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Arrays

▶ Data structure with direct access to values via indices

▶ Basic operations: read/write or select/store
▶ Theory of arrays:

▶ Sorts: indices, values, arrays
▶ Select-over-store axioms [McCarthy 1963]:

∀a, v , i . select(store(a, i , v), i) ≃ v
∀a, v , i , j . i ̸≃ j → select(store(a, i , v), j) ≃ select(a, j)

▶ Extensionality axiom:
∀a, b. (∀i . select(a, i) ≃ select(b, i)) → a ≃ b

▶ Not decidable, but the quantifier-free fragment is

▶ Considered useful to reason about computer memory
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Arrays: finite of infinite?

Arrays in programming languages:

▶ Integer-indexed

▶ Finite: indices in the interval [0, n − 1], length n
Ada arrays: indices in the interval [n,m], length m − n + 1

Computer memory: finite

Arrays in the theory of arrays:

▶ Finite or infinite depending on the cardinality of the set used
to interpret the sort of indices

▶ If integer-indexed: infinite arrays
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Array property fragment (APF) of the theory of arrays

▶ Limited usage of ∀ over index variables
▶ Integer-indexed arrays are infinite, but it is possible to define:

▶ Bounded array equality: beq(a, b, l , u) iff
∀i . l ≤ i ≤ u → select(a, i) ≃ select(b, i)

▶ Sortedness: sorted(a, l , u) iff
∀i , j . l ≤ i ≤ j ≤ u → select(a, i) ≤ select(a, j)
assuming values are integers or rationals

▶ Decidable: finitely many instances of ∀ + decision procedure
for the disjoint union of arrays, integers (LIA), theory of values

▶ Efficient handling of ∀ still a challenge in SMT

[Bradley, Manna, Sipma 2006] [Bradley, Manna 2007]
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How about adding a length function len?

▶ Maps every array to its length: len(a)≃ n

▶ Revised axiom of extensionality for integer-index arrays:
∀a, b. [ len(a) ≃ len(b) ∧
(∀i . 0 ≤ i < len(a) → select(a, i) ≃ select(b, i)) ] → a ≃ b

▶ Arrays and integers no longer disjoint theories:
they share the symbol for the integer ordering

▶ Similar phenomenon for lists:
▶ len(nil) = 0
▶ len(cons(x , y)) = 1 + len(y)
▶ 0, 1 and + become shared symbols
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Length is a bridging function

▶ Bridging functions: length of arrays, length of lists, size of
trees, height of trees

▶ Bridging axioms:
▶ RDS/AFDS (e.g., lists): define the bridging function over the

constructors
▶ Arrays: extensionality axiom

▶ Symbols other than equality become shared:
non-disjoint theories

▶ Most methods for reasoning in theory unions require disjoint
theories (equality is the only shared symbol)

[Ganzinger, Rueß, Shankar 2004] [Sofronie-Stokkermans 2009]

[Chocron, Fontaine, Ringeissen 2020]
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Other theories: strings and sequences

▶ Strings: sequences of elements from a finite alphabet
(e.g., [Liang et al. 2014] [Berzish, Ganesh, Zheng 2017])

▶ Sequences: generalization with generic and possibly infinite
element sort
▶ Empty sequence, binary associative concatenation: a monoid
▶ Unary constructor wrapping single element into sequence
▶ Extract function: returns the subsequence btw two positions
▶ Access function: returns the element at a given position
▶ Length function |x |: returns the number of elements in

sequence x

(e.g., [Bjørner et al. 2012] [Jeż et al. 2023])
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Theories of finite sequences to model finite arrays

▶ Theory Seq [Sheng et al. 2023] with integer indices [0, |x | − 1]
and countably infinite element sort:
▶ Add update function: access/update for select/store
▶ Extensionality axiom as in arrays with length
▶ Nondisjointness: conservative extension of the theory of

integers into Seq

▶ Theory N-Seq [Ait-El-Hara, Bobot, Bury 2024] [Ait-El-Hara 2025]:
▶ Integer indices [n,m] (Ada arrays)
▶ Add functions: first and last, constant (sub)sequence, relocate,

subsequence update
▶ Extensionality axiom using first and last in place of length

▶ Decidability of quantifier-free fragment: unknown
(soundness results)
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Summary of the issues and proposed solution

In order to model finite arrays:
deal with either ∀ or non-disjointness or possibly undecidability

Solution: a new theory ArrAD of arrays with abstract domain:

