Deciding satisfiability problems by
genera-purpose deduction:
Experiments in the theory of arrays

Maria Paola Bonacina, Dip. Informatica, Universitadegli Studi di Verona, Italy

Joint work with:

Alessandro Armando, DIST, Universitadegli Studi di Genova, Italy
Silvio Ranise, LORIA & INRIA-Lorraine, Nancy, France

Michadl Rusinowitch, LORIA & INRIA-Lorraine, Nancy, France
AdityaKumar Sehgal, Dept. of Computer Science, U. lowa, USA

Outline

Motivation

Background on satisfiability procedures

A deduction-based approach

Theory of arrays : synthetic benchmarks
Experimental results with E and CVC
Discussion of results and research directions

Motivation

HW/SW verification requires reasoning with
theories of datatypes, e.q., integer, red, arrays,
lists, trees, tuples, sets.

E.g., use arraysto mode registers and memoriesin
formalizing HW verification problems.

Some of these theories are decidable.

Built-in theories for verification tools and proof
assistants.

Some background on

Satisfiability Procedures

Satisfiability procedure

T : background theory, possbly with intended interpretation
¢ : quantifier-free formula

¢ :DNF(-¢) /[* not In practice : more |ater */
G : conjunction (set) of ground literalsfrom ¢’

-
Sat procedure
G g for T
A

Common approach

Desgn, prove sound and complete, and implement a satisfiability
procedure for each decidable theory of interedt.

| Ssues.
« Mods problems involve multiple theories. combination of

theories/ procedures [Nelson-Oppen, Shostak, .]
e Proofsfor concrete procedures| e.g., Shankar, Stump |
or abstract frameworks[e.g., Tiwari, Ganzinger]
e Implement from scratch data structures and algorithms for
each procedure: correctness of implementation? SW reuse?

Un-interpreted and interpreted
symbols

« Un-interpreted function and predicate symbols:

al properties are sated by axioms

Conjunction of ground equalities and inequalities with only
un-interpreted function symbols : congruence closure

[Nelson-Oppen, Downey-Sethi-Tarjan 1980 |

o Interpreted function and predicate symbols:

built-in properties, e.g.,from x-1=yto x=y+1
Conjunction of ground equalities and inequalitiesincluding
Interpreted symbols. combination of congruence closure
and specialized procedures

Combination of theories : Na son-
Oppen 1979

» Digoaint theories: if r,occursin G renameasx and add x =r to G

« Communication among procedures : only equalities between
variables

e Convex theories:

if TI= s, =r, then TI|=s, =r, for somei

=1..n [[

Non-convex theories: splitting of digunctions

Combination : Shostak 1984

[Cyrluk-Lincoln-Shankar, CADE 1996 |
| Ruess-Shankar, LICS 2001 |

e Theorieswith canonical form :
TlEs=r iff a(s)=a(r)
vars(o(s)) Uvars(s)anda (x) =X
og(0(s))=0a(s)
fo(s)=f(s.s)theno(s)=5 1=1..n
Canonica form is representative of equivalence class

« Andagebraicaly solvable:
solve (s=r) isintree normal form (idempotent substitution)

Relation to general deduction

« Congruence closure : ground completion

« Algebraic solvability : semantic unification
solve () : T- unification adgorithm

e Canonica form: T- norma form

Abstract frameworks

« Abstract Congruence Closure

[Tiwari 2000] [Bachmair-Tiwari-Vigneron, JAR 2002 |
CC agorithms as ground completion strategies with same
Inferencerules (including flattening) and different
search plans

Ground completion with indexing isfastest !

e Shostak Light

| Barrett-Dill-Stump, FroCoS 2002 |

| Ganzinger, CADE 2002 |

Shostak as completion modulo T, (T, - unification) or

Nel son-Oppen combination of CC and T, - unification

General-purpose ordering-based
theorem-proving :

Canit help ?

Theorem proving would help:

« Combination of theories: give union of the
axiomatizations in input to the prover

« No need of ad hoc proofs for each procedure
o Reuse code of existing provers

Termination ?

C =<, Z> : theorem-proving strategy

| : refutationally complete inference system with superposition/
paramodul ation, smplification, subsumption ...

