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Motivation

▶ Applications of automated reasoning
(e.g., analysis, verification, synthesis of programs)

need reasoners that
▶ Decide the satisfiability of formulas involving both

▶ Quantifiers and
▶ Defined symbols:

Symbols defined in background theories
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The big picture

Major research objectives:

1. Enriching theorem provers with built-in theories

2. Integrating theorem provers and SMT solvers

3. Endowing SMT solvers with quantifier reasoning

The QSMA algorithm contributes to Objective (3)
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Quantifier elimination (QE)

▶ A theory T admits QE if
for all formulas φ there exists a T -equivalent quantifier-free
(QF) formula F

▶ Reduce T -satisfiability of formulas to that of QF formulas

▶ Few theories admit QE

▶ QE is prohibitively expensive:
Exponential in LRA, doubly exponential in LIA

▶ Not a practical solution

▶ Practical solution: QSMA algorithm
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General problem statement

Quantified satisfiability modulo theory and assignment

Given:

▶ A theory T
▶ A formula φ with arbitrary quantification

▶ An initial assignment to Boolean or first-order subterms of φ

▶ Either find a T -model of φ that extends the initial assignment

▶ Or report that none exists
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The QSMA algorithm

A new algorithm for the satisfiability of a formula φ
with arbitrary quantification (alternation is key) modulo:

▶ A theory T with unique T -modelM0

▶ An initial assignment to the free variables of φ

▶ T is complete:
Consistent + for all sentences F either T ⊢ F or T ⊢ ¬F

▶ T -model: extension ofM0 with an assignment to free
variables
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A satisfiable example in LRA

φ1 = ∃x .∀y .∃z . z ≥ 0 ∧ x ≥ 0 ∧ y + z ≥ 0

▶ Say we assign x←0

▶ For all values for y there exists a satisfying z
namely z←max(0,−y)
(read y + z ≥ 0 as z ≥ −y)

▶ Therefore φ1 is true in LRA

(Unique T -modelM0: for a sentence satisfiability, validity, and truth in

M0 coincide)
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An unsatisfiable example in LRA

φ2 = ∃x .∀y .∃z . z ≥ 0 ∧ x ≥ 0 ∧ y + z ≤ 0

▶ Say we assign x←n for some n ≥ 0 (n is immaterial)

▶ For y←1 no value for z satisfies z ≥ 0 ∧ z ≤ −1
▶ Therefore φ2 is false in LRA

(Unique T -modelM0: for a sentence unsatisfiability, invalidity, and

falsity inM0 coincide)
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High-level view of the QSMA algorithm

▶ Apply ¬¬ to convert ∀ into ∃
▶ Use Boolean variables as proxies for quantified subformulas

▶ Recursive descent over tree structure of formula

▶ Remove one level/block of ∃-quantifier(s) and
assign values to freed 1st-order variables and proxies

▶ Assignments come from underlying SMA solver that gets a
formula and a prior assignment (initially the initial assignment)

▶ Model-based guidance to weed out large parts of the space of
possible assignments
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More about formula view and recursive descent

φ = ∃x̄ .F [z̄ , x̄ , p̄]{pi←∃ȳi .Gi [z̄ , x̄ , ȳi ]}ki=1 where z̄ = FV (φ)

▶ F is QF as proxies pi replace subformulas φi = ∃ȳi .Gi [z̄ , x̄ , ȳi ]

▶ FV (φ) = ∅: quantified SMA problems when working
subformulas under assignment to higher-level variables

▶ pi←true/false: try to show φi true / false

▶ pi undefined: can be ignored

▶ φ is true under the initial assignment iff
QSMA can extend the initial assignment to one satisfying

F [z̄ , x̄ , p̄] ∧
∧

i (pi ⇔ φi )
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The satisfiable example in LRA done by QSMA

