Reasoning about quantifiers in SMT: the QSMA algorithm ${ }^{1}$

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy, EU

Invited Keynote Speech, 23rd Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD) Ames, IA, USA, 26 Oct. 2023

Also presented with title "The QSMA algorithm" at Dagstuhl Seminar 23471 "The Next Generation of
Deduction Systems: from Composition to Compositionality" 21 Nov. 2023
${ }^{1}$ Based on joint work with S. Graham-Lengrand and Ch. Vauthier

Introduction

The QSMA algorithm

Optimized QSMA: the OptiQSMA algorithm

Discussion

Motivation

- Applications of automated reasoning (e.g., analysis, verification, synthesis of programs) need reasoners that
- Decide the satisfiability of formulas involving both
- Quantifiers and
- Defined symbols:

Symbols defined in background theories

The big picture

Major research objectives:

1. Enriching theorem provers with built-in theories
2. Integrating theorem provers and SMT solvers
3. Endowing SMT solvers with quantifier reasoning

The QSMA algorithm contributes to Objective (3)

Quantifier elimination (QE)

- A theory \mathcal{T} admits QE if for all formulas φ there exists a \mathcal{T}-equivalent quantifier-free (QF) formula F
- Reduce \mathcal{T}-satisfiability of formulas to that of QF formulas
- Few theories admit QE
- QE is prohibitively expensive:

Exponential in LRA, doubly exponential in LIA

- Not a practical solution
- Practical solution: QSMA algorithm

General problem statement

Quantified satisfiability modulo theory and assignment
Given:

- A theory \mathcal{T}
- A formula φ with arbitrary quantification
- An initial assignment to Boolean or first-order subterms of φ
- Either find a \mathcal{T}-model of φ that extends the initial assignment
- Or report that none exists

The QSMA algorithm

A new algorithm for the satisfiability of a formula φ with arbitrary quantification (alternation is key) modulo:

- A theory \mathcal{T} with unique \mathcal{T}-model \mathcal{M}_{0}
- An initial assignment to the free variables of φ
- \mathcal{T} is complete:

Consistent + for all sentences F either $\mathcal{T} \vdash F$ or $\mathcal{T} \vdash \neg F$

- \mathcal{T}-model: extension of \mathcal{M}_{0} with an assignment to free variables

A satisfiable example in LRA

$$
\varphi_{1}=\exists x \cdot \forall y \cdot \exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \geq 0
$$

- Say we assign $x \leftarrow 0$
- For all values for y there exists a satisfying z namely $z \leftarrow \max (0,-y)$ (read $y+z \geq 0$ as $z \geq-y$)
- Therefore φ_{1} is true in LRA
(Unique \mathcal{T}-model \mathcal{M}_{0} : for a sentence satisfiability, validity, and truth in \mathcal{M}_{0} coincide)

An unsatisfiable example in LRA

$$
\varphi_{2}=\exists x \cdot \forall y \cdot \exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \leq 0
$$

- Say we assign $x \leftarrow n$ for some $n \geq 0$ (n is immaterial)
- For $y \leftarrow 1$ no value for z satisfies $z \geq 0 \wedge z \leq-1$
- Therefore φ_{2} is false in LRA
(Unique \mathcal{T}-model \mathcal{M}_{0} : for a sentence unsatisfiability, invalidity, and falsity in \mathcal{M}_{0} coincide)

High-level view of the QSMA algorithm

- Apply $\neg \neg$ to convert \forall into \exists
- Use Boolean variables as proxies for quantified subformulas
- Recursive descent over tree structure of formula
- Remove one level/block of \exists-quantifier(s) and assign values to freed 1st-order variables and proxies
- Assignments come from underlying SMA solver that gets a formula and a prior assignment (initially the initial assignment)
- Model-based guidance to weed out large parts of the space of possible assignments

More about formula view and recursive descent

$$
\varphi=\exists \bar{x} \cdot F[\bar{z}, \bar{x}, \bar{p}]\left\{p_{i} \leftarrow \exists \bar{y}_{i} . G_{i}\left[\bar{z}, \bar{x}, \bar{y}_{i}\right]\right\}_{i=1}^{k} \text { where } \bar{z}=F V(\varphi)
$$

- F is QF as proxies p_{i} replace subformulas $\varphi_{i}=\exists \bar{y}_{i} \cdot G_{i}\left[\bar{z}, \bar{x}, \bar{y}_{i}\right]$
- $F V(\varphi)=\emptyset$: quantified SMA problems when working subformulas under assignment to higher-level variables
- $p_{i} \leftarrow$ true/false: try to show φ_{i} true / false
- p_{i} undefined: can be ignored
- φ is true under the initial assignment iff

