needed for completeness and efficiency

I Fairness: reduce gap between completeness and efficiency;
neglect nothing .... that’s really needed!

Maria Paola Bonacina
Abstract canonical inference: on fairness in theorem proving



Outline
Introduction

Fairness in theorem proving
Abstract canonical inference

A proof ordering approach to fairness
Discussion

Theorem-proving strategies

I Inference system:
non-deterministic set of inference rules
defines the search space of all possible inferences

I Search plan: adds determinism
controls inference rules application
guides the search for proof/model

Inference system + search plan = theorem-proving strategy
Deterministic: given S ∪ {¬ϕ}, unique derivation
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Requirements

I On inference system: refutational completeness
if S ∪ {¬ϕ} unsatisfiable, there exist derivations yielding ⊥

I On search plan: fairness:
ensure that one such derivation is generated!

I Refutationally complete inference system + fair search plan =
complete TP strategy
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Fairness

I Exhaustive: consider eventually all applicable inferences
trivial, brute force way to be fair

I Better: consider eventually all needed inferences

I What is needed?
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Redundancy

I Dually: what is not needed, that is: what is redundant?

I Fairness and redundancy are related
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Research challenge

I Non-trivial definitions of fairness for theorem proving

I Non-trivially fair search plans
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Ordering-based strategies

I Expansion inference rule:

S

S ′
S ⊂ S ′

(e.g., resolution and paramodulation/superposition)

I Contraction inference rule:

S

S ′
S 6⊆ S ′ S ′ ≺ S

≺: well-founded ordering
(e.g., subsumption and simplification)
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Resolution and subsumption

Well-founded ordering ≺ on terms and literals

(e.g., Complete Simplification Ordering)

I Resolution: generate resolvents by resolving away
complementary literals (maximal after mgu)

I Subsumption: eliminate less general clauses

I Redundancy: ϕ redundant in S (ϕ ∈ Red(S)) if there exists
ψ ∈ S that subsumes ϕ [Michäel Rusinowitch]

Maria Paola Bonacina
Abstract canonical inference: on fairness in theorem proving



Outline
Introduction

Fairness in theorem proving
Abstract canonical inference

A proof ordering approach to fairness
Discussion

Add Paramodulation/Superposition and Simplification

I Paramodulation/Superposition: resolution with equality
built-in: superpose maximal side of maximal equation into
maximal literal/side (maximal after mgu)

I Simplification: by well-founded rewriting

I Redundancy: ground ϕ redundant in S if for ground instances
ψ1, . . . ψn of clauses in S , ψ1, . . . ψn ≺ ϕ and ψ1, . . . ψn |= ϕ;
ϕ redundant in S (ϕ ∈ Red(S)) if all its ground instances are
[Leo Bachmair and Harald Ganzinger]
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Derivation and limit

Derivation:

S0 ` S1 ` . . . Si ` Si+1 . . .

where S0 = S ∪ {¬ϕ}

Limit: set of persistent clauses [Gérard Huet]

S∞ =
⋃
j≥0

⋂
i≥j

Si
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Soundness and adequacy

Th(S): set of all theorems of S

I Soundness: if S ` S ′ then S ′ ⊆ Th(S)

I Adequacy: if S ` S ′ then S ⊆ Th(S ′)

Adequacy implies monotonicity:

S ` S ′ implies Th(S) ⊆ Th(S ′)
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Uniform fairness

ϕ ∈ IE (S): ϕ generated from S by expansion
S0 ` S1 ` . . . Si ` Si+1 . . .

1. For all ϕ ∈ IE (S∞) exists j such that ϕ ∈ Sj ∪ Red(Sj)

2. For all ϕ ∈ IE (S∞ \ Red(S∞)) exists j such that ϕ ∈ Sj

3. Redundant inference: uses or generates redundant clause
Irredundant: not redundant
All irredundant expansion inferences done eventually

[Michäel Rusinowitch] [Leo Bachmair and Harald Ganzinger]
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Abstract canonical inference

I S presentation of Th(S)

I Proof orderings take center stage

I Inference as presentation tranformation and proof reduction
[Leo Bachmair and Nachum Dershowitz] [MPB and Jieh Hsiang]

I Properties of presentations
[Nachum Dershowitz and Claude Kirchner]

I Properties of derivations: fairness
[MPB and Nachum Dershowitz]
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Proof orderings

I Well-founded proof ordering <

I Proofs with premises in S : Pf (S)

I Justification: set of proofs P

I Minimal proofs in a justification: µ(P)
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Proof reduction