φ1 = ∃x .¬∃y .¬∃z . z ≥ 0 ∧ x ≥ 0 ∧ y + z ≥ 0

▶ ∃x .¬p1
p1 = ∃y.¬∃z. z ≥ 0 ∧ x ≥ 0 ∧ y + z ≥ 0

▶ x←0, p1←false

▶ ∃y .¬p2
p2 = ∃z. z ≥ 0 ∧ x ≥ 0 ∧ y + z ≥ 0

▶ y←n, p2←true

▶ ∃z .z ≥ 0 ∧ x ≥ 0 ∧ y+z ≥ 0

▶ z←max(0,−n)
▶ True

(x, −p1)

(y, −p2)

(z, z >= 0 and x >= 0 and y+z >= 0)

p1

p2

z is assignable

y and p2 are assignable

x and p1 are assignable
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The unsatisfiable example in LRA done by QSMA

φ2 = ∃x .¬∃y .¬∃z . z ≥ 0 ∧ x ≥ 0 ∧ y + z ≤ 0

▶ ∃x .¬p1
p1 = ∃y.¬∃z. z ≥ 0 ∧ x ≥ 0 ∧ y + z ≤ 0

▶ x←n (n ≥ 0), p1←false

▶ ∃y .¬p2
p2 = ∃z. z ≥ 0 ∧ x ≥ 0 ∧ y + z ≤ 0

▶ y←1, p2←true

▶ ∃z .z ≥ 0 ∧ x ≥ 0 ∧ y+z ≤ 0

▶ No z satisfies
z ≥ 0 ∧ z ≤ −1

▶ False

(x, −p1)

(y, −p2)

p1

p2

(z, z >= 0 and x >= 0 and y+z <= 0)

x and p1 are assignable

y and p2 are assignable

z is assignable
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More general example

▶ QSMA handles arbitrary formulas

▶ Quantifiers in arbitrary positions:
no need of prenex normal form

▶ φ = ∃x .((∀y .F [x , y ])⇒ (∀z .G [x , z ]))
where F and G are QF

▶ Eliminating implication and universal quantifiers yields:
φ = ∃x .((∃y .¬F [x , y ]) ∨ (¬∃z .¬G [x , z ]))
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The more general example as done by QSMA

φ = ∃x .((∃y .¬F [x , y ]) ∨ (¬∃z .¬G [x , z ]))

▶ ∃x .(p1 ∨ ¬p2)
p1 = ∃y .¬F [x , y ]
p2 = ∃z .¬G [x , z ]

▶ Assign x , p1, p2
▶ p1←true: find a y satisfying
¬F [x , y ]

▶ p2←false: show that there is
no z satisfying ¬G [x , z ]

(x, p1 or −p2)

p1 p2

(y, −F[x,y]) (z, −G[x,z])
z is assignabley is assignable

x, p1, p2 assignable
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From formula to QSMA-tree

φ = ∃x̄ .F [z̄ , x̄ , p̄]{pi←∃ȳi .Gi [z̄ , x̄ , ȳi ]}ki=1

▶ QSMA-tree G = (z̄ ,T ) with rigid variables z̄

▶ k = 0: T is a node labeled (x̄ ,F [z̄ , x̄ ])
▶ k > 0:

▶ T has root labeled (x̄ ,F [z̄ , x̄ , p̄]) with k arcs labeled p1, . . . , pk
to children b1, . . . , bk

▶ Child bi labeled (ȳi ,Gi [z̄ , x̄ , ȳi ]) is root of QSMA-tree
Gi = ((z̄ , x̄),Ti ) with rigid variables z̄ ⊎ x̄ for
φi = ∃ȳi .Gi [z̄ , x̄ , ȳi ]

Rigid variables and assignable variables
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Rigid and assignable variables at a node

QSMA-tree G = (z̄ ,T )

▶ Node n labeled (x̄ ,F )

▶ Local variables n.x̄

▶ QF formula n.F

▶ k outgoing arcs labeled
p1, . . . , pk

▶ Assignable vars at n:
Var(n) = x̄ ⊎ {p1, . . . , pk}

▶ Rigid vars at n:
Rigid(n) = z̄ ⊎ x̄1 ⊎ . . . ⊎ x̄m

▶ Gn = (Rigid(n),Tn)

(x1, ...)