QSMA can extend the initial assignment to one satisfying

$$
F[\bar{z}, \bar{x}, \bar{p}] \wedge \bigwedge_{i}\left(p_{i} \Leftrightarrow \varphi_{i}\right)
$$

The satisfiable example in LRA done by QSMA

$$
\varphi_{1}=\exists x . \neg \exists y . \neg \exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \geq 0
$$

- $\exists x . \neg p_{1}$

$$
p_{1}=\exists y . \neg \exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \geq 0
$$

$-x \leftarrow 0, p_{1} \leftarrow$ false

- $\exists y . \neg p_{2}$
$p_{2}=\exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \geq 0$
$\rightarrow y \leftarrow n, p_{2} \leftarrow$ true
$\rightarrow \exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \geq 0$

$$
\begin{aligned}
& (y,-p 2) \\
& \int_{p 2} y \text { and } p 2 \text { are assignable }
\end{aligned}
$$

- $z \leftarrow \max (0,-n)$

$$
\begin{aligned}
& (\mathrm{z}, \mathrm{z}>=0 \text { and } \mathrm{x}>=0 \text { and } \mathrm{y}+\mathrm{z}>=0) \\
& \mathrm{z} \text { is assignable }
\end{aligned}
$$

- True

The unsatisfiable example in LRA done by QSMA

$$
\varphi_{2}=\exists x \cdot \neg \exists y \cdot \neg \exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \leq 0
$$

- $\exists x . \neg p_{1}$
$p_{1}=\exists y . \neg \exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \leq 0$
$\rightarrow x \leftarrow n(n \geq 0), p_{1} \leftarrow$ false
$\rightarrow \exists y . \neg p_{2}$
$p_{2}=\exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \leq 0$
- $y \leftarrow 1, p_{2} \leftarrow$ true
- $\exists z . z \geq 0 \wedge x \geq 0 \wedge y+z \leq 0$
- No z satisfies
$z \geq 0 \wedge z \leq-1$
$(\mathrm{x},-\mathrm{p} 1) \mathrm{x}$ and p 1 are assignable p1
($\mathrm{y},-\mathrm{p} 2$)
y and p2 are assignable
p2
$(\mathrm{z}, \mathrm{z}>=0$ and $\mathrm{x}>=0$ and $\mathrm{y}+\mathrm{z}<=0)$ z is assignable
- False

More general example

- QSMA handles arbitrary formulas
- Quantifiers in arbitrary positions: no need of prenex normal form
- $\varphi=\exists x \cdot((\forall y \cdot F[x, y]) \Rightarrow(\forall z \cdot G[x, z]))$ where F and G are QF
- Eliminating implication and universal quantifiers yields:
$\varphi=\exists x .((\exists y . \neg F[x, y]) \vee(\neg \exists z . \neg G[x, z]))$

The more general example as done by QSMA

$$
\varphi=\exists x \cdot((\exists y . \neg F[x, y]) \vee(\neg \exists z . \neg G[x, z]))
$$

- $\exists x .\left(p_{1} \vee \neg p_{2}\right)$
$p_{1}=\exists y . \neg F[x, y]$
$p_{2}=\exists z . \neg G[x, z]$
- Assign x, p_{1}, p_{2}
- $p_{1} \leftarrow$ true: find a y satisfying $\neg F[x, y]$

- $p_{2} \leftarrow$ false: show that there is no z satisfying $\neg G[x, z]$

From formula to QSMA-tree

$\varphi=\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]\left\{p_{i} \leftarrow \exists \bar{y}_{i} . G_{i}\left[\bar{z}, \bar{x}, \bar{y}_{i}\right]\right\}_{i=1}^{k}$

- QSMA-tree $\mathcal{G}=(\bar{z}, T)$ with rigid variables \bar{z}
- $k=0: T$ is a node labeled ($\bar{x}, F[\bar{z}, \bar{x}]$)
- $k>0$:
- T has root labeled ($\bar{x}, F[\bar{z}, \bar{x}, \bar{p}]$) with k arcs labeled p_{1}, \ldots, p_{k} to children b_{1}, \ldots, b_{k}
- Child b_{i} labeled $\left(\bar{y}_{i}, G_{i}\left[\bar{z}, \bar{x}, \bar{y}_{i}\right]\right)$ is root of QSMA-tree $\mathcal{G}_{i}=\left((\bar{z}, \bar{x}), T_{i}\right)$ with rigid variables $\bar{z} \uplus \bar{x}$ for $\varphi_{i}=\exists \bar{y}_{i} . G_{i}\left[\bar{z}, \bar{x}, \bar{y}_{i}\right]$

