Conflict-Driven Reasoning in Unions of Theories¹ Conflict-Driven Satisfiability Modulo Assignments

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Invited Keynote Speech, 12th Int. Symposium on Frontiers of Combining Systems (FroCoS) London, England, UK, 4 September 2019

(Revised with title "Conflict-Driven Satisfiability Modulo Assignments" for the Seminar of the Theoretical

Foundations of Computer Systems Program, Simons Institute for the Theory of Computing, Berkeley,

California, USA, 9 March 2021)

¹Based on joint work with S. Graham-Lengrand and N. Shankar + (=) =

Maria Paola Bonacina Conflict-Driven Reasoning in Unions of Theories

The Big Picture

The CDSAT paradigm for SMT/SMA

Discussion

イロト イヨト イヨト イヨト

臣

Satisfiability solving from SMT to SMA

- SMT-problem: decide \mathcal{T} -satisfiability of a formula for $\mathcal{T} = \bigcup_{k=1}^{n} \mathcal{T}_{k}$
- Disjoint theories and quantifier-free formulas
- This talk advertises a general paradigm named CDSAT (Conflict-Driven SATisfiability):
 - Conflict-Driven reasoning in \mathcal{T}
 - By combining T_k -inference systems: theory modules
 - Solves also SMA-problems

- 4 回 ト 4 ヨ ト 4 ヨ ト

Conflict-driven satisfiability

- Procedure to determine satisfiability of a formula
- Search for a model by building candidate models
- Assignments + propagation through formulas
- Conflict btw model and formula: explain by inferences
- Learn generated lemma to avoid repetition
- Solve conflict by fixing model to satisfy learned lemma
- Nontrivial inferences on demand to respond to conflicts

CDSAT does all this for a generic union $\mathcal{T} = \bigcup_{k=1}^{n} \mathcal{T}_{k}$

Conflict-driven propositional satisfiability

- CDCL (Conflict-Driven Clause Learning) procedure for SAT [Marques Silva, Sakallah: ICCAD 1996, IEEE TOC 1999]
 [Davis, Putnam, Logeman, Loveland: JACM 1960, CACM 1962]:
 - Build candidate propositional model
 - Assignments to propositional variables + BCP
 - Explain conflicts by propositional resolution
 - Learn resolvents made of input atoms
 - Resolution on demand to respond to conflicts
- CDSAT: propositional logic as theory Bool
- CDSAT reduces to CDCL if T = Bool

- 4 回 ト 4 ヨ ト 4 ヨ ト

Conflict-driven satisfiability procedures in arithmetic

- Decide satisfiability of sets of literals
- Assignments to atoms and first-order variables $(x \leftarrow 3)$
- Explanation of conflicts by theory inferences
- Learn lemmas that may contain new (non-input) atoms

Nontrivial theory inferences on demand to respond to conflicts [Korovin, Tsiskaridze, Voronkov: CP 2009] [McMillan, Kuehlmann, Sagiv: CAV 2009] [Cotton: FORMATS 2010] [Jovanović, de Moura: JAR 2013] [Haller, Griggio, Brain, Kroening: FMCAD 2012] [Jovanović, de Moura: IJCAR 2012] [Brauße, Korovin, Korovina, Müller: FroCoS 2019]

Example: linear rational arithmetic

- ▶ Propagation as evaluation: $y \leftarrow 0 \vdash_{\mathsf{LRA}} \overline{y > 2}$
- Explanation of conflicts by Fourier-Motzkin (FM) resolution: {x < - y, -y < -2} ⊢_{LRA} x < -2 {x + y < 0, -y + 2 < 0} ⊢_{LRA} x + 2 < 0 It generates new (non-input) atoms
- FM-resolution on demand to respond to conflicts [Korovin, Tsiskaridze, Voronkov: CP 2009] [McMillan, Kuehlmann, Sagiv: CAV 2009] [Cotton: FORMATS 2010]

CDSAT integrates LRA-module with inference rules including evaluation and FM-resolution

Standard theory combination: not conflict-driven

- Equality sharing method [Nelson, Oppen: ACM TOPLAS 1979]
- Combines T_k -sat procedures as black-boxes that
 - Exchange entailed (disjunctions of) equalities between shared variables
 - Build arrangement that tells which shared variables are equal
- Stably infinite theories: infinite cardinality for shared sorts
- ► A T_k-sat procedure could be conflict-driven (inside the box), not the combination scheme