(x2, ...)

....

(xm, ...)

(x, F)

p1

p2

pk

....
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From QSMA-tree back to formula

QSMA-tree: G = (z̄ ,T )

For all nodes n of T , the formula n.ψ at node n:

▶ Node n is leaf labeled (x̄ ,F [z̄ , x̄ ]):
n.ψ = ∃x̄ .F [z̄ , x̄ ]

▶ Node n has label (x̄ ,F [z̄ , x̄ , p̄]) and
children b1, . . . , bk via arcs (n, bi ) labeled pi :
n.ψ = ∃x̄ .F [z̄ , x̄ , p̄]{pi ← bi .ψ}ki=1

for bi .ψ the formula at node bi

If G is the QSMA-tree for φ and r is the root of G then r .ψ = φ
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Satisfaction of QSMA-tree

QSMA-tree G = (z̄ ,T ) with root r

▶ M: extension ofM0 to Rigid(r) = z̄
▶ M |= G if there exists an extensionM′ ofM to Var(r) s.t.

1. M′ |= r .F
2. For all children b of r via arc (r , b) labeled p
M′(p) = true iffM′ |= Gb

IfM′(p) = true: try to show b.ψ true
IfM′(p) = false: try to show b.ψ false
IfM′ is partial and does not assign p: ignore b.ψ

Thm: G is the QSMA-tree for formula φ: M |= G iffM |= φ
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Assigning variables in QSMA

Assume to have a solver for theory T (and modelM0) offering a
model extension function SMA:

▶ Given formula ∃x̄ .F [z̄ , x̄ , p̄], where F is QF
and extensionM ofM0 to z̄ ,

▶ SMA(F [z̄ , x̄ , p̄],M) returns:
▶ Either extensionM′ ofM to x̄ ⊎ p̄ such thatM′ |= F [z̄ , x̄ , p̄]
▶ Or nil if no such extension exists

▶ Testing all possible assignments: impossible, infinitely many

▶ Needed: model-based guidance
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Under-approximations and over-approximations

Formula φ with FV (φ) = z̄ JφK: set of models of φ

▶ Under-approximation of φ: QF formula U with FV (U) = z̄
for all extensionsM ofM0 to z̄
M |= U impliesM |= φ
under-approximations help to return true

▶ Over-approximation of φ: QF formula O with FV (O) = z̄
for all extensionsM ofM0 to z̄
M |= φ impliesM |= O
M ̸|= O impliesM ̸|= φ
over-approximations help to return false

JUK ⊆ JφK ⊆ JOK
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Under- and over-approximations in QSMA

▶ QSMA-tree G = (z̄ ,T ) for formula φ
▶ GivenM extendingM0 to z̄ , the QSMA algorithm

determines whetherM |= G:
▶ For all nodes n of T maintain

under-approximation n.U of n.ψ and
over-approximation n.O of n.ψ

▶ Goal: M |= n.U ∨ ¬n.O:
ifM |= n.U return true for Gn (i.e., for n.ψ)
ifM ̸|= n.O return false for Gn (i.e., for n.ψ)

Formulas n.ψ have the form ∃x̄ .F [z̄ , x̄ , p̄]
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Model-based under-approximations in QSMA

Assume to have a solver for theory T (and modelM0) offering a
model-based under-approximation function MBU:

▶ Given formula ∃x̄ .F [z̄ , x̄ , p̄], where F is QF
and extensionM ofM0 to z̄ ⊎ p̄ such thatM |= ∃x̄ .F [z̄ , x̄ , p̄]

▶ MBU(F [z̄ , x̄ , p̄], x̄ ,M) returns
an under-approximation of ∃x̄ .F [z̄ , x̄ , p̄] that is true inM:
a QF formula U[z̄ , p̄] such that
▶ T |= U[z̄ , p̄]⇒ (∃x̄ .F [z̄ , x̄ , p̄]) and
▶ M |= U[z̄ , p̄]

