DPLL(Γ +T): a new style of reasoning for program checking

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Talk given at the Institute of Software, Chinese Academy of Sciences Beijing, P.R. China

9 June 2011

イロト イヨト イヨト イヨト

Maria Paola Bonacina

Outline

Motivation: reasoning for program checking A new style of reasoning: $\mathsf{DPL}(\Gamma+\mathcal{T})$ Speculative inferences for decision procedures Current work: interpolation

Motivation: reasoning for program checking

A new style of reasoning: $DPLL(\Gamma + T)$

Speculative inferences for decision procedures

Current work: interpolation

Motivation: reasoning for program checking

イロト イヨト イヨト イヨト

Maria Paola Bonacina

Program checking and automated reasoning

Program checking:

Design computer programs that (help to) check whether computer programs satisfy desired properties

Automated reasoning:

Design computer programs that (help to) check whether formulæ follow from other formulæ: *theorem proving* and *model building*

Some motivation for program checking

- Software is everywhere
- Needed: Reliability
- Difficult goal: Software may be
 - Artful
 - Complex
 - Huge
 - Varied
 - Old (and undocumented)
 - Less standardized than hardware

Many approaches to program checking

- Testing: automated test case generation, (semi-)automated testing ...
- Static analysis: type systems, data-flow analysis, control-flow analysis, pointer analysis, symbolic execution, abstract interpretation ...

イロト イヨト イヨト イヨト

- Dynamic analysis: traces, abstract interpretation ...
- ► Software model checking: BMC, CEGAR, SMT-MC ...
- Deductive verification: weakest precondition calculi, verification conditions generation and proof ...

None of them suffices alone

- A *pipeline of tools* for program checking, where
 - Problems of increasing difficulty are attacked by
 - Approaches of increasing power (and cost)
- Most methods for program checking apply logic
- Most can benefit from automated reasoning
- Automated reasoning is artificial intelligence
- Automated reasoning for program checking *is* artificial intelligence

Problem statement

- Decide satisfiability of first-order formulæ generated by SW verification tools (verifying compiler, static analyzer, test generator, synthesizer, model checker)
- Satisfiability w.r.t. background theories
- With quantifiers to write
 - invariants about loops, heaps, data structures ...
 - axioms of application-specific theories without decision procedure (type systems)
- Emphasis on automation: prover called by other tools

Shape of problem

- Background theory T
 - $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_{i}$, e.g., linear arithmetic
- Set of formulæ: $\mathcal{R} \cup P$
 - \mathcal{R} : set of *non-ground* clauses without \mathcal{T} -symbols
 - P: large ground formula (set of ground clauses) typically with *T*-symbols
- Determine whether R U P is satisfiable modulo T (Equivalently: determine whether T U R U P is satisfiable)

イロン イヨン イヨン イヨン

Some key state-of-the-art reasoning methods

- Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
- T_i -solvers: Satisfiability procedures for the T_i 's
- DPLL(T)-based SMT-solver: Decision procedure for T with combination by equality sharing of the T_i-sat procedures
- First-order engine Γ to handle R (additional theory): Resolution+Rewriting+Superposition: Superposition-based

A new style of reasoning: $DPLL(\Gamma + T)$

イロト イヨト イヨト イヨト

Maria Paola Bonacina

How to combine their strengths?

- DPLL: SAT-problems; large non-Horn clauses
- Theory solvers: e.g., ground equality, linear arithmetic
- DPLL(T)-based SMT-solver: efficient, scalable, integrated theory reasoning
- Superposition-based inference system Γ:
 - FOL+= clauses with universally quantified variables (automated instantiation)
 - Sat-procedure for several theories of data structures (e.g., lists, arrays, records)

Superposition-based inference system **F**

- ► Generic, FOL+=, axiomatized theories
- Deduce clauses from clauses (expansion)
- Remove redundant clauses (contraction)
- ▶ Well-founded ordering >> on terms and literals to restrict expansion and define contraction
- Semi-decision procedure: empty clause (contradiction) generated, return unsat
- No backtracking

Ordering-based inferences

 $\mathsf{Ordering} \succ \mathsf{on \ terms \ and \ literals \ to}$

- restrict expansion inferences
- define contraction inferences

Complete Simplification Ordering:

- *stable*: if $s \succ t$ then $s\sigma \succ t\sigma$
- monotone: if $s \succ t$ then $I[s] \succ I[t]$
- ▶ subterm property: $I[t] \succeq t$
- total on ground terms and literals

Inference system Γ

State of derivation: set of clauses F

Expansion rules:

- Resolution: resolve maximal complementary literals
- Paramodulation/Superposition: resolution with equality built-in: superpose maximal side of maximal equation into maximal literal/side

