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Setting the stage

I Decidability of satisfiability + expressivity:
decidable FOL fragments

I Refutationally complete inference system for ATP

I Show that it is guaranteed to halt on all inputs in fragment F
I Any fair strategy with that inference system is a decision

procedure for satisfiability in F

Apply this approach to SGGS
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Why SGGS?

I Model-based: search for a model by building candidates
represented by a trail Γ of clauses
SGGS-derivation: a series of trails

I Conflict-driven: apply resolution mostly to explain conflicts

I SGGS as a first-order analogue of CDCL

I Semantically-guided: fixed initial Herbrand interpretation I
In this talk: I is I+ (all positive) or I− (all negative)

I Model complete in the limit: for a satisfiable input the limit of
any fair derivation represents a model

I SGGS decision procedures are model-constructing
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Model representation in SGGS

I S : set of clauses

I I 6|= S : search for a model

I Γ: trail of clauses A� C [L] where literal L is selected
A: a kind of Herbrand constraints (x 6≡ y , top(x) 6= f )

I Partial model Ip(Γ): each clause adds the ground instances
Lσ s.t. Cσ not satisfied and ¬Lσ not already in

I Model I[Γ]: complete Ip(Γ) by consulting I
I Get a Γ with either ⊥ or I[Γ] |= S
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Example I (part I)

I S contains { P(a), ¬P(x) ∨ Q(f (y)), ¬P(x) ∨ ¬Q(z) }
I I is I− (all-negative)

I Γ0 is empty: I[Γ0] = I 6|= P(a)

I Γ1 = [P(a)] by SGGS-extension

I I[Γ1] 6|= ¬P(x) ∨ Q(f (y))

I Γ2 = [P(a)], ¬P(a) ∨ [Q(f (y))]
by SGGS-extension with mgu α = {x ← a}
where ¬P(a) is assigned to [P(a)]
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SGGS invariants I

I Literal L is uniformly false in interpretation J if J |= ¬L
I Every literal in Γ must be I-true (I |= L) or I-false (I |= ¬L)

I If a clause in Γ has I-false literals, one must be selected

I An I-true literal is selected only if all literals in the clause are
I-true: I-all-true clause

I Disjoint prefix dp(Γ): longest prefix where every selected
literal contributes to I[Γ] all its ground instances
(no intersection of selected literals)
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SGGS invariants II

I I-true literal L in Ci made uniformly false in I[Γ]
by the selection of I-false literal M in Cj (j < i):
L assigned to Cj

I Non-selected I-true literals must be assigned

I Selected I-true literals must be assigned if possible

I If assigned, a selected I-true literal is assigned rightmost
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Example I (part II)

I S contains { P(a), ¬P(x) ∨ Q(f (y)), ¬P(x) ∨ ¬Q(z) }
I Γ2 = [P(a)], ¬P(a) ∨ [Q(f (y))]

I I[Γ2] 6|= ¬P(x) ∨ ¬Q(z)

I Γ3 = [P(a)], ¬P(a) ∨ [Q(f (y))], ¬P(a) ∨ [¬Q(f (y))]
by SGGS-extension with mgu α = {x ← a, z ← f (y)}
where ¬P(a) is assigned to [P(a)] and ¬Q(f (y)) to [Q(f (y))]

I Conflict: ¬P(a) ∨ [¬Q(f (y))] is an I−-all-true conflict clause
(all its literals are assigned)
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First-order clausal propagation

C = L1 ∨ . . . [Lj ] ∨ . . . ∨ Lk
I Conflict clause: for all i , 1 ≤ i ≤ k, I[Γ] |= ¬Li
I Implied literal and justification:

for all i , 1 ≤ i 6= j ≤ k, I[Γ] |= ¬Li and I[Γ] |= Lj
I All justifications are in the disjoint prefix

I I-all-true clause: either conflict clause or justification
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Example I (part III): SGGS finds a refutation

I S contains { P(a), ¬P(x) ∨ Q(f (y)), ¬P(x) ∨ ¬Q(z) }
I Γ3 = [P(a)], ¬P(a) ∨ [Q(f (y))], ¬P(a) ∨ [¬Q(f (y))]