U[z̄ , p̄]: T -interpolant between model and formula
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Model-based over-approximations in QSMA

Assume to have a solver for theory T (and modelM0) offering a
model-based over-approximation function MBO:

▶ Given formula ∃x̄ .F [z̄ , x̄ , p̄], where F is QF
and extensionM ofM0 to z̄ ⊎ p̄ such thatM ̸|= ∃x̄ .F [z̄ , x̄ , p̄]

▶ MBO(F [z̄ , x̄ , p̄], x̄ ,M) returns
an over-approximation of ∃x̄ .F [z̄ , x̄ , p̄] that is false inM:
a QF formula O[z̄ , p̄] such that
▶ T |= (∃x̄ .F [z̄ , x̄ , p̄])⇒ O[z̄ , p̄] and
▶ M ̸|= O[z̄ , p̄]

O[z̄ , p̄]: reverse T - interpolant between formula and model
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Examples of MBU and MBO

▶ Examples of MBU:
▶ Model-based projection

[Komuravelli, Gurfinkel, Chaki: CAV 2014,
FMSD journal 2016]
[Bjørner, Janota: LPAR 2015 (short)]

▶ Model generalization for LRA [Dutertre: SMT 2015]
▶ Model generalization for NRA [Jovanović, Dutertre: CAV 2021]

▶ Examples of MBO:
▶ Unsatisfiable core (purely Boolean assignment)
▶ Model interpolation for NRA [Jovanović, Dutertre: CAV 2021]
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Weakening and strengthening approximations in QSMA

QSMA-tree G = (z̄ ,T ) for formula φ
For all nodes n of T :

▶ Weaken n.U so that Jn.UK inflates
by introducing a disjunction with an MBU

▶ Strengthen n.O so that Jn.OK deflates
by introducing a conjunction with an MBO

▶ Inflate Jn.UK and deflate Jn.OK to zoom in on
either a model of n.ψ or its non-existence
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Main function of the QSMA algorithm

@pre: G = (z̄ ,T ): QSMA-tree for φ with FV (φ) = z̄
M: extension ofM0 to z̄
@post: rv iffM |= G (rv is “returned value”)

1: function QSMA(M, T )
2: for all nodes n in T do
3: n.U ← ⊥
4: n.O ← ⊤
5: return subtreeIsSolved(root(T ),M)

⊥: under-approximation of all formulas and identity for disjunction

⊤: over-approximation of all formulas and identity for conjunction
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subtreeIsSolved: core function of QSMA I

Take node n and modelM extendingM0 to Rigid(n)
Determine whetherM |= Gn (same asM |= n.ψ)

▶ @pre: M: extension ofM0 to Rigid(n)
∀b ∈ T . Jb.UK ⊆ Jb.ψK ⊆ Jb.OK

▶ @post: ∀b ∈ T . Jb.UK ⊆ Jb.ψK ⊆ Jb.OK
M |= (n.U ∨ ¬n.O)
rv iffM |= n.U iffM |= Gn
¬rv iffM |= ¬n.O iffM ̸|= Gn
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subtreeIsSolved: core function of QSMA II

1: function subtreeIsSolved(n,M)
2: if M |= n.U then
3: return true
4: else if M |= ¬n.O then
5: return false
6: while true do
7: Loop body

Let b.p denote the Boolean proxy variable labeling arc (n, b)
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The loop in subtreeIsSolved I

1: while true do
2: L← n.F ∧

∧
n→b((b.p ⇒ b.O) ∧ (¬b.p ⇒ ¬b.U))

3: M′ ← SMA(L,M)
4: if M′ = nil then
5: n.O ← n.O ∧MBO(L,FV (L) \ Rigid(n),M)
6: return false
7: else
8: if solutionForallChildren(n,M′) then
9: L′ ← n.F ∧

∧
n→b((b.p ⇒ b.U) ∧ (¬b.p ⇒ ¬b.O))

10: n.U ← n.U ∨MBU(L′,FV (L′) \ Rigid(n),M)
11: return true
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Why formula L?