▶ No need for quantifier reasoning
▶ Deal with the resulting non-disjoint theory unions by CDSAT:

▶ Theory combination method that requires neither stably
infinite nor disjoint

▶ Predicate-sharing theories: either disjoint or sharing predicates
other than equality

▶ The quantifier-free fragment of ArrAD is decidable: follows
from fitting ArrAD in CDSAT + CDSAT completeness
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The theory of arrays with abstract domain: signature

▶ Sorts: indices I , values V , arrays A, lengths L, Booleans Prop

▶ select : A× I → V store : A× I × V → A len : A → L

▶ Admissibility predicate: Adm: I × L → Prop
Adm(i , l): index i is admissible wrt length l

▶ Abstract domain: definition of Adm

▶ Concrete domain: set of admissible indices given Adm’s
definition and an interpretation of the sorts

▶ Adm is shared by ArrAD, where it is free
and another theory T that provides its definition
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The theory of arrays with abstract domain: axioms

▶ Select-over-store axioms:
▶ ∀a, v , i . select(store(a, i , v), i) ≃ v is replaced by

∀a, v , i . Adm(i , len(a)) → select(store(a, i , v), i) ≃ v
a store at an inadmissible index has no effect

▶ ∀a, v , i , j . i ̸≃ j → select(store(a, i , v), j) ≃ select(a, j)

▶ Store does not change length:
∀a, i , v . len(store(a, i , v)) ≃ len(a)

▶ Extensionality with length and admissibility:
∀a, b. [ len(a) ≃ len(b) ∧
(∀i . Adm(i , len(a)) → select(a, i) ≃ select(b, i)) ]

→ a ≃ b

▶ Congruence axioms for select, store, len, and Adm
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Example: the most common interpretation

▶ Let LIA be the theory defining Adm

▶ Interpreting indices and lengths as integers and
defining admissibility by the axiom

∀i , n. Adm(i , n) ↔ 0 ≤ i < n

▶ The set of admissible indices is the interval [0, n)
▶ Under this interpretation extensionality in ArrAD covers

▶ Extensionality for arrays with length given above
▶ Extensionality in the theory Seq of sequences
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Example: capturing bounded equality as in APF

▶ Let LIA be the theory defining Adm

▶ Interpreting indices as integers, lengths as pairs of integers,
and defining admissibility by the axiom

∀i , l , u. Adm(i , (l , u)) ↔ l ≤ i ≤ u

▶ The set of admissible indices is the interval [l , u]
▶ Under this interpretation extensionality in ArrAD covers

▶ Bounded equality in APF
▶ Extensionality in the theory N-Seq of sequences
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Example: length with starting address

▶ The theory T defining Adm interprets indices as integers,
lengths as pairs (addr , n) where
▶ addr is a binary number – the starting address of the array in

memory
▶ n is an integer – the number of admissible indices

and defines Adm by the axiom

∀i , addr , n. Adm(i , (addr , n)) ↔ 0 ≤ i < n

Starting address does not affect the admissibility of an index

▶ Extensionality: arrays a and b with same set of admissible
indices, same values at all admissible indices, but different
starting addresses are different
(as it is in programming languages)
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Example: admissibility as membership

▶ The theory T defining Adm interprets indices as elements of a
set S and lengths as subsets of S

▶ T defines admissibility by the axiom

∀i , N. Adm(i ,N) ↔ i ∈ N

▶ The set of admissible indices is the subset N ⊆ S

The set S does not have to be a set of numbers, neither it is
required to be (linearly) ordered
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Variant: a theory of maps with abstract domain

Same signature as arrays with abstract domain

▶ Store at inadmissible index i makes only i admissible:
∀a, j , i , v . Adm(j , len(store(a, i , v))) ↔ (Adm(j , len(a)) ∨ j ≃ i)

▶ Store does not change length if the index is admissible:
∀a, i , v . Adm(i , len(a)) → len(store(a, i , v)) ≃ len(a)

▶ Select-over-store axioms:
▶ Restored: ∀a, v , i . select(store(a, i , v), i) ≃ v
▶ ∀a, v , i , j . i ̸≃ j → select(store(a, i , v), j) ≃ select(a, j)

▶ Extensionality unchanged: ∀a, b. [ len(a) ≃ len(b) ∧
(∀i . Adm(i , len(a)) → select(a, i) ≃ select(b, i)) ] → a ≃ b

▶ Congruence axioms for all symbols
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Another variant: a theory of vectors with abstract domain

Vectors are dynamic arrays: how to capture the change?