I Γ4 = [P(a)], ¬P(a) ∨ [¬Q(f (y))], ¬P(a) ∨ [Q(f (y))]
by SGGS-move: I[Γ4] |= ¬Q(f (y))
Conflict: ¬P(a) ∨ [Q(f (y))] is a conflict clause

I Γ5 = [P(a)], ¬P(a) ∨ [¬Q(f (y))], [¬P(a)] by SGGS-resolution:
the SGGS-resolvent replaces the non-I−-all-true parent

I Γ6 = [¬P(a)], [P(a)], ¬P(a) ∨ [¬Q(f (y))] by SGGS-move

I Γ7 = [¬P(a)], ⊥, ¬P(a) ∨ [¬Q(f (y))] by SGGS-resolution
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The SGGS inference system I

I Model search: SGGS-extension with literal selection analogue
of decision in CDCL

I Conflict solving: if the conflict clause C [L] is I-all-true:
I SGGS-move it to the left of the clause L is assigned to
I Analogue of learning and backjumping in CDCL

as C [L] enters the disjoint prefix with L as implied literal
with justification C

Maria Paola Bonacina Semantically-guided goal-sensitive reasoning: theorem proving and decision procedures



Outline
SGGS: Semantically Guided Goal Sensitive reasoning

SGGS decision procedures
The Koala prover and experimental results

Discussion

The SGGS inference system II

If the conflict clause C [L] is not I-all-true:

I SGGS-resolve an I-false literal in C [L] with an I-true selected
literal in a justification: analogue of explanation in CDCL

I The SGGS-resolvent is still a conflict clause and replaces the
parent conflict clause

I SGGS-extension ensures that all I-false literals in C [L] can be
resolved away: get either ⊥ or an I-all-true conflict clause
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Example II: SGGS finds a model (part I)

I S contains
I P(x , x , a), P(x , y ,w) ∨ P(y , z ,w) ∨ ¬P(x , z ,w)
I ¬P(x , x , b), P(x , z ,w) ∨ ¬P(x , y ,w) ∨ ¬P(y , z ,w)

I I is I− (all-negative)

I Γ1 = [P(x , x , a)]

I Γ2 = [P(x , x , a)], P(x , y , a) ∨ [P(y , x , a)] ∨ ¬P(x , x , a)
by SGGS-extension with mgu α = {z ← x ,w ← a}
(selecting P(x , y , a) makes no difference)

Maria Paola Bonacina Semantically-guided goal-sensitive reasoning: theorem proving and decision procedures



Outline
SGGS: Semantically Guided Goal Sensitive reasoning

SGGS decision procedures
The Koala prover and experimental results

Discussion

Example II (part II)

I S contains
I P(x , x , a), P(x , y ,w) ∨ P(y , z ,w) ∨ ¬P(x , z ,w)
I ¬P(x , x , b), P(x , z ,w) ∨ ¬P(x , y ,w) ∨ ¬P(y , z ,w)

I Γ2 = [P(x , x , a)], P(x , y , a) ∨ [P(y , x , a)] ∨ ¬P(x , x , a)
the two selected literals have non-empty intersection

I Γ3 = [P(x , x , a)], P(x , x , a) ∨ [P(x , x , a)] ∨ ¬P(x , x , a),
y 6≡ x � P(x , y , a) ∨ [P(y , x , a)] ∨ ¬P(x , x , a)
by SGGS-splitting to remove the intersection

I SGGS-splitting introduces constraints
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Example II (part III)

I S contains
I P(x , x , a), P(x , y ,w) ∨ P(y , z ,w) ∨ ¬P(x , z ,w)
I ¬P(x , x , b), P(x , z ,w) ∨ ¬P(x , y ,w) ∨ ¬P(y , z ,w)

I Γ3 = [P(x , x , a)], P(x , x , a) ∨ [P(x , x , a)] ∨ ¬P(x , x , a),
y 6≡ x � P(x , y , a) ∨ [P(y , x , a)] ∨ ¬P(x , x , a)
the second clause is disposable

I Γ4 = [P(x , x , a)], y 6≡ x�P(x , y , a)∨ [P(y , x , a)]∨¬P(x , x , a)
by SGGS-deletion