L← n.F ∧
∧

n→b((b.p ⇒ b.O)∧(¬b.p ⇒ ¬b.U))

Necessary condition for success: M |= Gn impliesM′ |= L

M |= Gn means there exists an extensionM′ ofM to Var(n) s.t.:

▶ M′ |= n.F

▶ IfM′(b.p) = true,M′ |= b.ψ
the colored formula reduces to b.O andM′ |= b.O because
Jb.ψK ⊆ Jb.OK

▶ IfM′(b.p) = false,M′ ̸|= b.ψ
the colored formula reduces to ¬b.U andM′ |= ¬b.U
becauseM′ ̸|= b.U as Jb.UK ⊆ Jb.ψK
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The loop in subtreeIsSolved II

1: while true do
2: L← n.F ∧

∧
n→b((b.p ⇒ b.O) ∧ (¬b.p ⇒ ¬b.U))

3: M′ ← SMA(L,M)
4: if M′ = nil then
5: n.O ← n.O ∧MBO(L,FV (L) \ Rigid(n),M)
6: return false
7: else
8: if solutionForallChildren(n,M′) then
9: L′ ← n.F ∧

∧
n→b((b.p ⇒ b.U) ∧ (¬b.p ⇒ ¬b.O))

10: n.U ← n.U ∨MBU(L′,FV (L′) \ Rigid(n),M)
11: return true
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solutionForallChildren handles the recursion

1: function solutionForallChildren(n,M)
2: for all children b of n do
3: if M(b.p) ̸= undef then
4: if M(b.p) ̸= subtreeIsSolved(b,M) then
5: return false
6: return true

▶ As soon as a child b (with assigned b.p) fails (expected truth
value not met): return false

▶ Success for all children b (with assigned b.p): return true
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The loop in subtreeIsSolved III

1: while true do
2: L← n.F ∧

∧
n→b((b.p ⇒ b.O) ∧ (¬b.p ⇒ ¬b.U))

3: M′ ← SMA(L,M)
4: if M′ = nil then
5: n.O ← n.O ∧MBO(L,FV (L) \ Rigid(n),M)
6: return false
7: else
8: if solutionForallChildren(n,M′) then
9: L′ ← n.F ∧

∧
n→b((b.p ⇒ b.U) ∧ (¬b.p ⇒ ¬b.O))

10: n.U ← n.U ∨MBU(L′,FV (L′) \ Rigid(n),M)
11: return true
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Why formula L′?

L′ ← n.F ∧
∧

n→b((b.p ⇒ b.U)∧(¬b.p ⇒ ¬b.O))

First: M′ |= L′

▶ M′ |= n.F becauseM′ |= L

▶ IfM′(b.p) = true: the colored formula reduces to b.U and
M′ |= b.U since subtreeIsSolved(b,M′) returned true
(solutionForallChildren returned true)

▶ IfM′(b.p) = false: the colored formula reduces to ¬b.O and
M′ |= ¬b.O since subtreeIsSolved(b,M′) returned false
(solutionForallChildren returned true)
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Why formula L′?

L′ ← n.F ∧
∧

n→b((b.p ⇒ b.U)∧(¬b.p ⇒ ¬b.O))

Sufficient condition for success: M′ |= L′ impliesM |= Gn
M′ |= L′ means that:

▶ M′ |= n.F

▶ IfM′(b.p) = true: the colored formula reduces to b.U
andM′ |= b.U impliesM′ |= b.ψ

▶ IfM′(b.p) = false: the colored formula reduces to ¬b.O
andM′ |= ¬b.O impliesM′ ̸|= b.ψ
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The loop in subtreeIsSolved IV

1: while true do
2: L← n.F ∧

∧
n→b((b.p ⇒ b.O) ∧ (¬b.p ⇒ ¬b.U))

