Deciding satisfiability problems by general-purpose deduction:
 Experiments in the theory of arrays

Maria Paola Bonacina, Dip. Informatica, Università degli Studi di Verona, Italy
Joint work with:
Alessandro Armando, DIST, Università degli Studi di Genova, Italy Silvio Ranise, LORIA \& INRIA-Lorraine, Nancy, France Michaël Rusinowitch, LORIA \& INRIA-Lorraine, Nancy, France Aditya Kumar Sehgal, Dept. of Computer Science, U. Iowa, USA

Outline

- Motivation
- Background on satisfiability procedures
- A deduction-based approach
- Theory of arrays : synthetic benchmarks
- Experimental results with E and CVC
- Discussion of results and research directions

Motivation

- HW/SW verification requires reasoning with theories of data types, e.g., integer, real, arrays, lists, trees, tuples, sets.
- E.g., use arrays to model registers and memories in formalizing HW verification problems.
- Some of these theories are decidable.
- Built-in theories for verification tools and proof assistants.

Some background on

Satisfiability Procedures

Satisfiability procedure

T: background theory, possibly with intended interpretation φ : quantifier-free formula
$\varphi^{\prime}: \operatorname{DNF}(\neg \varphi) \quad / *$ not in practice $:$ more later $* /$
G : conjunction (set) of ground literals from φ,

Common approach

Design, prove sound and complete, and implement a satisfiability procedure for each decidable theory of interest.

Issues:

- Most problems involve multiple theories: combination of theories / procedures [Nelson-Oppen, Shostak, ..]
- Proofs for concrete procedures [e.g., Shankar, Stump] or abstract frameworks [e.g., Tiwari, Ganzinger]
- Implement from scratch data structures and algorithms for each procedure: correctness of implementation? SW reuse?

Un-interpreted and interpreted symbols

- Un-interpreted function and predicate symbols : all properties are stated by axioms
Conjunction of ground equalities and inequalities with only un-interpreted function symbols : congruence closure [Nelson-Oppen, Downey-Sethi-Tarjan 1980]
- Interpreted function and predicate symbols : built-in properties, e.g.from $x-1=y$ to $x=y+1$ Conjunction of ground equalities and inequalities including interpreted symbols: combination of congruence closure and specialized procedures

Combination of theories: NelsonOppen 1979
 $\mathrm{T}_{1} . . \mathrm{T}_{\mathrm{k}} \quad \mathrm{G}_{1} . . \mathrm{G}_{\mathrm{k}}$

- Disjoint theories : if r_{i} occurs in G_{j} rename as x and add $\mathrm{x}=\mathrm{r}$ to G_{i}
- Communication among procedures : only equalities between variables
- Convex theories :
if $T \mid=V_{i=1 . . n} s_{i}=r_{i}$ then $T \mid=s_{i}=r_{i}$ for some i
Non-convex theories : splitting of disjunctions

Combination : Shostak 1984

[Cyrluk-Lincoln-Shankar, CADE 1996]
[Ruess-Shankar, LICS 2001]

- Theories with canonical form :
$\mathrm{T} \mid=\mathrm{s}=\mathrm{r}$ iff $\sigma(\mathrm{s})=\sigma(\mathrm{r})$ $\operatorname{vars}(\sigma(\mathrm{s})) \subseteq \operatorname{vars}(\mathrm{s})$ and $\sigma(\mathrm{x})=\mathrm{x}$
$\sigma(\sigma(\mathrm{s}))=\sigma(\mathrm{s})$
if $\sigma(\mathrm{s})=\mathrm{f}\left(\mathrm{s}_{1} . \mathrm{s}_{\mathrm{n}}\right)$ then $\sigma\left(\mathrm{s}_{\mathrm{i}}\right)=\mathrm{s}_{\mathrm{i}} \mathrm{i}=1 . . \mathrm{n}$
Canonical form is representative of equivalence class
- And algebraically solvable :
solve $(s=r)$ is in tree normal form (idempotent substitution)

Relation to general deduction

- Congruence closure : ground completion
- Algebraic solvability : semantic unification solve () : T- unification algorithm
- Canonical form : T- normal form

Abstract frameworks

- Abstract Congruence Closure
[Tiwari 2000] [Bachmair-Tiwari-Vigneron, JAR 2002]
CC algorithms as ground completion strategies with same inference rules (including flattening) and different search plans
Ground completion with indexing is fastest !
- Shostak Light
[Barrett-Dill-Stump, FroCoS 2002]
[Ganzinger, CADE 2002]
Shostak as completion modulo $\mathrm{T}_{\mathrm{i}}\left(\mathrm{T}_{\mathrm{i}}-\right.$ unification) or Nelson-Oppen combination of CC and T_{i} - unification

General-purpose ordering-based theorem-proving :

Can it help ?

Theorem proving would help:

- Combination of theories: give union of the axiomatizations in input to the prover
- No need of ad hoc proofs for each procedure
- Reuse code of existing provers

Termination?

