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Motivation

I Knowledge compilation: make efficient reasoning possible
I Completion of equational theories:

I Canonical presentation
I Normal-form proofs

I Implicational systems: simple and relevant (e.g., relational
databases, abstract interpretations)

I Computing with an implicational system: applying a closure
operator or computing minimal model

I Question: investigate canonicity of implicational systems

Maria Paola Bonacina Canonical Inference for Implicational Systems



Introduction
Direct systems

Computing minimal models
Direct-optimal systems

Rewrite-optimality and canonical systems
Discussion

Implicational systems

V : vocabulary of propositional variables

Implicational system S : a set of implications

S = {a1 · · · an ⇒ c1 · · · cm : ai , cj ∈ V }

where antecedent and consequent are conjunctions of (distinct)
propositions

Notation: A⇒S B for A⇒ B ∈ S
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Example

S = {a⇒ b, ac ⇒ d , e ⇒ a}

Unary implicational system: all its implications are unary, e.g.,
ac ⇒ d

A non-negative Horn clause is a unary implication and vice-versa

Non-unary implications can be decomposed, e.g.:
a⇒ bf into a⇒ b and a⇒ f

Consider only unary implicational systems
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Moore families

V : vocabulary of propositional variables

Moore family F : a family of subsets of V

I that contains V and

I is closed under intersection

A subset X ⊆ V represents a propositional interpretation
A Moore family is a family of models:

Moore families ∼ Horn theories
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Closure operators

Moore families ∼ Closure operators

Closure operator ϕ : P(V )→ P(V ) is an operator that is

I monotone: X ⊆ X ′ implies ϕ(X ) ⊆ ϕ(X ′)

I extensive: X ⊆ ϕ(X )

I idempotent: ϕ(ϕ(X )) = ϕ(X )
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Moore families and closure operators

Given ϕ, its associated Moore family Fϕ is the set of its fixed
points:

Fϕ = {X ⊆ V : X = ϕ(X )}

Given F , its associated closure operator ϕF maps X ⊆ V to the
least element of F that contains X :

ϕF (X ) = ∩{Y ∈ F : X ⊆ Y }
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Implicational systems, Moore families and closure operators

Given implicational system S

I its associated Moore family FS is the family of its models:

FS = {X ⊆ V : X |= S}

I its associated closure operator ϕS maps X ⊆ V to the least
model of S that satisfies X :

ϕS(X ) = ∩{Y ⊆ V : Y ⊇ X ∧ Y |= S}

Computing with an implicational system S :

given X compute ϕS(X )
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Example

Implicational system: S = {a⇒ b, ac ⇒ d , e ⇒ a}

Its Moore family:

FS = {∅, b, c, d , ab, bc, bd , cd , abd , abe, bcd , abcd , abde, abcde}

Applying its closure operator, e.g.:

ϕS(ae) = abe
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Questions

A Moore family : different implicational systems
(In general: a theory may have different presentations)

S and S ′ such that FS = FS ′ are equivalent

Questions:

I What does it mean for an implicational system to be
canonical?

I Can we compute canonical implicational systems by
appropriate deduction mechanisms?
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Forward chaining

Given S , X ⊆ V , let

S(X ) = X ∪∪{B : A⇒S B ∧ A ⊆ X}

Then
ϕS(X ) = S∗(X )

where

S0(X ) = X , S i+1(X ) = S(S i (X )), S∗(X ) =
⋃

i
S i (X )

Since S , X and V are finite:
S∗(X ) = Sk(X ) for the smallest k such that Sk+1(X ) = Sk(X )
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Example

S = {ac ⇒ d , e ⇒ a}

X = ce

S(X ) = {ace}

S2(X ) = {acde}

ϕS(X ) = S∗(X ) = S2(X ) = {acde}
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Direct implicational system

Intuition:
Direct implicational system:
compute ϕS(X ) in one single round of forward chaining

Definition: S is direct if ϕS(X ) = S(X )

Example: S = {ac ⇒ d , e ⇒ a} is not direct

[Karell Bertet and Mirabelle Nebut 2004]
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Observation

If we have A⇒S B and C ⇒S D such that A ⊆ X , C 6⊆ X and
C ⊆ X ∪B, more than one iteration of forward chaining is required.

In the example: e ⇒ a and ac ⇒ d for X = ce

To collapse two iterations into one: add A ∪ (C \ B)⇒S D

In the example: add ce ⇒ d

[Karell Bertet and Mirabelle Nebut 2004]
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Deduction mechanism: implicational overlap

Implicational overlap

A⇒ BO CO ⇒ D

AC ⇒ D

O is the overlap between antecedent and consequent
Conditions:

I O 6= ∅: there is some overlap

I B ∩ C = ∅: O is all the overlap
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Generated direct system

Definition: Given S , the direct implicational system I (S)
generated from S is the closure of S with respect to implicational
overlap.