Rigid variables and assignable variables

Rigid and assignable variables at a node

QSMA-tree $\mathcal{G}=(\bar{z}, T)$

- Node n labeled (\bar{x}, F)
- Local variables $n \cdot \bar{x}$
- QF formula n.F
- k outgoing arcs labeled
p_{1}, \ldots, p_{k}
- Assignable vars at n :
$\operatorname{Var}(n)=\bar{x} \uplus\left\{p_{1}, \ldots, p_{k}\right\}$
- Rigid vars at n :
$\operatorname{Rigid}(n)=\bar{z} \uplus \bar{x}_{1} \uplus \ldots \uplus \bar{x}_{m}$
- $\mathcal{G}_{n}=\left(\operatorname{Rigid}(n), T_{n}\right)$

From QSMA-tree back to formula

QSMA-tree: $\mathcal{G}=(\bar{z}, T)$
For all nodes n of T, the formula $n . \psi$ at node n :

- Node n is leaf labeled $(\bar{x}, F[\bar{z}, \bar{x}])$: $n . \psi=\exists \bar{x} . F[\bar{z}, \bar{x}]$
- Node n has label ($\bar{x}, F[\bar{z}, \bar{x}, \bar{p}]$) and children b_{1}, \ldots, b_{k} via arcs $\left(n, b_{i}\right)$ labeled p_{i} :
$n . \psi=\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]\left\{p_{i} \leftarrow b_{i} \cdot \psi\right\}_{i=1}^{k}$
for $b_{i} . \psi$ the formula at node b_{i}
If \mathcal{G} is the QSMA-tree for φ and r is the root of \mathcal{G} then $r \cdot \psi=\varphi$

Satisfaction of QSMA-tree

QSMA-tree $\mathcal{G}=(\bar{z}, T)$ with root r

- \mathcal{M} : extension of \mathcal{M}_{0} to $\operatorname{Rigid}(r)=\bar{z}$
- $\mathcal{M} \models \mathcal{G}$ if there exists an extension \mathcal{M}^{\prime} of \mathcal{M} to $\operatorname{Var}(r)$ s.t.

1. $\mathcal{M}^{\prime} \models r$. F
2. For all children b of r via arc (r, b) labeled p

$$
\mathcal{M}^{\prime}(p)=\text { true iff } \mathcal{M}^{\prime} \models \mathcal{G}_{b}
$$

If $\mathcal{M}^{\prime}(p)=$ true: try to show $b . \psi$ true
If $\mathcal{M}^{\prime}(p)=$ false: try to show $b . \psi$ false
If \mathcal{M}^{\prime} is partial and does not assign p : ignore b. ψ
Thm: \mathcal{G} is the QSMA-tree for formula $\varphi: \mathcal{M} \models \mathcal{G}$ iff $\mathcal{M} \models \varphi$

Assigning variables in QSMA

Assume to have a solver for theory \mathcal{T} (and model \mathcal{M}_{0}) offering a model extension function SMA:

- Given formula $\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$, where F is QF and extension \mathcal{M} of \mathcal{M}_{0} to \bar{z},
- $\operatorname{SMA}(F[\bar{z}, \bar{x}, \bar{p}], \mathcal{M})$ returns:
- Either extension \mathcal{M}^{\prime} of \mathcal{M} to $\bar{x} \uplus \bar{p}$ such that $\mathcal{M}^{\prime} \models F[\bar{z}, \bar{x}, \bar{p}]$
- Or nil if no such extension exists
- Testing all possible assignments: impossible, infinitely many
- Needed: model-based guidance

Under-approximations and over-approximations

Formula φ with $F V(\varphi)=\bar{z} \quad \llbracket \varphi \rrbracket$: set of models of φ

- Under-approximation of φ : QF formula U with $F V(U)=\bar{z}$ for all extensions \mathcal{M} of \mathcal{M}_{0} to \bar{z}
$\mathcal{M} \models U$ implies $\mathcal{M} \models \varphi$ under-approximations help to return true
- Over-approximation of φ : QF formula O with $F V(O)=\bar{z}$ for all extensions \mathcal{M} of \mathcal{M}_{0} to \bar{z}
$\mathcal{M} \models \varphi$ implies $\mathcal{M} \models O$
$\mathcal{M} \not \vDash O$ implies $\mathcal{M} \not \vDash \varphi$
over-approximations help to return false

$$
\llbracket U \rrbracket \subseteq \llbracket \varphi \rrbracket \subseteq \llbracket O \rrbracket
$$