No conflict-driven T_k -sat procedure: CDSAT emulates equality sharing as it accommodates also black-box procedures

(4月) トイヨト イヨト

From sets of literals to formulas

 $\mathsf{DPLL}(\mathcal{T})$ aka $\mathsf{CDCL}(\mathcal{T})$ with $\mathcal{T} = \bigcup_{k=1}^{n} \mathcal{T}_{k}$

[Nieuwenhuis, Oliveras, Tinelli: JACM 2006] [Krstić, Goel: FroCoS 2007]

- CDCL builds candidate propositional model M
- Satellite T_k -satisfiability procedures
 - Combined by equality sharing as black-boxes
 - Signal \mathcal{T} -conflicts in \mathcal{M} and contribute \mathcal{T} -lemmas
- ► Conflict-driven inferences: only propositional (resolution) CDCL only conflict-driven procedure: CDSAT reduces to CDCL(*T*) with equality sharing

Model-based theory combination (MBTC)

Model-based equality sharing [de Moura, Bjørner: SMT 2007]

- \mathcal{T}_k -sat procedures build candidate models \mathcal{M}_k
- Exchange equalities true in M_k (btw. terms occuring in the problem)
- Not entailed: conflict, undo, update M_k
- Model-based conflict-driven arrangement construction
- \mathcal{M}_k and conflict-driven steps inside a black-box procedure

CDSAT lets model-constructing conflict-driven procedures cooperate to build a \mathcal{T} -model

- 4 回 ト 4 ヨ ト 4 ヨ ト

Conflict-driven \mathcal{T} -reasoning from sets of literals to formulas

- MCSAT (Model-Constructing SATisfiability) [de Moura, Jovanović: VMCAI 2013] [Jovanović, Barrett, de Moura: FMCAD 2013]
 - Integrates CDCL and one model-constructing conflict-driven *T*-sat procedure (theory plugin)
 - CDCL and the *T*-plugin cooperate in model construction
 - Both propositional and \mathcal{T} -reasoning are conflict-driven
- **CDSAT** generalizes MCSAT to generic $\mathcal{T} = \bigcup_{k=1}^{n} \mathcal{T}_{k}$
- ► CDSAT reduces to MCSAT if there are CDCL and one conflict-driven model-constructing *T*-sat procedure

- 4 回 ト 4 ヨ ト 4 ヨ ト

CDSAT: Conflict-driven reasoning from a theory to many

- Conflict-driven behavior and black-box integration are at odds: each conflict-driven T_k -sat procedure needs to access the trail, post assignments, perform inferences, explain T_k -conflicts, export lemmas on a par with CDCL
- ► Key abstraction in CDSAT: open the black-boxes, pull out the *T_k*-inference systems used to explain *T_k*-conflicts, and combine them in a conflict-driven way
- ▶ If \mathcal{T}_k has no conflict-driven \mathcal{T}_k -sat procedure: black-box inference rule $L_1, \ldots, L_m \vdash_k \bot$ invokes the \mathcal{T}_k -procedure to detect \mathcal{T}_k -unsat

・ 同 ト ・ ヨ ト ・ ヨ ト

More about CDSAT

- ► SMA: Satisfiability Modulo theories and Assignments (allows first-order assignments such as x←3 in input)
- CDSAT does not require model-constructing T_k-sat procedures in the strong sense of MBTC and MCSAT
- CDSAT does not require the theories to be stably infinite it suffices a leading theory that knows all sorts
- CDSAT is
 - Sound if all theory modules are
 - Terminating if all new terms come from a finite global basis
 - Complete if the theory modules are complete relative to the leading theory

Assignments of values to terms

 CDSAT treats propositional and theory reasoning similarly: formulas as terms of sort prop (from proposition)

Assignments take center stage:

 Boolean assignments to formulas first-order assignments to first-order terms

• What are values? 3, $\sqrt{2}$ are not in the signature

・ 同 ト ・ ヨ ト ・ ヨ ト

Theory extensions to define values

- From theory \mathcal{T}_k to theory extension \mathcal{T}_k^+ :
 - Add new constant symbols (and possibly axioms)
 - ► Ex.: add a constant symbol for every number (e.g., integers, rationals, algebraic reals) √2 is a constant symbol interpreted as √2
- Values in assignments are these constant symbols, called *T_k*-values (true and false are values for all theories)
- \mathcal{T}_k -assignment: assigns \mathcal{T}_k -values
- Conservative theory extension: a T⁺_k-unsatisfiable set of T_k-formulas is T_k-unsatisfiable

Plausible assignment

- ► An assignment is plausible if it does not contain L←true and L←false
- Assignments are required to be plausible
- A plausible assignment may contain {t←3.1, u←5.4, t←green, u←yellow} two by T₁ and two by T₂
- When building a model from this assignment 3.1 is identified with green and 5.4 with yellow

・ 同 ト ・ 三 ト ・ 三 ト

Problems as assignments

- Boolean assignment: Boolean values
- First-order assignment: non-Boolean values
- Satisfiability Modulo Theory (SMT) problem: a plausible Boolean assignment
- Satisfiability Modulo theory and Assignment (SMA) problem: a plausible assignment with both Boolean and first-order assignments

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theory view of an assignment

- The T_k-view of an assignment H written H_k:
 - The \mathcal{T}_k -assignments in H: those that assign \mathcal{T}_k -values
 - $u \simeq t$ if there are $u \leftarrow \mathfrak{c}$ and $t \leftarrow \mathfrak{c}$ in H
 - $u \not\simeq t$ if there are $u \leftarrow \mathfrak{c}$ and $t \leftarrow \mathfrak{q}$ in H

u and t of a sort known to \mathcal{T}_k

Global view:

- The \mathcal{T} -view of H for $\mathcal{T} = \bigcup_{k=1}^{n} \mathcal{T}_{k}$
- ► H_T has everything

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples of theory views

$$H = \{x > 1, \text{ store}(a, i, v) \simeq b, \text{ select}(a, j) \leftarrow \text{red}, y \leftarrow -1, z \leftarrow 2\}$$

$$H_{\text{Bool}} = \{x > 1, \text{ store}(a, i, v) \simeq b\}$$

$$H_{\text{Arr}} = \{x > 1, \text{ store}(a, i, v) \simeq b, \text{ select}(a, j) \leftarrow \text{red}\}$$

$$H_{\text{LRA}} = \{x > 1, \text{ store}(a, i, v) \simeq b, y \leftarrow -1, z \leftarrow 2, y \not\simeq z\}$$

$$H_{\text{EUF}} = \{x > 1, \text{ store}(a, i, v) \simeq b, y \not\simeq z\}$$

$$\text{assuming EUF has the sort of the rational numbers}$$

$$\text{Global view: } H \cup \{y \not\simeq z\}$$

イロト イヨト イヨト イヨト

臣

Assignments and models: endorsement

- Model *M* endorses (⊨) *u*←*c*: *M* interprets *u* and *c* as the same element
- Enough if the assignment is Boolean, otherwise:
- ► $u \leftarrow \mathfrak{c}, t \leftarrow \mathfrak{c}$: \mathcal{M} endorses $u \simeq t$
- ► $u \leftarrow c, t \leftarrow q$: \mathcal{M} endorses $u \not\simeq t$ if \mathcal{M} endorses the theory view
- \mathcal{T}_k -satisfiable: a \mathcal{T}_k^+ -model endorses the \mathcal{T}_k -view
- *T*-satisfiable: a *T*⁺-model endorses the global view (global endorsement)

・ 同 ト ・ ヨ ト ・ ヨ ト

Theory modules

For theories $\mathcal{T}_1, \ldots, \mathcal{T}_n$ theory modules $\mathcal{I}_1, \ldots, \mathcal{I}_n$

- $\blacktriangleright \text{ Inference } J \vdash_k L$
- J is a \mathcal{T}_k -assignment
- L is a singleton Boolean assignment:
- Getting y←2 from x←1 and (x + y)←3 is a forced decision
- ▶ Sound inferences: if $J \vdash_k L$ then $J \models L$

•
$$J \models L$$
: if $\mathcal{M} \models J_k$ then $\mathcal{M} \models L$

Local basis: basis_k(X) contains all terms that I_k can generate from set of terms X