2 fair search plan

IS a semi-decision procedure: _ .
Yes iff TUOGIs

unsatisfiable

>

TOG

Termination results

[Armando, Ranise, Rusinowitch, CSL 2001]

T: theory of arrays, lidts, sets and combinations thereof

G—

T

flatten

.

>

Another way to put It

2 Unsat

Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving
[Kounalis & Rusinowitch, CADE 1988]

FO specid theories. eg., T = T* for arrays[ARR, CSL 2001]

Beyond conjunctions of literals

[Silvio Ranise, UNIF 2002 |

Extenson to arbitrary quantifier-free formulae including
connectivesif then else andlet in_that arevery
useful in verification problems:

e transformation to clauses such that at most oneliteral isan
equality of ground firg-order flat terms and the other literals
are propositiona variables

e extenson of termination results

How about efficiency ?

A satisfiability procedure with T built-in Is expected
to be dways much faster than atheorem prover with
T ininput !

Totaly obvious? Or worth investigating ?

o theory of arrays

o synthetic benchmarks (allow to assess scaability
by experimenta asymptotic anayss)

« comparison of E prover and CV C validity checker
with theory of arrays built-in

Theory of arrays: the signature

store: array x index x ement —array

select : array x index —element

The presentation (T,)

(1) DA, I, E sdect (store(A,I,E),1) = E

(2) UAILJE | £J O
sdect (store(A,1,E),J) = sdect (A, J)

(3) Extensiondity: LA, B.
[l.sdect (A,) = sdect (B,)
[]
A =B

Pre-processing extensionality

sdect (A, sk (A, B)) # sdect (B, sk (A,B)) OA =B

t#t

sdect (t, sk (t,t))# select (1, sk (1,1))

Another presentation (T,)
Keep (1) and (2) and replace extensionality (3) by:

(4) UA, . store (A, I, sdect (A, 1)) = A

(5 UOA, I, E, F.
sore(store(A, 1, E), I,F) = sore(A, I, F)

©) UA,ILJE | #J [
sore(store(A, I,E),J F) = store(sore(A,J F), |, E)

T1 entails (4) (5) (6)

Use of presentations

o T1issaturated and application of C to

T1 [G isguaranteed to terminate [ARR2001]:
C actsasdecison procedure

o T2Isnot saturated (saturation does not halt):

C applied to T2 1 G acts as semi-decision
procedure

Two sets of synthetic benchmarks

In array theory

storecomm(N): Intuition

Storing values at distinct places
In an array 1s“ commutative”

storecomm(N) : definition

ki..kN : Nindices
D : sat of 2-combinationsover { 1..N}
Indices must be distinct:

Jp,q)DD kp # Kg

11..IN, J1..JN: twodiginct permutationsof 1..N

sore(...(store(a, ki1, &1), .. kin, €n) ..)

sore(..(store(a, ki, 1), .. Kjn, €n) ..)

storecomm(N) : schema

]p,q)D D kp # Kg

sore(..(store(g ki1, €1), .. KiNn,€N) ..)

sore(..(store(a kj1, 1), ..KjN, gN) ..)

storecomm(N) : Instances

Each choice of permutations generates a different instance:
N! permutations of the indices

The number of iIngtances isthe number of 2-combinations
of N! permutations:

NI (N!-1)/2

swap(N): Intuition

Swapping pairs of elementsin an array
In two different orders yields the same array

swap(N) : definition
Recursvdy:
Basecase N = 2 dements:

L2 =dore(store(a, i1, sdect (a,10)), i0, select (a, 11))
R2 =gore(store(a, 10, select (a,11)), 11, select (a, 10))

L2 = R2
Recursive case: N = k+2 elements:.
Lk+2 = store (sore (Lk, ik+1, select (Lk, 1k)), ik, select (Lk, 1k+1))
Rk+2 = store (store (Rk, ik , select (Rk, 1k+1)), ik+1, select (Rk, ik))

Lk+2 = Rk+2

swap(N) : Instances

N elements, N/2 pairsto exchange

N! permutations of the e ements

Ci . number of iI-combinations over the set of N/2 pairs
number of ways of picking | pairsfor exchange

2i Ci = 2NN/2) - 1

Number of ingtances. 1/2 x N! x (2NN/2) - 1)

Experiments

with E and CVC

Set up of the experiments

e Two tools: CVC validity checker and E
theorem prover

o E: auto mode and user-selected strategy

o Comparison of asymptotic benavior of E
and CVC as N grows

The CVC validity checker
[Aaron Stump, David L. Dill et al., Stanford U]

Combines procedures ala Nelson-Oppen
(eg., lists, arrays, records, red arithmetics..)