I Comparing justifications:
Q better than P: P w Q: ∀p ∈ P. ∃q ∈ Q. p ≥ q

I Comparing presentations:
S ′ simpler than S : S % S ′: S ≡ S ′ and Pf (S) w Pf (S ′)

I Normal-form proofs of S : Nf (S) = µ(Pf (Th(S)))
the minimal proofs in the set of proofs with premises in Th(S)
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Properties of presentations I

I Contracted: contains all and only the premises of its minimal
proofs

I Canonical: contains all and only the premises of normal-form
proofs: S ]

I Saturated: provides all normal-form proofs:
µ(Pf (S)) = Nf (S)

I Complete: provides a normal-form proof for every theorem
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Properties of presentations II

I Saturated and complete coincide if minimal proofs are unique
(e.g., total proof ordering)

I Canonical presentation: smallest saturated presentation

I Canonical if and only if saturated and contracted
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Example: Equational theories

I Contracted: inter-reduced

I Saturated: convergent (confluent and terminating)

I Canonical: convergent and inter-reduced

I Normal-form proof of ∀x̄ s ' t:
valley proof ŝ

∗→ ◦ ∗← t̂ by rewriting where ŝ and t̂ are s and t
with variables replaced by Skolem constants
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Proof-ordering based redundancy

I ϕ redundant in S (ϕ ∈ Red(S)) if adding it does not improve
minimal proofs:
µ(Pf (S)) = µ(Pf (S ∪ {ϕ}))

I ϕ redundant in S (ϕ ∈ Red(S)) if removing it does not
worsen proofs:
S % S \ {ϕ} or Pf (S) w Pf (S \ {ϕ})
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Properties of derivations

S0 ` S1 ` . . . Si ` Si+1 . . .

I Good: Si % Si+1 for all i

I Completing: S∞ is complete

I Saturating: S∞ is saturated

I Contracting: S∞ is contracted

I Canonical: saturating and contracting
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Ordering-based strategies

I Expansion: A ` A ∪ B with B ⊆ Th(A)

I Contraction: A ∪ B ` A with A ∪ B % A

I Expansions and contractions are good
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Proof-ordering based fairness I

(S0;ϕ0) ` (S1;ϕ1) ` . . . (Si ;ϕi ) ` (Si+1;ϕi+1) . . .

I Whenever a minimal proof of the target theorem is reducible
by inferences, it is reduced eventually

I For all i ≥ 0 and p ∈ µ(Pf (Si , ϕi )), if there are inferences
(Si ;ϕi ) ` . . . ` (S ′;ϕ′) such that p > q, for some
q ∈ µ(Pf (S ′, ϕ′)), then there exist (Sj ;ϕj), for j > i , and
r ∈ µ(Pf (Sj , ϕj)) such that q ≥ r
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Proof-ordering based fairness II

S0 ` S1 ` . . . Si ` Si+1 . . .

I Critical proof: minimal proof, not in normal form, all proper
subproofs in normal form
(E.g.: peak ŝ ← ◦ → t̂ yielding critical pair)

I C (S): critical proofs of S

I Persistent critical proofs: C (S∞)

I All persistent critical proofs reduced eventually:
C (S∞) = Pf (

⋃
i≥0 Si )
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Uniform fairness

I Trivial proof: made of the theorem itself

I Ŝ : trivial proofs of S

I Persistent trivial proofs: Ŝ∞
I All persistent trivial proofs reduced eventually:

Ŝ∞ \ Ŝ ] = Pf (
⋃

i≥0 Si )
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Results about derivations

I Fairness is sufficient to yield complete theorem-proving
strategy

I Fair derivation yields complete limit

I Uniformly fair derivation yields saturated limit

Maria Paola Bonacina
Abstract canonical inference: on fairness in theorem proving



Outline
Introduction

Fairness in theorem proving
Abstract canonical inference

A proof ordering approach to fairness
Discussion

Properties of the search plan

I Schedule enough expansion to be fair (in the limit)

I Schedule enough contraction to be contracting (in the limit)

I Schedule contraction before expansion: eager contraction
(during the derivation)
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Eager contraction

I Forward contraction: contract new ϕ wrt already existing
ones: ϕ′

I Backward contraction: contract already existing ones wrt ϕ′

I Red(Si ) = ∅ for all i : not feasible if every step is a single
inference

I Red(Si ) = ∅ for some i : given-clause loop with
active ∪ passive inter-reduced

I Red(Bi ) = ∅ for some Bi ⊆ Si and some i : given-clause loop
with active inter-reduced
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Discussion

I Fairness should earn something weaker than saturation

I Proof orderings vs. formula orderings

I Non-trivially fair and eager contraction search plans
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