I I[Γ4] |= S : SGGS halts

I This set of clauses is in EPR
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Effectively PRopositional Logic (EPR)

I Also known as the Bernays-Schönfinkel class

I Sentences of the form ∃∗∀∗ϕ
ϕ: formula with neither quantifiers nor functions
(constants allowed)

I Clausal form: replace ∃-quantified variables by Skolem
constants; no function symbols; finite Herbrand base;
decidable

I But not decidable (directly) by hyperresolution
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Recall what is hyperresolution

I Semantic resolution: generate only resolvents false in I
I Hyperresolution: semantic resolution with I− or I+:

sign-based semantic guidance

I Positive hyperresolution: resolve a non-positive clause C with
as many positive clauses as needed to resolve away with a
simultaneous mgu all negative literals in C and get a positive
resolvent (false in I−)

I Negative hyperresolution: dual with I+
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Hyperresolution does not decide EPR (directly)

I S contains
I P(x , x , a), P(x , y ,w) ∨ P(y , z ,w) ∨ ¬P(x , z ,w)
I ¬P(x , x , b), P(x , z ,w) ∨ ¬P(x , y ,w) ∨ ¬P(y , z ,w)

I Positive hyperresolution generates infinitely many clauses from
P(x , x , a) and P(x , y ,w) ∨ P(y , z ,w) ∨ ¬P(x , z ,w)

I Negative hyperresolution generates infinitely many clauses
from ¬P(x , x , b) and P(x , z ,w) ∨ ¬P(x , y ,w) ∨ ¬P(y , z ,w)

I SGGS decides EPR: let’s see why
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How SGGS makes progress

I Suppose ⊥ 6∈ Γ and I[Γ] 6|= S

I If Γ = dp(Γ): as I[Γ] 6|= C for some clause C ∈ S , extend Γ
hence I[Γ] (SGGS-extension)

I If Γ 6= dp(Γ): expose intersection (SGGS-splitting) and
remove it (SGGS-deletion or SGGS-resolution) or solve
conflict (SGGS-resolution, SGGS-splitting, SGGS-move)

I Non-termination may come only from infinitely many
SGGS-extensions
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Fairness of an SGGS-derivation

I Makes progress whenever ⊥6∈ Γ and I [Γ] 6|= S

I Applies SGGS-deletion eagerly

I Every SGGS-extension that adds a conflict clause is bundled
with conflict solving

I Does not neglect inferences on shorter prefixes to work on
longer ones

I Ordering >c on SGGS trails

I >c is well-founded on trails of bounded length

I Limit Γ∞ of a fair derivation: all prefixes stabilize eventually
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Fundamental theorems about SGGS

I S : input set of clauses

I A descending chain of length-bounded trails is finite

I A fair derivation is a descending chain

I SGGS is refutationally complete:
if S is unsatisfiable, SGGS halts with a refutation

I SGGS is model-complete in the limit:
if S is satisfiable, I[Γ∞] |= S
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Two approaches to get SGGS decision procedures

1. Show that the length of SGGS-trails is bounded

2. Show that if hyperresolution halts so does SGGS
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First approach: finite basis

I S : input set of clauses

I H its Herbrand universe and A its Herbrand base

I Finite basis: finite subset B ⊆ A
I Finite set H(B) ⊆ H of the ground subterms of atoms in B
I An SGGS-derivation is in the finite basis B if all ground

instances of all clauses ever appearing on the trail are made of
atoms in B
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Termination of SGGS in a finite basis

I Input set S and finite basis B
I If a fair SGGS-derivation is in B:

I At all stages the length of the trail is upper bounded by |B|
(|Γj | ≤ |B|+ 1 and |Γj | ≤ |B| if dp(Γj) = Γj)

I The derivation is finite
I If S is satisfiable then it has a model of cardinality |H(B)|+ 1

that can be extracted from the final Γ
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Decidability by the finite basis approach

I Fragment F
I Set S of clauses in F
I Show that for all S there exists a finite basis B

(that typically depends on S)

I Then any fair SGGS-strategy is a model-constructing decision
procedure for F

I F has the small model property: every satisfiable S has a
model whose cardinality is upper-bounded
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SGGS decides the stratified fragment hence EPR