Under- and over-approximations in QSMA

- QSMA-tree $\mathcal{G}=(\bar{z}, T)$ for formula φ
- Given \mathcal{M} extending \mathcal{M}_{0} to \bar{z}, the QSMA algorithm determines whether $\mathcal{M} \vDash \mathcal{G}$:
- For all nodes n of T maintain under-approximation $n . U$ of $n . \psi$ and over-approximation $n . O$ of $n . \psi$
- Goal: $\mathcal{M} \models n . U \vee \neg n . O$: if $\mathcal{M} \equiv n . U$ return true for \mathcal{G}_{n} (i.e., for n. ψ) if $\mathcal{M} \not \vDash n . O$ return false for \mathcal{G}_{n} (i.e., for $n . \psi$)

Formulas $n . \psi$ have the form $\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$

Model-based under-approximations in QSMA

Assume to have a solver for theory \mathcal{T} (and model \mathcal{M}_{0}) offering a model-based under-approximation function MBU:

- Given formula $\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$, where F is QF and extension \mathcal{M} of \mathcal{M}_{0} to $\bar{z} \uplus \bar{p}$ such that $\mathcal{M} \vDash \exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$
- $\operatorname{MBU}(F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M})$ returns an under-approximation of $\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$ that is true in \mathcal{M} : a QF formula $U[\bar{z}, \bar{p}]$ such that
- $\mathcal{T} \models U[\bar{z}, \bar{p}] \Rightarrow(\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}])$ and
- $\mathcal{M} \models U[\bar{z}, \bar{p}]$
$U[\bar{z}, \bar{p}]: \mathcal{T}$-interpolant between model and formula

Model-based over-approximations in QSMA

Assume to have a solver for theory \mathcal{T} (and model \mathcal{M}_{0}) offering a model-based over-approximation function MBO:

- Given formula $\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$, where F is QF and extension \mathcal{M} of \mathcal{M}_{0} to $\bar{z} \uplus \bar{p}$ such that $\mathcal{M} \not \vDash \exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$
- $\operatorname{MBO}(F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M})$ returns an over-approximation of $\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]$ that is false in \mathcal{M} : a QF formula $O[\bar{z}, \bar{p}]$ such that
- $\mathcal{T} \models(\exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]) \Rightarrow O[\bar{z}, \bar{p}]$ and
- $\mathcal{M} \not \vDash O[\bar{z}, \bar{p}]$
$O[\bar{z}, \bar{p}]:$ reverse \mathcal{T} - interpolant between formula and model

Examples of MBU and MBO

- Examples of MBU:
- Model-based projection
[Komuravelli, Gurfinkel, Chaki: CAV 2014,
FMSD journal 2016]
[Bjørner, Janota: LPAR 2015 (short)]
- Model generalization for LRA [Dutertre: SMT 2015]
- Model generalization for NRA [Jovanović, Dutertre: CAV 2021]
- Examples of MBO:
- Unsatisfiable core (purely Boolean assignment)
- Model interpolation for NRA [Jovanović, Dutertre: CAV 2021]

Weakening and strengthening approximations in QSMA

QSMA-tree $\mathcal{G}=(\bar{z}, T)$ for formula φ
For all nodes n of T :

- Weaken $n . U$ so that $\llbracket n . U \rrbracket$ inflates by introducing a disjunction with an MBU
- Strengthen n. O so that $\llbracket n . O \rrbracket$ deflates by introducing a conjunction with an MBO
- Inflate $\llbracket n . U \rrbracket$ and deflate $\llbracket n . O \rrbracket$ to zoom in on either a model of $n . \psi$ or its non-existence

Main function of the QSMA algorithm

@pre: $\mathcal{G}=(\bar{z}, T)$: QSMA-tree for φ with $F V(\varphi)=\bar{z}$
\mathcal{M} : extension of \mathcal{M}_{0} to \bar{z}
@post: $r v$ iff $\mathcal{M} \models \mathcal{G}$ ($r v$ is "returned value")
1: function $\operatorname{QSMA}(\mathcal{M}, T)$
2: \quad for all nodes n in T do
3:
4: \quad n. $O \leftarrow \top$
5: return SUBTREEISSolved $(\operatorname{root}(T), \mathcal{M})$
\perp : under-approximation of all formulas and identity for disjunction
T : over-approximation of all formulas and identity for conjunction

subtreeIsSolved: core function of QSMA I

Take node n and model \mathcal{M} extending \mathcal{M}_{0} to $\operatorname{Rigid}(n)$
Determine whether $\mathcal{M} \models \mathcal{G}_{n}$ (same as $\mathcal{M} \models n$. ψ)