Contraction rules:

- Simplification: by well-founded rewriting
- Subsumption: eliminate less general clauses

Superposition-based satisfiability procedures

- Termination results by analysis of inferences:
 Γ is *T*-satisfiability procedure
- Covered theories include: *lists, arrays* and *records* with or without extensionality, *recursive data structures*

Joint works with Alessandro Armando, Mnacho Echenim, Michaël Rusinowitch, Silvio Ranise and Stephan Schulz

Combination of theories

- If Γ terminates on R_i-sat problems, it terminates on R-sat problems for R = Uⁿ_{i=1} R_i, if R_i's disjoint and variable-inactive
- Variable-inactivity: no maximal literal t ≃ x where x ∉ Var(t) (no superposition from variables)
- Only inferences across theories: superpositions from shared constants
- Variable inactivity implies stable infiniteness: Γ reveals lack of stable infiniteness by generating *cardinality constraint* (e.g., y ≃ x ∨ y ≃ z) not variable-inactive

Joint works with Alessandro Armando, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, Stephan Schulz and Daniele Zucchelli, Review Revi

DPLL and DPLL(\mathcal{T})

Propositional logic, ground problems in built-in theories

-∢ ≣ ▶

- Build candidate model M
- Decision procedure: model found: return sat; failure: return unsat
- Backtracking

State of derivation: $M \parallel F$

- ▶ *T*-Propagate: add to *M* an *L* that is *T*-consequence of *M*
- ▶ \mathcal{T} -Conflict: detect that L_1, \ldots, L_n in M are \mathcal{T} -inconsistent

If \mathcal{T}_i -solver builds \mathcal{T}_i -model (model-based theory combination):

• *PropagateEq*: add to *M* a ground $s \simeq t$ true in \mathcal{T}_i -model

DPLL(Γ +T): integrate Γ in DPLL(T)

- **Idea**: literals in *M* can be premises of Γ-inferences
- Stored as hypotheses in inferred clause
- ► Hypothetical clause: $(L_1 \land ... \land L_n) \triangleright (L'_1 \lor ... L'_m)$ interpreted as $\neg L_1 \lor ... \lor \neg L_n \lor L'_1 \lor ... \lor L'_m$
- Inferred clauses inherit hypotheses from premises

Joint work with Leonardo de Moura and Chris Lynch on top of work by Nikolaj Bjørner and Leonardo de Moura

・ロト ・回ト ・ヨト ・ヨト

$\mathsf{DPLL}(\Gamma \!\!+\!\! \mathcal{T})$ inferences

State of derivation: $M \parallel F$

- Expansion: take as premises non-ground clauses from F and *R*-literals (unit clauses) from M and add result to F
- Backjump: remove hypothetical clauses depending on undone assignments
- Contraction: as above + scope level to prevent situation where clause is deleted, but clauses that make it redundant are gone because of backjumping

DPLL(Γ +T): expansion inferences

Deduce: Γ-rule γ, e.g., superposition, using non-ground clauses {H₁ ▷ C₁,..., H_m ▷ C_m} in F and ground R-literals {L_{m+1},..., L_n} in M

$$M \parallel F \implies M \parallel F, H \triangleright C$$

イロト イヨト イヨト イヨト 二日

where $H = H_1 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\}$ and γ infers C from $\{C_1, \ldots, C_m, L_{m+1}, \ldots, L_n\}$

- Only \mathcal{R} -literals: Γ -inferences ignore \mathcal{T} -literals
- Take ground unit *R*-clauses from *M* as *PropagateEq* puts them there

DPLL(Γ +T): contraction inferences

- Single premise $H \triangleright C$: apply to C (e.g., *tautology deletion*)
- Multiple premises (e.g., subsumption, simplification): prevent situation where clause is deleted, but clauses that make it redundant are gone because of backjumping
- Scope level:
 - level(L) in M L M': number of decided literals in M L

<ロ> <同> <同> < 回> < 回> < 回> = 三 =

• $level(H) = max\{level(L) \mid L \in H\}$ and 0 for \emptyset

DPLL(Γ +T): contraction inferences

- Say we have $H \triangleright C$, $H_2 \triangleright C_2, \ldots, H_m \triangleright C_m$, and L_{m+1}, \ldots, L_n
- $C_2, \ldots, C_m, L_{m+1}, \ldots, L_n$ simplify C to C' or subsume it

• Let
$$H' = H_2 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\}$$

- Simplification: replace $H \triangleright C$ by $(H \cup H') \triangleright C'$
- Both simplification and subsumption:
 - if $level(H) \ge level(H')$: delete
 - if level(H) < level(H'): disable (re-enable when backjumping level(H'))