Theorem: ϕS(X ) = I (S)(X ).

[Karell Bertet and Mirabelle Nebut 2004]
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Completion by ;I generates direct system

;I : deduction mechanism that generates and adds implications by
implicational overlap
Note: ;I steps are expansion steps

Proposition: Given implicational system S for all fair derivations

S = S0 ;I S1 ;I · · ·

we have
S∞ = I (S)
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A rewriting-based framework

I Implication a1 · · · an ⇒ c1 · · · cm
I Bi-implication a1 · · · anc1 · · · cm ⇔ a1 · · · an
I Rewrite rule a1 · · · anc1 · · · cm → a1 · · · an

are equivalent.

Positive literal c : c → true (true: special constant)

Well-founded ordering � on V ∪ {true} (true minimal) extended
by multiset extension.
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Associated rewrite system

Given X ⊆ V , its associated rewrite system is
RX = {x → true : x ∈ X}.

Given implicational system S , its associated rewrite system is
RS = {AB → A : A⇒S B}.

Given S and X : RS
X = RX ∪ RS .
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Example

S = {a⇒ b, ac ⇒ d , e ⇒ a}

RS = {ab → a, acd → ac, ae → e}

X = ae

RX = {a→ true, e → true}

RS
X = {a→ true, e → true, ab → a, acd → ac, ae → e}
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Deduction mechanism: equational overlap

Equational overlap

AO → B CO → D

M → N
A ∩ C = ∅ 6= O, M � N

O is the overlap between the two left-hand sides:

BC ← AOC → AD

M and N: normal-forms of BC and AD

;E : deduction mechanism of equational overlap
Note: ;E features expansion and forward contraction
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Implicational and equational overlap correspond

Intuition: since

I Implicational overlap “unfolds” forward chaining

I Forward chaining is complete for Horn logic

for each non-trivial ;I step there is equivalent ;E step and vice
versa

Lemma: For all implicational systems S ,

S ;I S ′ if and only if RS ;E RS ′
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Example

S = {ac ⇒ d , e ⇒ a}

RS = {acd → ac, ae → e}

Implicational overlap yields: ce ⇒ d

Equational overlap yields:

ace ← acde → cde

hence
cde → ce
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Completion by ;E generates direct system

Theorem: For every implicational system S , and for all fair
derivations

S = S0 ;I S1 ;I · · ·

and
RS = R0 ;E R1 ;E · · ·

we have
R(S∞) = (RS)∞

Hence R(I (S)) = (RS)∞

Maria Paola Bonacina Canonical Inference for Implicational Systems



Introduction
Direct systems

Computing minimal models
Direct-optimal systems

Rewrite-optimality and canonical systems
Discussion

Computing minimal models

Two-stage process:

1. Saturate S w.r.t. implicational overlap to generate I (S)

2. For any X ⊆ V compute ϕI (S)(X ) = ϕS(X ) by forward
chaining

One-stage process:

1. Apply completion to RS
X : output rules x → true represent

ϕS(X ) = ϕI (S)(X )
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Adding contraction rules

Simplification and Deletion

AC → B C → D

AD → B C → D
AD � B

AC → B C → D

B → AD C → D
B � AD

B → AC C → D

B → AD C → D

A↔ A

;R = ;E + these rules
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Extracting the least model

Theorem: For all X ⊆ V , implicational systems S , and fair
derivations

RS
X = R0 ;R R1 ;R · · ·

if Y = ϕS(X ) = ϕI (S)(X ), then

RY ⊆ (RS
X )∞

and
RY = {x → true : x → true ∈ (RS

X )∞}
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Example

S = {ac ⇒ d , e ⇒ a, bd ⇒ f }
X = ce
Y = ϕS(X ) = acde

RS = {acd → ac, ae → e, bdf → bd}
RX = {c → true, e → true}(
RS
X

)
∞ = {c → true, e → true, a→ true, d → true, bf → b}

RY = {a→ true, c → true, d → true, e → true}
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A notion of optimality based on size

Definition: S is optimal if
for all equivalent implicational system S ′

| S | ≤ | S ′ |

where
|S | =

∑
A⇒SB

|A|+ |B|

D(S): direct-optimal implicational system equivalent to S
Characterized by four necessary and sufficient properties

[Karell Bertet and Mirabelle Nebut 2004]
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Optimization rules I

Premise: for all A⇒D(S) B and A⇒D(S) B ′, B = B ′;