- 4 回 ト 4 ヨ ト 4 ヨ ト

Equality inferences

All theory modules include equality inferences:

- ▶ Reflexivity: $\vdash t \simeq t$
- Symmetry: $t \simeq s \vdash s \simeq t$
- ▶ Transitivity: $t \simeq s$, $s \simeq u \vdash t \simeq u$
- Same value: $t \leftarrow \mathfrak{c}, s \leftarrow \mathfrak{c} \vdash t \simeq s$
- ▶ Different values: $t \leftarrow \mathfrak{c}, s \leftarrow \mathfrak{q} \vdash t \not\simeq s$

With first-order assignments, there are two ways to make $t \simeq s$ true: $(t \simeq s) \leftarrow$ true and $t \leftarrow c$, $s \leftarrow c$

・ 同 ト ・ 三 ト ・ 三 ト

Theory module for propositional logic

$$\Sigma_{\mathsf{Bool}} = (\{\mathsf{prop}\}, \{\neg, \lor, \land, \simeq_{\mathsf{prop}}\})$$

- Bool⁺ adds true and false: trivial extension
- ▶ Evaluation: $(L_1 \leftarrow \mathfrak{b}_1, \ldots, L_m \leftarrow \mathfrak{b}_m) \vdash_{\mathsf{Bool}} L \leftarrow \mathfrak{b}$

▶ Negation:
$$\neg L \vdash_{\mathsf{Bool}} \overline{L}$$
 and $\overline{\neg L} \vdash_{\mathsf{Bool}} L$

- ► Conjunction: $\overline{L_1 \lor \cdots \lor L_m} \vdash_{\mathsf{Bool}} \overline{L_i}$ and $L_1 \land \cdots \land L_m \vdash_{\mathsf{Bool}} L_i$
- ▶ Unit propagation: $L_1 \lor \cdots \lor L_m, \{\overline{L_j} \mid j \neq i\} \vdash_{\mathsf{Bool}} L_i$ and $\overline{L_1 \land \cdots \land L_m}, \{L_j \mid j \neq i\} \vdash_{\mathsf{Bool}} \overline{L_i}$
- basis_{Bool}(X): all subformulas of formulas in X and all their disjunctions (for learning)

Theory module for equality

•
$$\Sigma_{\mathsf{EUF}} = (S, F)$$
, prop $\in S$, $\simeq_S \subseteq F$

► EUF⁺ may be trivial or add countably many values for each s ∈ S \ {prop} used as labels of congruence classes

Congruence:

basis_{EUF}(X): all subterms of terms in X and all equalities between them

(4月) トイヨト イヨト

Theory module for arrays

$$\Sigma_{\operatorname{Arr}} = (S, F), S = \{\operatorname{prop}, I, V, \dots, I \Rightarrow V, \dots\}$$

$$F = \simeq_S \cup \{\operatorname{select}_{I \Rightarrow V}, \operatorname{store}_{I \Rightarrow V}, \operatorname{diff}_{I \Rightarrow V}\}$$

- Arr⁺: like for EUF⁺
- Inference rules corresponding to congruence axioms, select-over-store axioms, and extensionality axiom:

► $a \not\simeq b \vdash_{\mathsf{Arr}} a[\mathsf{diff}(a, b)] \not\simeq b[\mathsf{diff}(a, b)]$

basis_{Arr}(X): all subterms of terms in X, equalities btw them, and witness terms a[diff(a, b)], b[diff(a, b)]

(4月) トイヨト イヨト

Theory module for linear arithmetic

- ► Σ_{LRA} : $S = \{\mathsf{prop}, \mathsf{Q}\}, F = \simeq_{\mathcal{S}} \cup \{1, +, <, \leq, c \cdot\}$ for all $c \in \mathbb{Q}$
- ▶ LRA⁺ adds constants \widetilde{q} for all rational numbers $q \in \mathbb{Q}$
- ► Evaluation: $(t_1 \leftarrow \tilde{q_1}, \ldots, t_m \leftarrow \tilde{q_m}) \vdash_{\mathsf{LRA}} I \leftarrow \mathfrak{b}$
- FM-resolution: $(t_1 \leq_1 x, x \leq_2 t_2) \vdash_{\mathsf{LRA}} t_1 \leq_3 t_2$
- Disequality elimination:

 $t_1 \leq x, x \leq t_2, t_1 \simeq_{\mathsf{Q}} t_0, t_2 \simeq_{\mathsf{Q}} t_0, x \not\simeq_{\mathsf{Q}} t_0 \vdash_{\mathsf{LRA}} \bot$

▶ basis_{LRA}(X): subterms, equalities, disequalities restricting FM-resolution to resolve on the ≺_{LRA}-maximum variable

CDSAT trail: a sequence of assignments

- Each assignment is a decision ${}_{?}A$ or a justified assignment ${}_{H\vdash}A$
- Decision: either Boolean or first-order; opens the next level
- Justification of A: set H of assignments that appear before A
 - Due to an inference $H \vdash_k A$
 - lnput assignment $(H = \emptyset)$
 - Due to conflict-solving transitions
 - Boolean or input first-order assignment in SMA
- Level of A: max among those of the elements of H
- A justified assignment of level 5 may appear after a decision of level 6: late propagation; a trail is not a stack

The CDSAT transition system

- Trail rules: Decide, Deduce, Fail, ConflictSolve
- Apply to the trail Γ
- Conflict state rules: UndoClear, Resolve, UndoDecide, Learn
- Apply to trail and conflict: $\langle \Gamma, H \rangle$ with $H \subseteq \Gamma$
- Conflict: H is an unsatisfiable assignment
- ► Parameter: finite global basis B:
 - A set from which CDSAT can draw new terms
 - Used only to prove termination of CDSAT
 - Its existence can be shown from that of local bases

・ 同 ト ・ ヨ ト ・ ヨ ト

The CDSAT trail rules: Decide

Decide: $\Gamma \longrightarrow \Gamma$, $?(u \leftarrow \mathfrak{c})$ adds decision $?(u \leftarrow \mathfrak{c})$

if $u \leftarrow \mathfrak{c}$ is an acceptable \mathcal{T}_k -assignment for \mathcal{I}_k in Γ_k :

- \triangleright Γ_k does not already assign a \mathcal{T}_k -value to u
- $u \leftarrow \mathfrak{c}$ first-order: it does not happen $J \cup \{u \leftarrow \mathfrak{c}\} \vdash_k L$ where $J \subseteq \Gamma_k$ and $\overline{L} \in \Gamma_k$
- *u* is relevant to *T_k*:
 either *u* occurs in Γ_k and *T_k* has *T_k*-values for its sort;
 or *u* is an equality whose sides occur in Γ_k,
 T_k has their sort, but not *T_k*-values

Example: relevance

$$\bullet \ H = \{x \leftarrow 5, \ f(x) \leftarrow 2, \ f(y) \leftarrow 3\}$$

- ▶ x, y: Q, f: Q → Q, LRA and EUF share sort Q
- $\blacktriangleright H_{\mathsf{LRA}} = H \cup \{ x \not\simeq f(x), \ x \not\simeq f(y), \ f(x) \not\simeq f(y) \}$
- $\blacktriangleright H_{\mathsf{EUF}} = \{ x \not\simeq f(x), \ x \not\simeq f(y), \ f(x) \not\simeq f(y) \}$
- x and y are LRA-relevant, not EUF-relevant
- $x \simeq y$ is EUF-relevant, not LRA-relevant
- LRA makes x and y equal/different by assigning them same/different values
- EUF makes x and y equal/different by assigning a truth value to x ~ y

The CDSAT trail rules: Deduce

Deduce: $\Gamma \longrightarrow \Gamma, J \vdash L$

- Adds justified assignment $J \vdash L$
 - ▶ $\underline{J} \vdash_k \underline{L}$, for some k, $1 \le k \le n$, $J \subseteq \Gamma$, and $L \notin \Gamma$
 - ► L ∉ Γ

► *L* is in *B* (finite global basis)

▶ Both T_k -propagation and explanation of T_k -conflicts

(4月) トイヨト イヨト

The CDSAT trail rules: Fail and ConflictSolve

- ► $J \vdash_k L$, for some k, $1 \le k \le n$, $J \subseteq \Gamma$, $L \notin \Gamma$
- $\overline{L} \in \Gamma$: $J \cup \{\overline{L}\}$ is a conflict
- If level_Γ(J ∪ {L̄}) = 0
 Fail: Γ → unsat declares unsatisfiability