<ロ> <四> <四> <四> <三</td>

$\mathsf{DPLL}(\Gamma \!\!+\!\! \mathcal{T})$ as a transition system

Search mode: State of derivation M || F
 M sequence of assigned ground literals: partial model
 F set of hypothetical clauses

Conflict resolution mode: State of derivation M || F || C

C ground conflict clause

Initial state: *M* empty, *F* is $\{\emptyset \triangleright C \mid C \in \mathcal{R} \uplus P\}$

Completeness of DPLL($\Gamma + T$)

Refutational completeness of the inference system:

- from that of Γ, DPLL(T) and equality sharing
- made combinable by variable-inactivity

Fairness of the search plan:

- depth-first search fair only for ground SMT problems;
- add iterative deepening on inference depth

DPLL(Γ +T): Summary

Use each engine for what is best at:

- DPLL(\mathcal{T}) works on ground clauses
- Γ not involved with ground inferences and built-in theory
- Γ works on non-ground clauses and ground unit clauses taken from M: inferences guided by current partial model
- \blacktriangleright Γ works on \mathcal{R} -sat problem

Speculative inferences for decision procedures

< ロ > < 同 > < 三 > < 三 >

Maria Paola Bonacina

How to get decision procedures?

- SW development: false conjectures due to mistakes in implementation or specification
- Need theorem prover that terminates on satisfiable inputs
- Not possible in general:
 - ► FOL is only semi-decidable
 - First-order formulæ of linear arithmetic with uninterpreted functions: not even semi-decidable

However we need less than a general solution.

Problematic axioms do occur in relevant inputs

Example:

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$
 (Monotonicity)

- 2. $a \sqsubseteq b$ generates by resolution
- 3. $\{f^i(a) \sqsubseteq f^i(b)\}_{i \ge 0}$

E.g. $f(a) \sqsubseteq f(b)$ or $f^2(a) \sqsubseteq f^2(b)$ often suffice to show satisfiability

Idea: Allow speculative inferences

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

イロン 不同 とくほど 不良 とう

크

Idea: Allow speculative inferences

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!

・ロト ・回ト ・ヨト ・ヨト

Idea: Allow speculative inferences

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!

イロト 人間 と 人 ヨ と 人 ヨ とう

- 3. Add $f(f(x)) \simeq x$
- 4. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
- 5. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq c$
- 6. Terminate and detect satisfiability

Speculative inferences in DPLL(Γ +T)

- Speculative inference: add arbitrary clause C
- To induce termination on sat input
- What if it makes problem unsat?!
- Detect conflict and backjump:
 - Keep track by adding $[C] \triangleright C$
 - \triangleright $\lceil C \rceil$: new propositional variable (a "name" for C)
 - Speculative inferences are reversible

Speculative inferences in DPLL(Γ +T)

State of derivation: $M \parallel F$

Inference rule:

- SpeculativeIntro: add $\lceil C \rceil \triangleright C$ to F and $\lceil C \rceil$ to M
- Rule SpeculativeIntro also bounded by iterative deepening

Example as done by system

1.
$$\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg (a \sqsubseteq c)$

・ロト ・日ト ・ヨト ・ヨト

크

Example as done by system

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$

・ロト ・回ト ・ヨト ・ヨト

æ

Example as done by system

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- **4**. ¬(*a* ⊑ *c*)
- 1. Add $\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
- 3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$

イロト イヨト イヨト イヨト

Example as done by system

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$

1. Add
$$\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$$

- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
- 3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$

イロト イヨト イヨト イヨト

- 4. Add $\lceil f(f(x)) \simeq x \rceil \triangleright f(f(x)) \simeq x$
- 5. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
- 6. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq f(f(c))$ rewritten to $\lceil f(f(x)) = x \rceil \triangleright f(a) \sqsubseteq c$
- 7. Terminate and detect satisfiability

Decision procedures with speculative inferences

To decide satisfiability modulo \mathcal{T} of $\mathcal{R} \cup P$:

- Find sequence of "speculative axioms" U
- Show that there exists k s.t. k-bounded DPLL(Γ+T) is guaranteed to terminate
 - with Unsat if $\mathcal{R} \cup P$ is \mathcal{T} -unsat
 - in a state which is not stuck at k if $\mathcal{R} \cup P$ is \mathcal{T} -sat

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite

▲ 프 ► < 프 ►

Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- SpeculativeIntro adds "pseudo-axioms" $f^j(x) \simeq f^k(x), j > k$

イロト イヨト イヨト イヨト

• Use $f^{j}(x) \simeq f^{k}(x)$ as rewrite rule to limit term depth

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- SpeculativeIntro adds "pseudo-axioms" $f^{j}(x) \simeq f^{k}(x), j > k$
- Use $f^{j}(x) \simeq f^{k}(x)$ as rewrite rule to limit term depth
- \blacktriangleright Clause length limited by properties of Γ and ${\cal R}$
- Only finitely many clauses generated: termination without getting stuck