- @pre: \mathcal{M} : extension of \mathcal{M}_{0} to $\operatorname{Rigid}(n)$ $\forall b \in T . \llbracket b . U \rrbracket \subseteq \llbracket b . \psi \rrbracket \subseteq \llbracket b . O \rrbracket$
- @post: $\forall b \in T . \llbracket b . U \rrbracket \subseteq \llbracket b . \psi \rrbracket \subseteq \llbracket b . O \rrbracket$ $\mathcal{M} \vDash(n . U \vee \neg n . O)$ $r v$ iff $\mathcal{M} \models n$. \cup iff $\mathcal{M} \vDash \mathcal{G}_{n}$ $\neg r v$ iff $\mathcal{M} \vDash \neg n .0$ iff $\mathcal{M} \not \vDash \mathcal{G}_{n}$

subtreeIsSolved: core function of QSMA II

1: function SubtreeisSolved (n, \mathcal{M})
2:
if $\mathcal{M} \equiv n . U$ then return true
else if $\mathcal{M} \models \neg n . O$ then return false
while true do
Loop body

Let b.p denote the Boolean proxy variable labeling arc (n, b)

The loop in subtreeIsSolved I

1: while true do
2:
$L \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . O) \wedge(\neg b . p \Rightarrow \neg b . U))$ $\mathcal{M}^{\prime} \leftarrow \operatorname{SMA}(L, \mathcal{M})$
if $\mathcal{M}^{\prime}=$ nil then
$n . O \leftarrow n . O \wedge \mathrm{MBO}(L, F V(L) \backslash \operatorname{Rigid}(n), \mathcal{M})$
return false
else
if $\operatorname{solutionForallChildren}\left(n, \mathcal{M}^{\prime}\right)$ then $L^{\prime} \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . U) \wedge(\neg b . p \Rightarrow \neg b . O))$ $n . U \leftarrow n . U \vee \operatorname{MBU}\left(L^{\prime}, F V\left(L^{\prime}\right) \backslash \operatorname{Rigid}(n), \mathcal{M}\right)$
return true

Why formula L?

$L \leftarrow n . F \wedge \wedge_{n \rightarrow b}((b . p \Rightarrow b . O) \wedge(\neg b . p \Rightarrow \neg b . U))$
Necessary condition for success: $\mathcal{M} \equiv \mathcal{G}_{n}$ implies $\mathcal{M}^{\prime} \models L$ $\mathcal{M} \equiv \mathcal{G}_{n}$ means there exists an extension \mathcal{M}^{\prime} of \mathcal{M} to $\operatorname{Var}(n)$ s.t.:

- $\mathcal{M}^{\prime} \models n . F$
- If $\mathcal{M}^{\prime}(b . p)=$ true, $\mathcal{M}^{\prime} \models b . \psi$
the colored formula reduces to $b . O$ and $\mathcal{M}^{\prime} \vDash b . O$ because $\llbracket b . \psi \rrbracket \subseteq \llbracket b . O \rrbracket$
- If $\mathcal{M}^{\prime}(b . p)=$ false, $\mathcal{M}^{\prime} \not \vDash b . \psi$ the colored formula reduces to $\neg b . U$ and $\mathcal{M}^{\prime} \models \neg b . U$ because $\mathcal{M}^{\prime} \not \vDash b . U$ as $\llbracket b . U \rrbracket \subseteq \llbracket b . \psi \rrbracket$

The loop in subtreeIsSolved II

1: while true do
2:
$L \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . O) \wedge(\neg b . p \Rightarrow \neg b . U))$ $\mathcal{M}^{\prime} \leftarrow \operatorname{SMA}(L, \mathcal{M})$
if $\mathcal{M}^{\prime}=$ nil then
$n . O \leftarrow n . O \wedge \mathrm{MBO}(L, F V(L) \backslash \operatorname{Rigid}(n), \mathcal{M})$
return false
else
if $\operatorname{solutionForallChildren}\left(n, \mathcal{M}^{\prime}\right)$ then $L^{\prime} \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . U) \wedge(\neg b . p \Rightarrow \neg b . O))$ $n . U \leftarrow n . U \vee \operatorname{MBU}\left(L^{\prime}, F V\left(L^{\prime}\right) \backslash \operatorname{Rigid}(n), \mathcal{M}\right)$
return true

solutionForallChildren handles the recursion

1: function SOlutionForallChildren (n, \mathcal{M})
2: for all children b of n do
3:
4:
5:
6: return true