► If
$$\operatorname{level}_{\Gamma}(J \cup \{\overline{L}\}) > 0$$

ConflictSolve: $\Gamma \longrightarrow \Gamma'$
solves the conflict by calling the conflict-state rules
 $\langle \Gamma; J \cup \{\overline{L}\} \rangle \Longrightarrow^* \Gamma'$

(4月) トイヨト イヨト

The CDSAT conflict state rules: UndoClear

The conflict contains a first-order assignment that stands out as its level is maximum in the conflict:

UndoClear: $\langle \Gamma; E \uplus \{A\} \rangle \Longrightarrow \Gamma^{\leq m-1}$

- A is a first-order decision of level $m > \text{level}_{\Gamma}(E)$
- Removes A and all assignments of level $\geq m$
- ► Γ^{≤m-1}: the restriction of trail Γ to its elements of level at most m-1

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: Deduce as explanation + UndoClear

$$\Gamma = -2 \cdot x - y < 0, \ x + y < 0, \ x < -1$$
 (level 0)

- 1. Decide $y \leftarrow 0$ (level 1)
- 2. LRA-conflict: $\{-2 \cdot x y < 0, x < -1, y \leftarrow 0\}$
- 3. Explanation by FM-resolution: $\{-y < 2 \cdot x, 2 \cdot x < -2\} \vdash_{LRA} -y < -2$
- 4. Deduce places -y < -2 on the trail (late propagation: level 0)
- 5. Evaluation: $y \leftarrow 0 \vdash_{\mathsf{LRA}} \overline{-y < -2}$
- 6. LRA-conflict: $\{y \leftarrow 0, -y < -2\}$
- 7. UndoClear removes $y \leftarrow 0$ resulting in

$$f = -2 \cdot x - y < 0, \ x + y < 0, \ x < -1, \ -y < -2$$

・ 同 ト ・ 三 ト ・ 三 ト

Explanation of conflicts in CDSAT

- Explanation of a *T_k*-conflict by *I_k*-inferences encapsulated as Deduce steps: CDSAT not in conflict state
- Until the conflict surfaces as a Boolean conflict:
 J ⊢_k L and L ∈ Γ
 J ∪ {L} is a conflict
- CDSAT switches to conflict state $\langle \Gamma; H \rangle$
- Explanation of conflict H by replacing justified assignments in H with their justifications: Resolve transition rule

(4月) トイヨト イヨト

The CDSAT conflict state rules: Resolve

Resolve: $\langle \Gamma; E \uplus \{A\} \rangle \Longrightarrow \langle \Gamma; E \cup H \rangle$

- A is a justified assignment $_{H\vdash}A$
- ► Replace *A* by its justification *H*
- A can be a Boolean or a first-order assignment
- If A is first-order, it comes from the input (H = ∅): Resolve removes it from the conflict (not from the trail)

・ 同 ト ・ 三 ト ・ 三 ト

Example of Resolve

- Γ includes: $(\neg L_4 \lor L_5)$, $(\neg L_2 \lor \neg L_4 \lor \neg L_5)$ (level 0)
 - 1. Decide: A_1 (level 1)
 - 2. Decide: L_2 (level 2)
 - 3. Decide: A_3 (level 3)
 - 4. Decide: L₄ (level 4)
 - 5. Deduce: L_5 with justification $\{\neg L_4 \lor L_5, L_4\}$ (level 4)
 - 6. Conflict: $\{\neg L_2 \lor \neg L_4 \lor \neg L_5, L_2, L_4, L_5\}$ $\neg L_2 \lor \neg L_4 \lor \neg L_5$ is the CDCL conflict clause
 - 7. Resolve: $\{\neg L_2 \lor \neg L_4 \lor \neg L_5, L_2, L_4, \neg L_4 \lor L_5\}$ $\neg L_2 \lor \neg L_4$ is the CDCL conflict clause, resolvent from the previous one and $\neg L_4 \lor L_5$

The CDSAT conflict state rules: Resolve again

Resolve: $\langle \Gamma; E \uplus \{A\} \rangle \Longrightarrow \langle \Gamma; E \cup H \rangle$