イロト イヨト イヨト イヨト 三日

Situations where clause length is limited

Γ: Superposition, Resolution + negative selection, Simplification Negative selection: only positive literals in positive clauses are active

- ▶ *R* is Horn
- R is ground-preserving: variables in positive literals appear also in negative literals; the only positive clauses are ground

Axiomatizations of type systems

Reflexivity $x \sqsubseteq x$ (1)Transitivity $\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq z) \lor x \sqsubseteq z$ (2)Anti-Symmetry $\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq x) \lor x \simeq y$ (3)Monotonicity $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$ (4)Tree-Property $\neg(z \sqsubseteq x) \lor \neg(z \sqsubseteq y) \lor x \sqsubseteq y \lor y \sqsubseteq x$ (5)

イロト イヨト イヨト イヨト

Multiple inheritance: $MI = \{(1), (2), (3), (4)\}$ Single inheritance: $SI = MI \cup \{(5)\}$

Concrete examples of decision procedures

DPLL(Γ + \mathcal{T}) with SpeculativeIntro adding $f^{j}(x) \simeq f^{k}(x)$ for j > k decides the satisfiability modulo \mathcal{T} of problems

イロト イヨト イヨト イヨト

- ► MI ∪ P
- ► SI ∪ P
- $\blacktriangleright \mathsf{MI} \cup \mathsf{TR} \cup P \text{ and } \mathsf{SI} \cup \mathsf{TR} \cup P$

where $TR = \{\neg(g(x) \simeq null), h(g(x)) \simeq x\}$

Joint work with Leonardo de Moura and Chris Lynch

Current work: interpolation

イロト イヨト イヨト イヨト

臣

Maria Paola Bonacina

What is interpolation?

Given closed formulæ A and B, such that $A \vdash B$, an *interpolant* is a closed formula I such that

- $\blacktriangleright A \vdash I$
- *I* ⊢ *B* and
- ► *I* is made of symbols common to *A* and *B*.

Craig's interpolation lemma: interpolants for closed formulæ do exist (non-constructive proof)

イロト イヨト イヨト イヨト

What is interpolation?

Given closed formulæ A and B, such that $A, B \vdash \perp$, a *reverse interpolant* is a closed formula I such that

- $\blacktriangleright A \vdash I$
- ▶ $I, B \vdash \bot$ and
- I is made of symbols common to A and B.

Reasoning modulo theories: $\vdash_{\mathcal{T}} \mathcal{T}$ -symbols are regared as common

▲ 프 ► < 프 ►

Why interpolation?

Several applications in SW verification, e.g.:

- Abstraction refinement in software model checking
- Invariant generation
- Annotation improvement

Intuition: a formula in between formulæ: information on intermediate states

_∢ ≣ ≯

Interpolation system

- Given: proof (refutation) of $A \cup B$ (A and B sets of clauses)
- ► Terminology: A-colored, B-colored, transparent
- ▶ Interpolation system: extracts interpolant of (A, B) from proof
- How? Attaching to each clause in the proof a partial interpolant
- ▶ The partial interpolant of \Box is the interpolant of (A, B)

Partial interpolant

- Partial interpolant PI(C) of clause C in refutation of A ∪ B: interpolant of g_A(C) = A ∧ ¬(C|_A) and g_B(C) = B ∧ ¬(C|_B).
- If C is \Box : PI(C) is an interpolant of (A, B).
- Requirements:
 - $g_A(C) \vdash PI(C)$ or $A \land \neg(C|_A) \vdash PI(C)$
 - ▶ $g_B(C) \land PI(C) \vdash \bot$ or $B \land \neg(C|_B) \land PI(C) \vdash \bot$, and

イロト イヨト イヨト イヨト 一日

- ▶ *PI*(*C*) is transparent.
- Complete interpolation system

State of the art

- Interpolation systems for resolution proofs in propositional logic: HKPYM, MM (DPLL)
- Interpolation systems for theories: equality, linear rational arithmetic, linear integer arithmetic, arrays without extensionality
- Interpolation system for equality sharing
- Putting them all together: interpolation system for $DPLL(\mathcal{T})$

Current work

- Ground proofs
- Non-ground proofs: investigating restrictions

• Interpolation system for DPLL($\Gamma + T$)

Joint work with Moa Johansson

Image: A matrix

★ 臣 ▶ ★ 臣 ▶

Acknowledgements

Thanks to all my co-authors

and

Thank you!

Image: A math a math

< ∃⇒

Maria Paola Bonacina