- As soon as a child b (with assigned b.p) fails (expected truth value not met): return false
- Success for all children b (with assigned b.p): return true

The loop in subtreeIsSolved III

1: while true do
2:
$L \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . O) \wedge(\neg b . p \Rightarrow \neg b . U))$ $\mathcal{M}^{\prime} \leftarrow \operatorname{SMA}(L, \mathcal{M})$
if $\mathcal{M}^{\prime}=$ nil then
$n . O \leftarrow n . O \wedge \mathrm{MBO}(L, F V(L) \backslash \operatorname{Rigid}(n), \mathcal{M})$
return false
else
if $\operatorname{solutionForallChildren}\left(n, \mathcal{M}^{\prime}\right)$ then $L^{\prime} \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . U) \wedge(\neg b . p \Rightarrow \neg b . O))$ $n . U \leftarrow n . U \vee \operatorname{MBU}\left(L^{\prime}, F V\left(L^{\prime}\right) \backslash \operatorname{Rigid}(n), \mathcal{M}\right)$
return true

Why formula L'?

$$
L^{\prime} \leftarrow n . F \wedge \wedge_{n \rightarrow b}((b . p \Rightarrow b . U) \wedge(\neg b . p \Rightarrow \neg b . O))
$$

First: $\mathcal{M}^{\prime} \models L^{\prime}$

- $\mathcal{M}^{\prime} \models n . F$ because $\mathcal{M}^{\prime} \models L$
- If $\mathcal{M}^{\prime}(b . p)=$ true: the colored formula reduces to $b . U$ and $\mathcal{M}^{\prime}=b . U$ since subtreeIsSolved $\left(b, \mathcal{M}^{\prime}\right)$ returned true (solutionForallChildren returned true)
- If $\mathcal{M}^{\prime}(b . p)=$ false: the colored formula reduces to $\neg b . O$ and $\mathcal{M}^{\prime} \equiv \neg b . O$ since subtreeIsSolved $\left(b, \mathcal{M}^{\prime}\right)$ returned false (solutionForallChildren returned true)

Why formula L'?

$L^{\prime} \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . U) \wedge(\neg b . p \Rightarrow \neg b . O))$
Sufficient condition for success: $\mathcal{M}^{\prime} \models L^{\prime}$ implies $\mathcal{M} \models \mathcal{G}_{n}$
$\mathcal{M}^{\prime} \models L^{\prime}$ means that:

- $\mathcal{M}^{\prime} \models n . F$
- If $\mathcal{M}^{\prime}(b . p)=$ true: the colored formula reduces to $b . U$ and $\mathcal{M}^{\prime} \models$ b. U implies $\mathcal{M}^{\prime} \models$ b. ψ
- If $\mathcal{M}^{\prime}(b . p)=$ false: the colored formula reduces to $\neg b . O$ and $\mathcal{M}^{\prime} \equiv \neg b$. O implies $\mathcal{M}^{\prime} \notin b . \psi$

The loop in subtreeIsSolved IV

1: while true do
2:
$L \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . O) \wedge(\neg b . p \Rightarrow \neg b . U))$ $\mathcal{M}^{\prime} \leftarrow \operatorname{SMA}(L, \mathcal{M})$
if $\mathcal{M}^{\prime}=$ nil then
$n . O \leftarrow n . O \wedge \mathrm{MBO}(L, F V(L) \backslash \operatorname{Rigid}(n), \mathcal{M})$
return false
else
if $\operatorname{solutionForallChildren}\left(n, \mathcal{M}^{\prime}\right)$ then $L^{\prime} \leftarrow n . F \wedge \bigwedge_{n \rightarrow b}((b . p \Rightarrow b . U) \wedge(\neg b . p \Rightarrow \neg b . O))$ $n . U \leftarrow n . U \vee \operatorname{MBU}\left(L^{\prime}, F V\left(L^{\prime}\right) \backslash \operatorname{Rigid}(n), \mathcal{M}\right)$
return true

When solutionForallChildren returns false

solutionForallChildren found a child b of n such that

- Either $\mathcal{M}^{\prime}(b . p)=$ true but subtreeIsSolved $\left(b, \mathcal{M}^{\prime}\right)$ returned false: subtreeIsSolved $\left(b, \mathcal{M}^{\prime}\right)$ updated b.O
- $\operatorname{Or} \mathcal{M}^{\prime}(b . p)=$ false but subtreeIsSolved $\left(b, \mathcal{M}^{\prime}\right)$ returned true: subtreeIsSolved $\left(b, \mathcal{M}^{\prime}\right)$ updated $b . U$

Either way the state has changed: variable L will get a new formula and SMA will not produce the same assignment

QSMA is partially correct

Thm: subtreeIsSolved is partially correct: if the preconditions hold and it halts, the postconditions hold

And termination?