3: M′ ← SMA(L,M)
4: if M′ = nil then
5: n.O ← n.O ∧MBO(L,FV (L) \ Rigid(n),M)
6: return false
7: else
8: if solutionForallChildren(n,M′) then
9: L′ ← n.F ∧

∧
n→b((b.p ⇒ b.U) ∧ (¬b.p ⇒ ¬b.O))

10: n.U ← n.U ∨MBU(L′,FV (L′) \ Rigid(n),M)
11: return true
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When solutionForallChildren returns false

solutionForallChildren found a child b of n such that

▶ EitherM′(b.p) = true but
subtreeIsSolved(b,M′) returned false:
subtreeIsSolved(b,M′) updated b.O

▶ OrM′(b.p) = false but
subtreeIsSolved(b,M′) returned true:
subtreeIsSolved(b,M′) updated b.U

Either way the state has changed: variable L will get a new
formula and SMA will not produce the same assignment
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QSMA is partially correct

Thm: subtreeIsSolved is partially correct: if the preconditions
hold and it halts, the postconditions hold

And termination?

▶ LRA: given ∃x .F [z̄ , x ]
under-approximation: F [z̄ , q̃]
q̃: constant symbol for rational number q

▶ Consider an MBU such that
MBU(F [z̄ , x ], x ,M) = F [z̄ , q̃] andM |= F [z̄ , q̃]

▶ Infinite enumeration of rational constants and infinite series of
under-approximations (

∨n
i=1 F [z̄ , x ]{x←q̃i})n∈N
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MBU and MBO have finite basis: QSMA is totally correct

For all QF formulas F [z̄ , x̄ , p̄] and tuples x̄ the sets

{MBU(F [z̄ , x̄ , p̄], x̄ ,M) | M : extension ofM0 to z̄
such thatM |= ∃x̄ .F [z̄ , x̄ , p̄]}

{MBO(F [z̄ , x̄ , p̄], x̄ ,M) | M : extension ofM0 to z̄
such thatM ̸|= ∃x̄ .F [z̄ , x̄ , p̄]}

are finite

Thm: If MBU and MBO have finite basis, whenever the
preconditions are satisfied subtreeIsSolved halts
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Example I

▶ ∀x .((∃y .(x ≃ 2·y))⇒ (∃z .(3·x ≃ 2·z)))
▶ ¬(∃x .((∃y .(x ≃ 2·y)) ∧ (∀z .(3·x ̸≃ 2·z))))
▶ ¬(∃x .((∃y .(x ≃ 2·y)) ∧ (¬(∃z .(3·x ≃ 2·z)))))
▶ φ = ∃x .((∃y .(x ≃ 2·y)) ∧ (¬(∃z .(3·x ≃ 2·z))))
▶ The original formula is true in LRA iff φ is false in LRA

▶ In this example the original formula is true in LRA

▶ φ = ∃x .(p1 ∧ ¬p2) where
p1 = ∃y .(x ≃ 2·y) p2 = ∃z .(3·x ≃ 2·z)
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Example II

φ = ∃x .(p1 ∧ ¬p2) p1 = ∃y .(x ≃ 2·y) p2 = ∃z .(3·x ≃ 2·z)
▶ Apply subtreeIsSolved to the root: L← p1 ∧ ¬p2

as b1.U = b2.U = ⊥ and b1.O = b2.O = ⊤
▶ Say SMA produces x←1, p1←true, p2←false

▶ Recurse on b1: L← x ≃ 2·y (no children)

▶ SMA produces y← 1
2 : return true

▶ Recurse on b2: L← 3·x ≃ 2·z (no children)

▶ SMA produces z← 3
2 : return true

▶ But p2←false, hence return false
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OptiQSMA: Reconsider an earlier example

φ = ∃x .(p1 ∨ ¬p2) p1 = ∃y .¬F [x , y ] p2 = ∃z .¬G [x , z ]

▶ Apply subtreeIsSolved to

the root r : L← p1 ∨ ¬p2
▶ If SMA yields p1←true:

▶ Recurse on b1: L← ¬F [x , y ]
▶ If SMA yields value for y s.t.