$\mathrm{C}=\langle\mathrm{I}, \Sigma\rangle$: theorem-proving strategy
I : refutationally complete inference system with superposition/ paramodulation, simplification, subsumption ...
Σ : fair search plan
is a semi-decision procedure:

Yes, iff $T \cup G$ is unsatisfiable
?

Termination results

[Armando, Ranise, Rusinowitch, CSL 2001]
T: theory of arrays, lists, sets and combinations thereof

Another way to put it

Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving
[Kounalis \& Rusinowitch, CADE 1988]

FO special theories: e.g., $T=T^{*}$ for arrays [ARR, CSL 2001]

Beyond conjunctions of literals

[Silvio Ranise, UNIF 2002]
Extension to arbitrary quantifier-free formulae including connectives if_then_else_ and let_in_ that are very useful in verification problems :

- transformation to clauses such that at most one literal is an equality of ground first-order flat terms and the other literals are propositional variables
- extension of termination results

How about efficiency ?

A satisfiability procedure with T built-in is expected to be always much faster than a theorem prover with T in input !

Totally obvious ? Or worth investigating ?

- theory of arrays
- synthetic benchmarks (allow to assess scalability by experimental asymptotic analysis)
- comparison of E prover and CVC validity checker with theory of arrays built-in

Theory of arrays: the signature

store : array \times index \times element \rightarrow array
select : array \times index \rightarrow element

The presentation (T_{1})

(1) \forall A , I, E. select (store $(\mathrm{A}, \mathrm{I}, \mathrm{E}), \mathrm{I})=\mathrm{E}$
(2) \forall A, I, J, E. $I \neq \mathrm{J} \Rightarrow$ $\operatorname{select}(\operatorname{store}(\mathrm{A}, \mathrm{I}, \mathrm{E}), \mathrm{J})=\operatorname{select}(\mathrm{A}, \mathrm{J})$
(3) Extensionality: $\forall \mathrm{A}, \mathrm{B}$. $\forall \mathrm{I}$. select $(\mathrm{A}, \mathrm{I})=\operatorname{select}(\mathrm{B}, \mathrm{I})$

$$
A=B
$$

Pre-processing extensionality

$\operatorname{select}(\mathrm{A}, \operatorname{sk}(\mathrm{A}, \mathrm{B})) \neq \operatorname{select}(\mathrm{B}, \operatorname{sk}(\mathrm{A}, \mathrm{B})) \vee \mathrm{A}=\mathrm{B}$

Another presentation (T_{2})

Keep (1) and (2) and replace extensionality (3) by:
(4) \forall A, I. store $(\mathrm{A}, \mathrm{I}, \operatorname{select}(\mathrm{A}, \mathrm{I}))=\mathrm{A}$
(5) $\forall \mathrm{A}, \mathrm{I}, \mathrm{E}, \mathrm{F}$. store $(\operatorname{store}(\mathrm{A}, \mathrm{I}, \mathrm{E}), \mathrm{I}, \mathrm{F})=\operatorname{store}(\mathrm{A}, \mathrm{I}, \mathrm{F})$
(6) $\forall \mathrm{A}, \mathrm{I}, \mathrm{J}, \mathrm{E} . \mathrm{I} \neq \mathrm{J} \Rightarrow$ store (store (A, I, E), J, F) = store (store (A, J, F), I, E)

T1 entails (4) (5) (6)

Use of presentations

- T_{1} is saturated and application of C to $\mathrm{T}_{1} \cup \mathrm{G}$ is guaranteed to terminate [ARR2001]:
C acts as decision procedure
- T_{2} is not saturated (saturation does not halt):

C applied to $\mathrm{T}_{2} \cup \mathrm{G}$ acts as semi-decision procedure

Two sets of synthetic benchmarks

in array theory

storecomm(N): intuition

Storing values at distinct places in an array is "commutative"

storecomm(N): definition

k1 .. kn : N indices
D : set of 2-combinations over $\{1$.. N$\}$
Indices must be distinct:

$$
\widehat{\mathrm{N}}_{\mathrm{p}, \mathrm{q}) \in \mathrm{D}} \quad \mathrm{kp} \neq \mathrm{kq}
$$

i 1 .. in, j 1 ...jn : two distinct permutations of $1 \ldots \mathrm{~N}$
store (...(store (a, ki1, eii), .. kin, ein) ...)
$=$
store (...(store (a, $\left.\left.\mathrm{kj}_{\mathrm{j} 1}, \mathrm{e}_{\mathrm{j} 1}\right), \ldots \mathrm{kjn}, \mathrm{ejp}_{\mathrm{j}}\right) \ldots$...)

storecomm(N) : schema

$$
\bigwedge_{\mathrm{p}, \mathrm{q}) \in \mathrm{D}} \quad \mathrm{k}_{\mathrm{p}} \neq \mathrm{k}_{\mathrm{q}}
$$

store (...(store (a, ki1, ei1), .. kin, ein) ...)

$$
=
$$

store (...(store (a, kjı, ej1), .. kjn, ejn) ...)

storecomm(N) : instances

Each choice of permutations generates a different instance:

N ! permutations of the indices

The number of instances is the number of 2-combinations of N ! permutations:

$$
\mathrm{N}!(\mathrm{N}!-1) / 2
$$

swap(N): intuition

Swapping pairs of elements in an array in two different orders yields the same array