- LRA: given $\exists x . F[\bar{z}, x]$ under-approximation: $F[\bar{z}, \tilde{q}]$ \tilde{q} : constant symbol for rational number q
- Consider an MBU such that $\operatorname{MBU}(F[\bar{z}, x], x, \mathcal{M})=F[\bar{z}, \tilde{q}]$ and $\mathcal{M} \models F[\bar{z}, \tilde{q}]$
- Infinite enumeration of rational constants and infinite series of under-approximations $\left(\bigvee_{i=1}^{n} F[\bar{z}, x]\left\{x \leftarrow \tilde{q}_{i}\right\}\right)_{n \in \mathbb{N}}$

MBU and MBO have finite basis: QSMA is totally correct

For all QF formulas $F[\bar{z}, \bar{x}, \bar{p}]$ and tuples \bar{x} the sets
$\left\{\operatorname{MBU}(F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M}) \mid \mathcal{M}:\right.$ extension of \mathcal{M}_{0} to \bar{z} such that $\mathcal{M} \vDash \exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]\}$
$\left\{\operatorname{MBO}(F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M}) \mid \mathcal{M}:\right.$ extension of \mathcal{M}_{0} to \bar{z} such that $\mathcal{M} \not \vDash \exists \bar{x} . F[\bar{z}, \bar{x}, \bar{p}]\}$ are finite

Thm: If MBU and MBO have finite basis, whenever the preconditions are satisfied subtreeIsSolved halts

Example I

- $\forall x \cdot((\exists y \cdot(x \simeq 2 \cdot y)) \Rightarrow(\exists z \cdot(3 \cdot x \simeq 2 \cdot z)))$
- $\neg(\exists x \cdot((\exists y \cdot(x \simeq 2 \cdot y)) \wedge(\forall z \cdot(3 \cdot x \neq 2 \cdot z))))$
- $\neg(\exists x \cdot((\exists y \cdot(x \simeq 2 \cdot y)) \wedge(\neg(\exists z \cdot(3 \cdot x \simeq 2 \cdot z)))))$
- $\varphi=\exists x \cdot((\exists y \cdot(x \simeq 2 \cdot y)) \wedge(\neg(\exists z \cdot(3 \cdot x \simeq 2 \cdot z))))$
- The original formula is true in LRA iff φ is false in LRA
- In this example the original formula is true in LRA
- $\varphi=\exists x$. $\left(p_{1} \wedge \neg p_{2}\right)$ where

$$
p_{1}=\exists y \cdot(x \simeq 2 \cdot y) \quad p_{2}=\exists z \cdot(3 \cdot x \simeq 2 \cdot z)
$$

Example II

$\varphi=\exists x .\left(p_{1} \wedge \neg p_{2}\right) \quad p_{1}=\exists y \cdot(x \simeq 2 \cdot y) \quad p_{2}=\exists z \cdot(3 \cdot x \simeq 2 \cdot z)$

- Apply subtreeIsSolved to the root: $L \leftarrow p_{1} \wedge \neg p_{2}$ as $b_{1} \cdot U=b_{2} \cdot U=\perp$ and $b_{1} \cdot O=b_{2} \cdot O=T$
- Say SMA produces $x \leftarrow 1, p_{1} \leftarrow$ true, $p_{2} \leftarrow$ false
- Recurse on $b_{1}: L \leftarrow x \simeq 2 \cdot y$ (no children)
- SMA produces $y \leftarrow \frac{1}{2}$: return true
- Recurse on $b_{2}: L \leftarrow 3 \cdot x \simeq 2 \cdot z$ (no children)
- SMA produces $z \leftarrow \frac{3}{2}$: return true
- But $p_{2} \leftarrow$ false, hence return false

OptiQSMA: Reconsider an earlier example

$$
\varphi=\exists x \cdot\left(p_{1} \vee \neg p_{2}\right) \quad p_{1}=\exists y . \neg F[x, y] \quad p_{2}=\exists z . \neg G[x, z]
$$