▶ Store at an inadmissible index makes that index and those in
between (requires < on indices) admissible:
∀a, j , i , v . Adm(j , len(store(a, i , v))) ↔ (Adm(j , len(a)) ∨ j ≤ i)

▶ Everything else is as in the theory of maps with abstract
domain, except that the signature for vectors adds an ordering
< on indices (does not have to be linear)

Theories Seq and N-Seq do not capture the dynamic nature of vectors

Reasoning about arrays, maps, and vectors with abstract domain?
CDSAT
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What is CDSAT

▶ CDSAT: Conflict-Driven SATisfiability in a union of theories

▶ Orchestrates theory modules in a conflict-driven search
▶ Generalizes MCSAT to theory combination:

▶ Assignments of values to terms: both Boolean and first-order
▶ Theory conflict explanation by theory inferences that can

generate new terms

▶ Propositional logic is one of the theories: no hierarchy btw
Boolean reasoning and theory reasoning

▶ Input first-order assignments:
Satisfiability Modulo Assignment

▶ Sound, terminating, and complete for predicate-sharing
theories without requiring stable infiniteness
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How to fit a component theory in CDSAT?

▶ A theory module Ik for theory Tk : an inference system
(abstraction of a decision procedure)

▶ Requirements on a theory module:
▶ Soundness (for the soundness of CDSAT)
▶ Finite local basis: basisk(X ) – all the terms that Ik can

generate from set X of input terms
Used to construct the finite global basis for the theory union
(for the termination of CDSAT)

▶ Completeness(for the completeness of CDSAT):
▶ Leading theory T1: has all sorts and all shared predicates
▶ Leading theory T1: I1 is complete
▶ All other theories Tk : Ik is leading-theory complete
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A theory module IArrAD for ArrAD

From axioms to inference rules, e.g.:

▶ n≃m, i ≃ j , Adm(i , n), ¬Adm(j ,m) ⊢ ⊥
▶ a≃ b ⊢ len(a)≃ len(b)

▶ len(store(a, i , v)) ̸≃ len(a) ⊢ ⊥
▶ Some rules generate ⊥ (conflict detection) others don’t:

balancing finite basis design and completeness

▶ From ∀a, v , i . Adm(i , len(a)) → select(store(a, i , v), i)≃ v to
i ≃ j , len(a)≃ n, Adm(i , n), b≃ store(a, i , v), select(b, j) ̸≃ v ⊢ ⊥

▶ It suffices to have b≃ store(a, i , v) and select(b, j) ̸≃ v
not necessarily select(store(a, i , v), j) ̸≃ v
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How ArrAD fits in predicate-sharing completeness

The interpretation of arrays:

▶ Array sort A: updatable function set:
a set of functions such that every function obtained by a finite
number of updates to a member is a member

With abstract domain:

▶ Partial functions with domain of definition the set of
admissible indices

▶ Array sort A: a collection of updatable function sets (Xn)n
for all values n in the interpretation of the sort L of lengths
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How ArrAD fits in predicate-sharing completeness

▶ Theorem: the module for ArrAD is leading-theory-complete
for all suitable leading theories T1

▶ A leading theory T1 is suitable if:
▶ T1 has all the sorts of ArrAD
▶ T1 shares with ArrAD equality and Adm
▶ For all T1-models M1 there exists a collection of updatable

function sets (Xn)n such that
▶ n ranges over all possible values for lengths according to M1

▶ f ∈ Xn is a function from admissible indices to values in the
M1-interpretation of indices, admissibility, and values

▶ the sum of the cardinalities of the Xn determines the
cardinality of the sort A of arrays in M1

▶ Suitability does not restrict combinability
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Proofs in CDSAT

▶ Proof objects in memory (checkable by proof checker)
▶ The theory modules produce proofs
▶ Proof-carrying CDSAT transition system
▶ Proof reconstruction: from proof terms to proofs

(e.g., resolution proofs)

▶ LCF style as in interactive theorem proving (correct by
construction)
▶ Trusted kernel of primitives
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Current and future work

Current work:

▶ Theory modules for maps and vectors with abstract domain

▶ Leading theory completeness theorems for them

Longer term:

▶ Arrays with abstract domain enriched with concatenation
(may subsume sequences): QF decidability to be determined

▶ Sprout: a baby CDSAT-based verified solver
written in Rust by Xavier Denis

▶ CDSAT and QSMA (for quantified satisfiability)
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