¬F [x , y ], return true

▶ If SMA yields p2←false:

▶ Recurse on b2: L← ¬G [x , z ]

▶ If SMA returns nil, return false

(x, p1 or −p2)

p1 p2

(y, −F[x,y]) (z, −G[x,z])
z is assignabley is assignable

x, p1, p2 assignable
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OptiQSMA: from the example to the general idea

▶ Pass (p1 ∨ ¬p2) ∧ (p1 ⇒ ¬F [x , y ]) to SMA
(in place of p1 ∨ ¬p2)

▶ If SMA assigns true to p1, it also assigns to x and y values
that satisfy ¬F [x , y ]
∃y .¬F [x , y ] is found true without recursion

▶ If SMA assigns false to p2, still need to recurse to check that
∃z .¬G [x , z ] is false

▶ Fewer recursive calls to subtreeIsSolved by letting the
underlying solver SMA look ahead
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OptiQSMA: the look-ahead formula

▶ QSMA-tree G = (z̄ ,T )

▶ For all nodes n of T the look-ahead formula of n is

LF (n) = n.F ∧
∧

n→b(b.p ⇒ LF (b))

▶ If b.p is true look ahead at b.F (the child’s formula)

Maria Paola Bonacina Reasoning about quantifiers in SMT: the QSMA algorithm



Introduction
The QSMA algorithm

Optimized QSMA: the OptiQSMA algorithm
Discussion

OptiQSMA: FAN and NAN nodes

▶ No alternation nodes:
▶ NAN(n,M): descendants b of n via a path where all proxies

and b.p are assigned true byM
▶ Handled together in one shot without recursion

▶ First alternation nodes:
▶ FAN(n,M): descendants b of n via a path where all proxies

are assigned true but b.p is assigned false byM
▶ Recursion needed
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OptiQSMA: satisfaction with look-ahead

QSMA-tree G = (z̄ ,T ) with root r

▶ M: extension ofM0 to Rigid(r) = z̄
▶ M |=la G if there exists an extensionM′ ofM to FV (LF (r))

such that

1. M′ |= LF (r)
2. For all nodes b ∈ FAN(r ,M′): M′ ̸|=la Gb

For node b ∈ FAN(r ,M′): M′(b.p) = false:
try to show b.ψ false

Thm: G is the QSMA-tree for formula φ: M |= G iffM |=la G
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Implementation and experimental results

▶ OptiQSMA is implemented in YicesQS (S. Graham-Lengrand)
built on top of Yices 2 (B. Dutertre, D. Jovanović)

▶ YicesQS entered the Single Query Track (Main Track) of
SMT-COMP in 2022 and 2023

▶ 2022: YicesQS won SAT performance and 24s performance
columns for Arith (LRA, LIA, NRA, NIA);
only solver to solve all LRA benchmarks;
ranked 2nd for Largest Contribution Award

▶ 2023: YicesQS won SAT performance and 24s performance
columns for Arith and was among the first three solvers in all
columns for Arith
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Current and future work

▶ Integration of QSMA in the CDSAT framework for
conflict-driven reasoning in unions of theories:

1. SMA as a CDSAT solver
2. QSMA as a CDSAT module
3. Formalize QSMA as transition system and unwrap it into

CDSAT

▶ Improvements to YicesQS, e.g.:
integer reasoning, bitvector reasoning
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Thanks

▶ MPB, Stéphane Graham-Lengrand, and Christophe Vauthier.

QSMA: a new algorithm for quantified satisfiability modulo theory

and assignment. Proc. 29th Int. Conf. on Automated Deduction

(CADE), LNAI 14132, 78-95, Springer, Aug. 2023.

▶ MPB. Reasoning about quantifiers in SMT: the QSMA algorithm

(Abstract). Proc. 23rd Int. Conf. on Formal Methods in

Computer-Aided Design (FMCAD), 1–1, TU Wien Academic Press,

Oct. 2023.

Thank you!
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