- A is a justified assignment $_{H\vdash}A$
- Replace A by its justification H
- Provided H does not contain a first-order decision A' that stands out as its level is maximum in the conflict (level_Γ(A') = level_Γ(E ⊎ {A}))
- Avoiding a Resolve–UndoClear–Decide loop
- And what if there is such an A'? UndoDecide rule

・ 同 ト ・ 三 ト ・ 三 ト

The CDSAT conflict state rules: UndoDecide

UndoDecide: $\langle \Gamma; E \uplus \{L\} \rangle \Longrightarrow \Gamma^{\leq m-1}, {}_{?}\overline{L}$

L is a Boolean justified assignment _H
L such that

- H contains a first-order decision A'
- $\operatorname{level}_{\Gamma}(A') = \operatorname{level}_{\Gamma}(L) = \operatorname{level}_{\Gamma}(E) = m$
- UndoDecide removes A' and decides \overline{L}
- A' is first-order and cannot be flipped (first-order decisions do not have complement)
- The Boolean L that depends on A' can be flipped

・ 同 ト ・ ヨ ト ・ ヨ ト

Example of UndoDecide

$$\Gamma = x > 1 \lor y < 0, \ x < -1 \lor y > 0$$
 (level 0)

- 1. Decide: $x \leftarrow 0$ (level 1)
- 2. Deduce: $(x > 1) \leftarrow \text{false (level 1)}$ $(x < -1) \leftarrow \text{false (level 1)}$
 - $(y < 0) \leftarrow$ true (level 1)
 - $(y > 0) \leftarrow true (level 1)$
- 3. LRA-conflict: $\{y < 0, y > 0\}$
- 4. Resolve: $\{x > 1 \lor y < 0, (x > 1) \leftarrow \text{false}, x < -1 \lor y > 0, (x < -1) \leftarrow \text{false}\}$
- 5. UndoDecide: $(x > 1) \leftarrow$ true (level 1)

・ 同 ト ・ 三 ト ・ 三 ト

The CDSAT conflict state rules: Learn

Learn: $\langle \Gamma; E \uplus H \rangle \Longrightarrow \Gamma^{\leq m}, {}_{E \vdash} F$

- *H* contains only Boolean assignments: *H* as $L_1 \land \ldots \land L_k$
- Since $E \uplus H \models \perp$, it is $E \models \overline{L_1} \lor \ldots \lor \overline{L_k}$
- Learned lemma: $F = \overline{L_1} \lor \ldots \lor \overline{L_k}$ (clausal form of H)
- ▶ Provided $F \notin \Gamma$, $\overline{F} \notin \Gamma$, $F \in \mathcal{B}$
- Choice of level where to backjump to: level_Γ(E) ≤ m < level_Γ(H)

- 4 回 ト 4 ヨ ト 4 ヨ ト

Recall the example

- Γ includes: $(\neg L_4 \lor L_5)$, $(\neg L_2 \lor \neg L_4 \lor \neg L_5)$ (level 0)
 - 1. Decide: A_1 (level 1)
 - 2. Decide: L_2 (level 2)
 - 3. Decide: A₃ (level 3)
 - 4. Decide: L₄ (level 4)
 - 5. Deduce: L_5 with justification { $\neg L_4 \lor L_5$, L_4 } (level 4)
 - 6. Conflict: $\{\neg L_2 \lor \neg L_4 \lor \neg L_5, L_2, L_4, L_5\}$ $\neg L_2 \lor \neg L_4 \lor \neg L_5$ is the CDCL conflict clause
 - Resolve: {¬L₂∨¬L₄∨¬L₅, L₂, L₄, ¬L₄∨L₅} ¬L₂∨¬L₄ is the CDCL conflict clause, resolvent from the previous one and ¬L₄∨L₅

Examples of learning and backjumping by Learn

Conflict: {
$$\neg L_2 \lor \neg L_4 \lor \neg L_5$$
, L_2 , L_4 , $\neg L_4 \lor L_5$ }

► Learn with $H = \{L_2, L_4\}$: learns the first assertion clause $\neg L_2 \lor \neg L_4$ with justification $\{\neg L_2 \lor \neg L_4 \lor \neg L_5, \neg L_4 \lor L_5\}$ (level 0)