$\operatorname{swap}(\mathrm{N}):$ definition

Recursively:
Base case: $\mathrm{N}=2$ elements:
$\mathrm{L} 2=\operatorname{store}($ store $(\mathrm{a}, \mathrm{i} 1$, select ($\mathrm{a}, \mathrm{i} 0)$), i0, select (a, i1))
R2 $=$ store $($ store $(a, i 0$, select ($a, i 1)$), i1, select ($a, i 0)$)

$$
\mathrm{L} 2=\mathrm{R} 2
$$

Recursive case: $\mathrm{N}=\mathrm{k}+2$ elements:
$L_{k+2}=\operatorname{store}(\operatorname{store}(\operatorname{Lk}, i k+1$, select $(L k, i k))$, ik , select $(L k, i k+1))$
$R k+2=\operatorname{store}(\operatorname{store}(R k, i k, \operatorname{select}(R k, i k+1)), i k+1$, select $(R k, i k))$

$$
L k+2=R k+2
$$

swap(N) : instances

N elements, $\mathrm{N} / 2$ pairs to exchange
N ! permutations of the elements
Ci : number of i-combinations over the set of $\mathrm{N} / 2$ pairs number of ways of picking i pairs for exchange

$$
\sum \mathrm{i} \mathrm{Ci}=2^{\wedge}(\mathrm{N} / 2)-1
$$

Number of instances: $1 / 2 \times \mathrm{N}!\times\left(2^{\wedge}(\mathrm{N} / 2)-1\right)$

Experiments

with E and CVC

Set up of the experiments

- Two tools: CVC validity checker and E theorem prover
- E: auto mode and user-selected strategy
- Comparison of asymptotic behavior of E and CVC as N grows

The CVC validity checker

[Aaron Stump, David L. Dill et al., Stanford U.]
Combines procedures à la Nelson-Oppen (e.g., lists, arrays, records, real arithmetics ..)

Has SAT solver: first GRASP then Chaff

Theory of arrays: ad hoc algorithm based on congruence closure with pre-processing wrt. axioms of T_{1} and elimination of " store" via partial equations

Why a SAT solver ?

To handle arbitrary quantifier-free formulae : cooperation of SAT solver and decision procedure(s)

Map first-order formula φ to propositional abstraction abs (φ) $\operatorname{abs}(\varphi)$ unsatisfiable : φ unsatisfiable $\operatorname{abs}(\varphi)$ satisfiable : model α yields
either model of φ (checked by decision procedure) or minimal conflict clause to feed back to SAT solver

Interaction is incremental

The E theorem prover

[Stephan Schulz, TU-Muenchen]

Inference system I : o-superposition/paramodulation, reflection, o-factoring, simplification, subsumption

Search plans Σ :

- given-clause loop with clause selection functions and only " already-selected" list inter-reduced
- term orderings: KBO and LPO
- literal selection functions

Strategies in experiments

- E-auto: automatic mode
- E-SOS: $\{$ problem in form $T \cup G$ \}

Clause selection:
(SimulateSOS,RefinedWeight)
Term ordering: LPO

- Precedence: select > store > sk > constants

First set of experiments on storecomm(N)

E takes presentation T_{1} in input
N ranges from 2 to 150
Sample 10 permutations: 45 instances for each value of N Non-uniform sampling (favors permutations with local changes)

Performance for N is average over all generated instances for value N
Versioni : E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002

First set : storecomm(N)

Second set of experiments on storecomm(N)

E takes presentation T_{1} in input
N ranges from 2 to 90
For each value of N pick one instance at random : no averages

Only E-auto, E-SOS do not help
Versioni : E 0.62
CVC/CHAFF October 2002

Second set : storecomm(N)

First set of experiments on swap (N)

Sample up to 16 permutations and 20 instances for each value of N Non-uniform sampling (favors permutations with local changes) Performance for N is average over all generated instances for value N

CVC: does up to $\mathrm{N}=10$, runs out of memory on any instance of swap(12)
E with presentation T_{1} : same as above and slower
E with presentation T_{2} : succeeds also for $\mathrm{N} \geq 12$
Versioni : E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002

First set : swap(N)

Second set of experiments on $\operatorname{swap}(\mathrm{N})$

E takes presentation T_{1} in input
For each value of N pick one instance at random : no averages
Only E-auto, E-SOS don' thelp

CVC : does only up to $N=6$, E goes beyond
Versioni : E 0.62
CVC/CHAFF October 2002

Second set : swap(N)

Discussion

- Need more experiments: other synthetic benchmarks, other theories, combination of theories, real-world problems
- Understand role of flattening better
- Other provers, e.g., w. more inter-reduction
- Termination results for other theories?
- Complexity of concrete strategies on specific theories

Discussion

- Deduction may help build better decision procedures
- Integration of automated theorem proving and automated model building
- ATP needs more work on auto mode and search plans (search, not blind saturation)
- Proof assistants incorporate satisfiability procedures: integration of ATP/AMB in proof assistants

