Canonical Inference for Implicational Systems

Maria Paola Bonacina¹

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

4th Int. Joint Conf. on Automated Reasoning (IJCAR), Sydney, Australia

14 August 2008

¹Joint work with Nachum Dershowitz

Maria Paola Bonacina

Canonical Inference for Implicational Systems

Motivation

- Knowledge compilation: make efficient reasoning possible
- Completion of equational theories:
 - Canonical presentation
 - Normal-form proofs
- Implicational systems: simple and relevant (e.g., relational databases, abstract interpretations)
- Computing with an implicational system: applying a closure operator or computing minimal model
- Question: investigate canonicity of implicational systems

Implicational systems

V: vocabulary of propositional variables

Implicational system S: a set of implications

$$S = \{a_1 \cdots a_n \Rightarrow c_1 \cdots c_m \colon a_i, c_j \in V\}$$

where antecedent and consequent are conjunctions of (distinct) propositions

Notation: $A \Rightarrow_S B$ for $A \Rightarrow B \in S$

< ロ > < 同 > < 三 > < 三 >

$$S = \{a \Rightarrow b, ac \Rightarrow d, e \Rightarrow a\}$$

Unary implicational system: all its implications are unary, e.g., $ac \Rightarrow d$

A non-negative Horn clause is a unary implication and vice-versa

Non-unary implications can be decomposed, e.g.:

 $a \Rightarrow bf$ into $a \Rightarrow b$ and $a \Rightarrow f$

Consider only unary implicational systems

Moore families

V: vocabulary of propositional variables

Moore family \mathcal{F} : a family of subsets of V

- that contains V and
- is closed under intersection

A subset $X \subseteq V$ represents a propositional interpretation A Moore family is a family of models:

Moore families \sim Horn theories

< ロ > < 同 > < 三 > < 三 >

Introduction

Direct systems Computing minimal models Direct-optimal systems Rewrite-optimality and canonical systems Discussion

Moore families \sim Closure operators

Closure operator $\varphi \colon \mathcal{P}(V) \to \mathcal{P}(V)$ is an operator that is

- monotone: $X \subseteq X'$ implies $\varphi(X) \subseteq \varphi(X')$
- extensive: $X \subseteq \varphi(X)$

• idempotent:
$$\varphi(\varphi(X)) = \varphi(X)$$

イロト イポト イヨト イヨト

Moore families and closure operators

Given φ , its *associated Moore family* \mathcal{F}_{φ} is the set of its fixed points:

$$\mathcal{F}_{\varphi} = \{X \subseteq V \colon X = \varphi(X)\}$$

Given \mathcal{F} , its associated closure operator $\varphi_{\mathcal{F}}$ maps $X \subseteq V$ to the least element of \mathcal{F} that contains X:

$$\varphi_{\mathcal{F}}(X) = \bigcap \{Y \in \mathcal{F} \colon X \subseteq Y\}$$

Implicational systems, Moore families and closure operators

Given implicational system S

▶ its associated Moore family \mathcal{F}_S is the family of its models:

$$\mathcal{F}_{S} = \{ X \subseteq V : X \models S \}$$

Its associated closure operator φ_S maps X ⊆ V to the least model of S that satisfies X:

$$\varphi_{\mathcal{S}}(X) = \bigcap \{Y \subseteq V \colon Y \supseteq X \land Y \models S\}$$

Computing with an implicational system *S*:

given X compute
$$\varphi_S(X)$$

< ロ > < 同 > < 三 > < 三 >

Example

Implicational system:
$$S = \{a \Rightarrow b, ac \Rightarrow d, e \Rightarrow a\}$$

Its Moore family:

 $\mathcal{F}_{S} = \{\emptyset, b, c, d, ab, bc, bd, cd, abd, abe, bcd, abcd, abde, abcde\}$

Applying its closure operator, e.g.:

$$\varphi_{\mathcal{S}}(ae) = abe$$

Questions

A Moore family : different implicational systems (In general: a theory may have different presentations)

S and S' such that $\mathcal{F}_S=\mathcal{F}_{S'}$ are equivalent

Questions:

- What does it mean for an implicational system to be canonical?
- Can we compute canonical implicational systems by appropriate *deduction mechanisms*?