Has SAT solver: firsa GRASP then Chaff

Theory of arrays. ad hoc agorithm based on congruence
closure with pre-processng wrt. axioms of T, and

eimination of “ store’ viapartia equations

Why a SAT solver ?

To handle arbitrary quantifier-free formulae
cooperation of SAT solver and decision procedure(s)

Map first-order formula ¢ to propositional abstraction abs(¢)
abs (¢) unsatisfiable : ¢ unsatisfiable

abs(¢) satisfiable : model a yields

either modd of ¢ (checked by decision procedure)
or minimal conflict clauseto feed back to SAT solver

| nteraction isincremental

The E theorem prover

[Stephan Schulz, TU-Muenchen]

Inference system | : o-superposition/paramodulation,
reflection, o-factoring, smplification, subsumption

Search plans .

 given-clauseloop with clause salection functions and
only “ aready-sdlected” list inter-reduced

« term orderings. KBO and LPO

o litera selection functions

Strategies in experiments

o E-auto: automatic mode

o E-SOS { probleminformT L G}

Clause sdlection:
(SimulateSOS,RefinedWeight)

Term ordering: LPO
e Precedence: select > store > sk > constants

First set of experiments on
storecomm(N)

E takes presentation T, In input
N rangesfrom 2 to 150

Sample 10 permutations. 45 instances for each value of N
Non-uniform sampling (favors permutations with local changes)

Performance for N isaverage over all generated instancesfor value N

Versoni : E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002

First set . storecomm(N)

240 "E-Auto”

| "E-5057
230 "CWC-Grasp”
220 TEVC-Chaff~

210
200
190
180
170
160
150
140
130
120
110
100 -
o
a0 F
70 F
0
B0 F
40 F
30 F
20 -
10 F
0 L L . = i L L
10 20 30 40 S0) O g0 Q0 160 110 120 130 140 150
Input Size - N

Time in zeconds

Second set of experiments on
storecomm(N)

E takes presentation T, in input

N ranges from 2 to 90
For each value of N pick oneinstance at random :
NO averages

Only E-auto, E-SOS do not help

Versoni : E 0.62
CV C/CHAFF October 2002

Second set : storecomm(N)

First set of experiments on swap

(N)

Sample up to 16 permutations and 20 instances for each value of N
Non-uniform sampling (favors permutations with local changes)

Performance for N isaverage over al generated instances for value N

CVC: doesup to N = 10, runs out of memory on
any instance of swap(12)
E with presentation T,: same as above and dower

E with presentation T,: succeeds also for N =12

Vergoni : E 0.62
CVC/GRASP Fdl 2001, CVC/CHAFF January 2002

Time in zeconds

100
95
S0
a5
g0
75
70
a5
&0
alal
als]
45
40
a]
o]
25
20
15
10

First set : swap(N)

TCVWC-Chaff”"
TE-5057
“E-Auto”

z 4 f g 10 1z 14 1a 15 20 s 24

Input Size - N

Second set of experiments on
swap(N)
E takes presentation T, in input
For each value of N pick oneinstance at random : no averages
Only E-auto, E-SOSdon’ t hep
CVC :doesonly upto N =6, E goesbeyond

Versoni : E 0.62
CV C/CHAFF October 2002

Second set : swap(N)

Discussion

Need more experiments. other synthetic
benchmarks, other theories, combination of
theories, real-world problems

Understand role of flattening better
Other provers, e.g., w. more inter-reduction
Termination results for other theories?

Complexity of concrete strategies on
specific theories

Discussion

Deduction may help build better decison
procedures

ntegration of automated theorem proving and
automated modéd building

ATP needs more work on auto mode and search
plans (search, not blind saturation)

Proof assstants incorporate satisfiability procedures.
Integration of ATP/AMB in proof assstants