A⇒ B, A⇒ C

A⇒ BC

Isotony: for all A⇒D(S) B and C ⇒D(S) D, if C ⊂ A, then
B ∩ D = ∅;

A⇒ B, AD ⇒ BE

A⇒ B, AD ⇒ E
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Optimization rules II

Extensiveness: for all A⇒D(S) B, A ∩ B = ∅;

AC ⇒ BC

AC ⇒ B

Definiteness: for all A⇒D(S) B, B 6= ∅;

A⇒ ∅
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Example

S = {a⇒ b, ac ⇒ d , e ⇒ a}
I (S) = {a⇒ b, ac ⇒ d , e ⇒ a, e ⇒ b, ce ⇒ d}
e ⇒ b by implicational overlap of e ⇒ a and a⇒ b
ce ⇒ d by implicational overlap of e ⇒ a and ac ⇒ d
Optimization: replace e ⇒ a and e ⇒ b by e ⇒ ab (Premise)
D(S) = {a⇒ b, ac ⇒ d , e ⇒ ab, ce ⇒ d}

RS = {ab → a, acd → ac, ae → e}
(RS)∞ = {ab → a, acd → ac, ae → e, be → e, cde → ce}
abe → e (corresponding to e ⇒ ab): redundant in (RS)∞
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Reason: different underlying proof orderings

Optimize system’s size: |{e ⇒ ab} | = 3 < 4 = |{e ⇒ a, e ⇒ b} |

Measure proof of a from X and S :
consider all B ⇒S aC such that B ⊆ X
take multiset of pairs 〈|B|,#BS〉
where #BS is number of implications with antecedent B.
Proof of a from X = {e} and {e ⇒ a, e ⇒ b}: {{〈1, 2〉, 〈1, 2〉}}
Proof of a from X = {e} and {e ⇒ ab}: {{〈1, 1〉}}: smaller

Completion optimizes w.r.t. ≺:
{{{{ae, e}}, {{be, e}}}} ≺ {{{{abe, e}}}}
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Rewrite-optimality

Intuition: count symbols in antecedents only once

Definition: S is rewrite-optimal if
for all equivalent implicational system S ′

‖ S ‖ ≤ ‖ S ′ ‖

where
‖S ‖ = |Ante(S)|+ |Cons(S)|

Ante(S) = {c : c ∈ A, A⇒S B}: set of symbols in antecedents
Cons(S) = {{c : c ∈ B, A⇒S B}}: multiset of symbols in
consequents
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Example revisited: proof ordering for rewrite-optimality

S = {a⇒ b, ac ⇒ d , e ⇒ a}
‖{e ⇒ ab} ‖ = 3 = ‖{e ⇒ a, e ⇒ b} ‖
Replacing {e ⇒ a, e ⇒ b} by {e ⇒ ab} no longer justified:
D(S) = I (S)
associated rewrite system is (RS)∞

Measure proof of a from X and S :
consider all B ⇒S aC such that B ⊆ X
take set of cardinalities |B|
Proof of a from X = {e} and {e ⇒ a, e ⇒ b}: {{1}}
Proof of a from X = {e} and {e ⇒ ab}: {{1}}: equal
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Canonical system

Intuition: omit Premise rule (natural for Horn!)

Definition: Given S , the canonical implicational system O(S)
generated from S is the closure of S with respect to implicational
overlap, isotony, extensiveness and definiteness.
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Completion by ;O generates canonical system

;O : deduction mechanism with implicational overlap (expansion)
and isotony, extensiveness and definiteness (contraction)

Proposition: Given implicational system S for all fair and
contracting derivations

S = S0 ;O S1 ;O · · ·

we have
S∞ = O(S)
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Correspondence of ;O and ;R

Intuition: every step by isotony, extensiveness and definiteness is
covered by simplification and deletion.

Lemma: For all implicational systems S

if S ;O S ′ then RS ;R RS ′
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Deduction mechanisms correspond up to redundancy

Intuition: whatever is generated by ;O is generated by ;R but
may become redundant eventually.
Theorem: For every implicational system S , for all fair and
contracting derivations

S = S0 ;O S1 ;O · · ·

and
RS = R0 ;R R1 ;R · · ·

for all FG → F ∈ R(S∞):
either FG → F ∈ (RS)∞ or FG → F is redundant in (RS)∞.
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Summary and directions for future work

I Implicational systems, Moore families, forward chaining,
implicational overlap, direct system, direct-optimal system

I Rewriting-based framework:
I Generate direct system by equational overlap
I Compute minimal models
I Rewrite-optimal system
I Generate rewrite-optimal system by equational overlap and

simplification

I Future: investigations of canonicity in more general theories
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