Forward chaining

Given S, $X \subseteq V$, let

$$S(X) = X \cup \bigcup \{B \colon A \Rightarrow_S B \land A \subseteq X\}$$

Then

$$\varphi_{\mathcal{S}}(X) = \mathcal{S}^*(X)$$

where

$$S^{0}(X) = X, \qquad S^{i+1}(X) = S(S^{i}(X)), \qquad S^{*}(X) = \bigcup_{i} S^{i}(X)$$

Since S, X and V are finite: $S^*(X) = S^k(X)$ for the smallest k such that $S^{k+1}(X) = S^k(X)$

Example

$$S = \{ac \Rightarrow d, e \Rightarrow a\}$$

$$X = ce$$

$$S(X) = \{ace\}$$

$$S^2(X) = \{acde\}$$

$$\varphi_{\mathcal{S}}(X) = \mathcal{S}^*(X) = \mathcal{S}^2(X) = \{acde\}$$

・ロト ・回ト ・ヨト ・ヨト 三日

Direct implicational system

Intuition:

Direct implicational system:

compute $\varphi_S(X)$ in one single round of *forward chaining*

Definition: *S* is *direct* if $\varphi_S(X) = S(X)$

Example: $S = \{ac \Rightarrow d, e \Rightarrow a\}$ is *not* direct

[Karell Bertet and Mirabelle Nebut 2004]

Observation

If we have $A \Rightarrow_S B$ and $C \Rightarrow_S D$ such that $A \subseteq X$, $C \not\subseteq X$ and $C \subseteq X \cup B$, more than one iteration of forward chaining is required.

In the example: $e \Rightarrow a$ and $ac \Rightarrow d$ for X = ce

To collapse two iterations into one: add $A \cup (C \setminus B) \Rightarrow_S D$

In the example: add $ce \Rightarrow d$

[Karell Bertet and Mirabelle Nebut 2004]

Deduction mechanism: implicational overlap

Implicational overlap

$$\frac{A \Rightarrow BO \quad CO \Rightarrow D}{AC \Rightarrow D}$$

O is the overlap between antecedent and consequent Conditions:

- $O \neq \emptyset$: there is some overlap
- ▶ $B \cap C = \emptyset$: *O* is all the overlap

Generated direct system

Definition: Given S, the *direct* implicational system I(S) generated from S is the closure of S with respect to implicational overlap.

Theorem: $\varphi_S(X) = I(S)(X)$.

[Karell Bertet and Mirabelle Nebut 2004]

Completion by \sim_I generates direct system

 \sim_I : deduction mechanism that generates and adds implications by implicational overlap **Note:** \sim_I steps are *expansion* steps

Proposition: Given implicational system S for all fair derivations

$$S = S_0 \rightsquigarrow_I S_1 \rightsquigarrow_I \cdots$$

we have

$$S_{\infty} = I(S)$$

A rewriting-based framework

- Implication $a_1 \cdots a_n \Rightarrow c_1 \cdots c_m$
- Bi-implication $a_1 \cdots a_n c_1 \cdots c_m \Leftrightarrow a_1 \cdots a_n$
- $\blacktriangleright \text{ Rewrite rule } a_1 \cdots a_n c_1 \cdots c_m \rightarrow a_1 \cdots a_n$

are equivalent.

Positive literal $c: c \rightarrow true$ (true: special constant)

Well-founded ordering \succ on $V \cup \{true\}$ (true minimal) extended by multiset extension.