- Apply subtreeIsSolved to the root $r: L \leftarrow p_{1} \vee \neg p_{2}$
- If SMA yields $p_{1} \leftarrow$ true:
\rightarrow Recurse on $b_{1}: L \leftarrow \neg F[x, y]$
- If SMA yields value for y s.t. $\neg F[x, y]$, return true
\rightarrow If SMA yields $p_{2} \leftarrow$ false:
\rightarrow Recurse on $b_{2}: L \leftarrow \neg G[x, z]$
- If SMA returns nil, return false

OptiQSMA: from the example to the general idea

- Pass $\left(p_{1} \vee \neg p_{2}\right) \wedge\left(p_{1} \Rightarrow \neg F[x, y]\right)$ to SMA
(in place of $p_{1} \vee \neg p_{2}$)
- If SMA assigns true to p_{1}, it also assigns to x and y values that satisfy $\neg F[x, y]$
$\exists y . \neg F[x, y]$ is found true without recursion
- If SMA assigns false to p_{2}, still need to recurse to check that $\exists z . \neg G[x, z]$ is false
- Fewer recursive calls to subtreelsSolved by letting the underlying solver SMA look ahead

OptiQSMA: the look-ahead formula

- QSMA-tree $\mathcal{G}=(\bar{z}, T)$
- For all nodes n of T the look-ahead formula of n is

$$
L F(n)=n . F \wedge \bigwedge_{n \rightarrow b}(b . p \Rightarrow L F(b))
$$

- If $b . p$ is true look ahead at b.F (the child's formula)

OptiQSMA: FAN and NAN nodes

- No alternation nodes:
- $\operatorname{NAN}(n, \mathcal{M})$: descendants b of n via a path where all proxies and b.p are assigned true by \mathcal{M}
- Handled together in one shot without recursion
- First alternation nodes:
- FAN (n, \mathcal{M}) : descendants b of n via a path where all proxies are assigned true but b.p is assigned false by \mathcal{M}
- Recursion needed

OptiQSMA: satisfaction with look-ahead

QSMA-tree $\mathcal{G}=(\bar{z}, T)$ with root r

- \mathcal{M} : extension of \mathcal{M}_{0} to $\operatorname{Rigid}(r)=\bar{z}$
- $\mathcal{M} \models_{l a} \mathcal{G}$ if there exists an extension \mathcal{M}^{\prime} of \mathcal{M} to $F V(L F(r))$ such that

1. $\mathcal{M}^{\prime} \models L F(r)$
2. For all nodes $b \in \operatorname{FAN}\left(r, \mathcal{M}^{\prime}\right): \mathcal{M}^{\prime} \not \vDash_{l a} \mathcal{G}_{b}$

For node $b \in \operatorname{FAN}\left(r, \mathcal{M}^{\prime}\right): \mathcal{M}^{\prime}(b . p)=$ false:
try to show b. ψ false
Thm: \mathcal{G} is the QSMA-tree for formula $\varphi: \mathcal{M} \vDash \mathcal{G}$ iff $\mathcal{M} \models_{l_{a}} \mathcal{G}$

Implementation and experimental results

- OptiQSMA is implemented in YicesQS (S. Graham-Lengrand) built on top of Yices 2 (B. Dutertre, D. Jovanović)
- YicesQS entered the Single Query Track (Main Track) of SMT-COMP in 2022 and 2023
- 2022: YicesQS won SAT performance and 24s performance columns for Arith (LRA, LIA, NRA, NIA); only solver to solve all LRA benchmarks; ranked 2nd for Largest Contribution Award
- 2023: YicesQS won SAT performance and 24s performance columns for Arith and was among the first three solvers in all columns for Arith

Current and future work

- Integration of QSMA in the CDSAT framework for conflict-driven reasoning in unions of theories:

1. SMA as a CDSAT solver
2. QSMA as a CDSAT module
3. Formalize QSMA as transition system and unwrap it into CDSAT

- Improvements to YicesQS, e.g.: integer reasoning, bitvector reasoning

Thanks

- MPB, Stéphane Graham-Lengrand, and Christophe Vauthier. QSMA: a new algorithm for quantified satisfiability modulo theory and assignment. Proc. 29th Int. Conf. on Automated Deduction (CADE), LNAI 14132, 78-95, Springer, Aug. 2023.
- MPB. Reasoning about quantifiers in SMT: the QSMA algorithm (Abstract). Proc. 23rd Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD), 1-1, TU Wien Academic Press, Oct. 2023.

Thank you!