• With destination level m = 0: restart from $(\neg L_4 \lor L_5), (\neg L_2 \lor \neg L_4 \lor \neg L_5), (\neg L_2 \lor \neg L_4)$

• With destination level m = 2:

Backjump to (¬L₄∨L₅), (¬L₂∨¬L₄∨¬L₅), A₁, L₂, (¬L₂∨¬L₄)
 Deduce: ¬L₄ with justification {¬L₂∨¬L₄, L₂}

An example in a union of theories

- $\Gamma = f(select(store(a, i, v), j)) \simeq w, f(u) \simeq w 2, i \simeq j, u \simeq v$
 - ▶ Decide: $u \leftarrow \mathfrak{c}$ (level 1)
 - ▶ Decide: $v \leftarrow c$ (level 2)
 - ▶ Decide: $select(store(a, i, v), j) \leftarrow c$ (level 3)
 - ▶ Decide: $w \leftarrow 0$ (level 4)
 - ▶ Decide: $f(select(store(a, i, v), j)) \leftarrow 0$ (level 5)
 - Decide: $f(u) \leftarrow -2$ (level 6)
 - Deduce: $u \simeq select(store(a, i, v), j)$ (level 3)
 - Deduce: f(u) ≄ f(select(store(a, i, v), j)) (level 6) Explaining the EUF-conflict by equality inferences

Example of learning and backjumping by Learn

- $\Gamma = f(select(store(a, i, v), j)) \simeq w, f(u) \simeq w 2, i \simeq j, u \simeq v$
 - Deduce: $u \simeq select(store(a, i, v), j)$ (level 3)
 - ► Deduce: $f(u) \simeq f(select(store(a, i, v), j))$ (level 6)
 - Conflict: the last two yield \perp in \mathcal{I}_{EUF}
 - Conflict:
 - $\{u \simeq select(store(a, i, v), j), f(u) \not\simeq f(select(store(a, i, v), j))\}$
 - Learn with destination level 3 backjumps and adds f(u) ~ f(select(store(a, i, v), j)) with u ~ select(store(a, i, v), j) as justification

Proofs in CDSAT

- Proof objects in memory (checkable by proof checker)
 - The theory modules produce proofs
 - Proof-carrying CDSAT transition system
 - Proof reconstruction: from proof terms to proofs (e.g., resolution proofs)
- LCF style as in interactive theorem proving (correct by construction)
 - Trusted kernel of primitives

(4月) トイヨト イヨト

Implementation

- 1. MCSAT as add-on in DPLL(T)-based solvers Z3, CVC4, Yices
- 2. MCSAT/CDSAT with the E-graph at the center [Bobot, Graham-Lengrand, Marre, Bury: SMT 2018]
- CDSAT-based prototype SMT/SMA solver Eos [MPB, Mazzi: SMT 2019]
- Two versions of Yices: one DPLL(T)-based and one CDSAT-based

Current and future work

CDSAT search plans: both global and local issues

- Heuristic strategies to make decisions, prioritize theory inferences, control lemma learning
- Efficient techniques to detect the applicability of theory inference rules and the acceptability of assignments
- More theory modules (e.g., real arithmetic)
- Unions of non-disjoint theories (e.g., bridging functions)
- Formulas with quantifiers: CDSAT(SGGS)

- 4 回 ト 4 ヨ ト 4 ヨ ト

References

- Satisfiability modulo theories and assignments.
 Proc. of CADE-26, LNAI 10395, 42–59, Springer, August 2017.
- Proofs in conflict-driven theory combination. Proc. of the 7th ACM SIGPLAN Int. Conf. on Certified Programs and Proofs (CPP), ACM Press, 186–200, January 2018.
- Conflict-driven satisfiability for theory combination: transition system and completeness.

Journal of Automated Reasoning, 64(3):579-609, March 2020.

 Conflict-driven satisfiability for theory combination: modules, lemmas, and proofs.

Journal article, 49 pages, submitted, February 2020.

Authors: MPB, S. Graham-Lengrand, and N. Shankar

Thanks

Thank you!

Maria Paola Bonacina Conflict-Driven Reasoning in Unions of Theories

イロト イヨト イヨト イヨト

E