Associated rewrite system

Given
$$X \subseteq V$$
, its associated rewrite system is
 $R_X = \{x \rightarrow true : x \in X\}.$

Given implicational system *S*, its *associated rewrite system* is $R_S = \{AB \rightarrow A : A \Rightarrow_S B\}.$

Given S and X: $R_X^S = R_X \cup R_S$.

Example

$$S = \{a \Rightarrow b, ac \Rightarrow d, e \Rightarrow a\}$$

$$R_{S} = \{ab \rightarrow a, acd \rightarrow ac, ae \rightarrow e\}$$

$$X = ae$$

$$R_{X} = \{a \rightarrow true, e \rightarrow true\}$$

$$R_{X}^{S} = \{a \rightarrow true, e \rightarrow true, ab \rightarrow a, acd \rightarrow ac, ae \rightarrow e\}$$

・ロト ・回ト ・ヨト ・ヨト 三日

Deduction mechanism: equational overlap

Equational overlap

$$\frac{AO \to B \quad CO \to D}{M \to N} \quad A \cap C = \emptyset \neq O, \ M \succ N$$

O is the overlap between the two left-hand sides:

 $\textit{BC} \leftarrow \textit{AOC} \rightarrow \textit{AD}$

M and N: normal-forms of BC and AD

 \sim_E : deduction mechanism of equational overlap **Note:** \sim_E features *expansion* and *forward contraction*

< ロ > < 同 > < 三 > < 三 >

Implicational and equational overlap correspond

Intuition: since

- Implicational overlap "unfolds" forward chaining
- Forward chaining is complete for Horn logic

for each non-trivial \leadsto_I step there is equivalent \leadsto_E step and vice versa

Lemma: For all implicational systems S,

$$S \rightsquigarrow_I S'$$
 if and only if $R_S \rightsquigarrow_E R_{S'}$

Example

$$S = \{ac \Rightarrow d, e \Rightarrow a\}$$

$$R_{S} = \{acd \rightarrow ac, ae \rightarrow e\}$$

Implicational overlap yields: $ce \Rightarrow d$

Equational overlap yields:

$$ace \leftarrow acde \rightarrow cde$$

hence

イロン 不同 とくほど 不同 とう

Completion by \rightsquigarrow_E generates direct system

Theorem: For every implicational system *S*, and for all fair derivations

$$S = S_0 \rightsquigarrow_I S_1 \rightsquigarrow_I \cdots$$

and

$$R_S = R_0 \rightsquigarrow_E R_1 \rightsquigarrow_E \cdots$$

we have

$$R_{(S_{\infty})}=(R_S)_{\infty}$$

Hence $R_{(I(S))} = (R_S)_{\infty}$

Computing minimal models

Two-stage process:

- 1. Saturate S w.r.t. implicational overlap to generate I(S)
- 2. For any $X \subseteq V$ compute $\varphi_{I(S)}(X) = \varphi_{S}(X)$ by forward chaining

One-stage process:

1. Apply completion to R_X^S : output rules $x \to true$ represent $\varphi_S(X) = \varphi_{I(S)}(X)$

Adding contraction rules

Simplification and Deletion

$$\frac{AC \to B \quad C \to D}{AD \to B \quad C \to D} AD \succ B \qquad \frac{AC \to B \quad C \to D}{B \to AD \quad C \to D} B \succ AD$$
$$\frac{B \to AC \quad C \to D}{B \to AD \quad C \to D} \qquad \frac{A \leftrightarrow A}{B \to AD \quad C \to D}$$

 $\sim_R = \sim_E + \text{these rules}$

イロン 不同 とうほう 不同 とう

Extracting the least model

Theorem: For all $X \subseteq V$, implicational systems *S*, and fair derivations

$$R_X^S = R_0 \rightsquigarrow_R R_1 \rightsquigarrow_R \cdots$$

if $Y = \varphi_S(X) = \varphi_{I(S)}(X)$, then

 $R_Y \subseteq (R_X^S)_\infty$

and

$$R_Y = \{x \rightarrow true \colon x \rightarrow true \in (R_X^S)_\infty\}$$

Example

$$S = \{ac \Rightarrow d, e \Rightarrow a, bd \Rightarrow f\}$$

$$X = ce$$

$$Y = \varphi_{S}(X) = acde$$

$$R_{S} = \{acd \rightarrow ac, ae \rightarrow e, bdf \rightarrow bd\}$$

$$R_{X} = \{c \rightarrow true, e \rightarrow true\}$$

$$(R_{X}^{S})_{\infty} = \{c \rightarrow true, e \rightarrow true, a \rightarrow true, d \rightarrow true, bf \rightarrow b\}$$

$$R_{Y} = \{a \rightarrow true, c \rightarrow true, d \rightarrow true, e \rightarrow true\}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ●

æ

A notion of optimality based on size

Definition: *S* is *optimal* if for all equivalent implicational system S'

 $|S| \leq |S'|$

where

$$|S| = \sum_{A \Rightarrow_{S} B} |A| + |B|$$

D(S): direct-optimal implicational system equivalent to SCharacterized by four necessary and sufficient properties

[Karell Bertet and Mirabelle Nebut 2004]

Optimization rules I

Premise: for all $A \Rightarrow_{D(S)} B$ and $A \Rightarrow_{D(S)} B'$, B = B';

=

$$\frac{A \Rightarrow B, \ A \Rightarrow C}{A \Rightarrow BC}$$

Isotony: for all $A \Rightarrow_{D(S)} B$ and $C \Rightarrow_{D(S)} D$, if $C \subset A$, then $B \cap D = \emptyset$; $A \Rightarrow B, AD \Rightarrow BE$

$$A \Rightarrow B, AD \Rightarrow E$$

イロト イボト イヨト

크

Optimization rules II

Extensiveness: for all $A \Rightarrow_{D(S)} B$, $A \cap B = \emptyset$;

$$\frac{AC \Rightarrow BC}{AC \Rightarrow B}$$

Definiteness: for all $A \Rightarrow_{D(S)} B$, $B \neq \emptyset$;

$$A \Rightarrow \emptyset$$

크

Example

$$S = \{a \Rightarrow b, ac \Rightarrow d, e \Rightarrow a\}$$

$$I(S) = \{a \Rightarrow b, ac \Rightarrow d, e \Rightarrow a, e \Rightarrow b, ce \Rightarrow d\}$$

$$e \Rightarrow b \text{ by implicational overlap of } e \Rightarrow a \text{ and } a \Rightarrow b$$

$$ce \Rightarrow d \text{ by implicational overlap of } e \Rightarrow a \text{ and } ac \Rightarrow d$$

$$Optimization: \text{ replace } e \Rightarrow a \text{ and } e \Rightarrow b \text{ by } e \Rightarrow ab (Premise)$$

$$D(S) = \{a \Rightarrow b, ac \Rightarrow d, e \Rightarrow ab, ce \Rightarrow d\}$$

$$egin{aligned} R_S &= \{ab o a, acd o ac, ae o e\}\ (R_S)_\infty &= \{ab o a, acd o ac, ae o e, be o e, cde o ce\}\ abe o e \ (corresponding to \ e \Rightarrow ab): \ redundant \ in \ (R_S)_\infty \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト 三日

Reason: different underlying proof orderings

Optimize system's size: $|\{e \Rightarrow ab\}| = 3 < 4 = |\{e \Rightarrow a, e \Rightarrow b\}|$

Measure proof of *a* from *X* and *S*: consider all $B \Rightarrow_S aC$ such that $B \subseteq X$ take multiset of pairs $\langle |B|, \#_B S \rangle$ where $\#_B S$ is number of implications with antecedent *B*. Proof of *a* from $X = \{e\}$ and $\{e \Rightarrow a, e \Rightarrow b\}$: $\{\!\{\langle 1, 2 \rangle, \langle 1, 2 \rangle\}\!\}$ Proof of *a* from $X = \{e\}$ and $\{e \Rightarrow ab\}$: $\{\!\{\langle 1, 1 \rangle\}\!\}$: smaller

 $\begin{array}{l} \text{Completion optimizes w.r.t. } \prec : \\ \{\!\!\{ \{ae, e\}\}, \{\!\!\{be, e\}\}\} \} \prec \{\!\!\{ \{abe, e\}\}\} \end{array}$

Rewrite-optimality

Intuition: count symbols in antecedents only once

Definition: S is *rewrite-optimal* if for all equivalent implicational system S'

 $\parallel S \parallel \leq \parallel S' \parallel$

where

$$||S|| = |Ante(S)| + |Cons(S)|$$

Ante(S) = { $c : c \in A, A \Rightarrow_S B$ }: set of symbols in antecedents Cons(S) = {{ $c : c \in B, A \Rightarrow_S B$ }: multiset of symbols in consequents

Example revisited: proof ordering for rewrite-optimality

$$S = \{a \Rightarrow b, ac \Rightarrow d, e \Rightarrow a\}$$

$$\|\{e \Rightarrow ab\}\| = 3 = \|\{e \Rightarrow a, e \Rightarrow b\}\|$$

Replacing $\{e \Rightarrow a, e \Rightarrow b\}$ by $\{e \Rightarrow ab\}$ no longer justified:

$$D(S) = I(S)$$

associated rewrite system is $(R_S)_{\infty}$
Measure proof of a from X and S:
consider all $B \Rightarrow_S aC$ such that $B \subseteq X$
take set of cardinalities $|B|$
Proof of a from $X = \{e\}$ and $\{e \Rightarrow a, e \Rightarrow b\}$: $\{\!\{1\}\!\}$
Proof of a from $X = \{e\}$ and $\{e \Rightarrow ab\}$: $\{\!\{1\}\!\}$

Intuition: omit *Premise* rule (natural for Horn!)

Definition: Given S, the *canonical* implicational system O(S) generated from S is the closure of S with respect to implicational overlap, isotony, extensiveness and definiteness.

Completion by \sim_{O} generates canonical system

 \sim_O : deduction mechanism with implicational overlap (expansion) and *isotony*, *extensiveness* and *definiteness* (contraction)

Proposition: Given implicational system S for all fair and contracting derivations

$$S = S_0 \rightsquigarrow_O S_1 \rightsquigarrow_O \cdots$$

we have

$$S_{\infty} = O(S)$$

Correspondence of \sim_O and \sim_R

Intuition: every step by isotony, extensiveness and definiteness is covered by simplification and deletion.

Lemma: For all implicational systems S

if $S \rightsquigarrow_O S'$ then $R_S \rightsquigarrow_R R_{S'}$

イロト イポト イヨト イヨト

Deduction mechanisms correspond up to redundancy

Intuition: whatever is generated by \rightsquigarrow_O is generated by \rightsquigarrow_R but may become redundant eventually. **Theorem:** For every implicational system *S*, for all fair and contracting derivations

$$S = S_0 \rightsquigarrow_O S_1 \rightsquigarrow_O \cdots$$

and

$$R_S = R_0 \rightsquigarrow_R R_1 \rightsquigarrow_R \cdots$$

for all $FG \to F \in R_{(S_{\infty})}$: either $FG \to F \in (R_S)_{\infty}$ or $FG \to F$ is redundant in $(R_S)_{\infty}$.

< ロ > < 同 > < 三 > < 三 >

Summary and directions for future work

- Implicational systems, Moore families, forward chaining, implicational overlap, direct system, direct-optimal system
- Rewriting-based framework:
 - Generate direct system by equational overlap
 - Compute minimal models
 - Rewrite-optimal system
 - Generate rewrite-optimal system by equational overlap and simplification
- Future: investigations of canonicity in more general theories