Stratified fragment

I Well-founded ordering >s on sorts:
if f : s1 × . . .× sn → s then si >s s

I Sort-dependency graph: arc from si to s

I No cycles: no series such as a, f (a), f 2(a), f 3(a), . . . or
a, f (a), g(f (a)), f (g(f (a))), . . .: the Herbrand base is finite

I EPR is the special case with one sort: no function symbols

I Check stratification after Skolemization (∃∗∀∗ is ok)

I The finite basis B is the Herbrand base itself
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Second approach: ground-preserving clauses

Clause C : C+ positive literals; C− negative literals

I Positively ground-preserving: Var(C ) ⊆ Var(C−)

I Negatively ground-preserving: Var(C ) ⊆ Var(C+)

I S positively ground-preserving: positive clauses are ground

I Positive hyperresolution only generates ground clauses
I SGGS:

I I− is suitable for positively ground-preserving set
I I+ is suitable for negatively ground-preserving set
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Second approach: from hyperresolution to SGGS

I S positively ground-preserving

I SGGS with I− only generates ground clauses

I For every clause C that SGGS puts on the trail, C+ is a
subset of a positive hyperresolvent

I If positive hyperresolution halts, so does SGGS with I−

I SGGS decides the PVD (positive variable dominated) and BDI
(bounded depth increase) fragments

I For PVD it can be proved also by the finite basis approach
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Negative results with sign-based semantic guidance

SGGS with I− or I+ does not decide the following fragments that
admit (ordered, not hyper) resolution-based decision procedures:

I Ackermann (∃∗∀∃∗ϕ)

I Monadic (no functions, unary predicates)

I FO2 (no functions, only 2 variables)

I Guarded (no functions, quantification only in the form
∀ȳ .(R(x̄ , ȳ) ⊃ ψ[x̄ , ȳ ]) and ∃ȳ .(R(x̄ , ȳ) ∧ ψ[x̄ , ȳ ]))

Can we use SGGS to discover new decidable fragments?

Maria Paola Bonacina Semantically-guided goal-sensitive reasoning: theorem proving and decision procedures



Outline
SGGS: Semantically Guided Goal Sensitive reasoning

SGGS decision procedures
The Koala prover and experimental results

Discussion

Restrained clauses: intuition

S = { P(s10(0), s9(0)), ¬P(s(s(x)), y)∨P(x , s(y)), ¬P(s(0), 0) }
Positively ground-preserving, I is I−

I Γ1 = [P(10, 9)]

I Γ2 = [P(10, 9)], ¬P(10, 9) ∨ [P(8, 10)]

I Γ3 = [P(10, 9)], ¬P(10, 9)∨ [P(8, 10)], ¬P(8, 10)∨ [P(6, 11)]
....

I Γ6 = [P(10, 9)], ... ¬P(2, 13) ∨ [P(0, 14)] and I[Γ6] |= S

P(s(s(x)), y) � P(x , s(y))
�: KBO or LPO with P > s in the precedence
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Restrained clauses

Restraining quasi-ordering �:

I Stable (under substitutions)

I � well-founded

I ≈ = � ∩� has finite equivalence classes

Clause C is (strictly) positively restrained:

I Positively ground-preserving: Var(C ) ⊆ Var(C−)

I For all non-ground L ∈ C+ there exists M ∈ C− such that
M � L (M � L)

Why a quasi-ordering?
differ(x , y) ∨ ¬differ(y , x): differ(x , y) ≈ differ(y , x)
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SGGS decides the restrained fragments

S restrained set of clauses, A its Herbrand base

I AS : set of ground atoms in S

I Finite basis: A�S = {L : L ∈ A, ∃M ∈ AS s.t. M � L}:
the ground atoms upper-bounded by those in S

I Any fair SGGS-derivation with suitable I is in A�S
I Any fair SGGS-derivation halts, is a refutation if S is

unsatisfiable, and constructs a model if S is satisfiable

I Upper bound on model’s cardinality: |H(A�S )|+ 1

I Also PO-resolution and positive hyperresolution halt,
but they don’t construct models
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Sort-restrained clauses: intuition

S = { P(x , f (b)), ¬Q(x , a)∨Q(a, x), ¬P(x , f (y))∨Q(x , x)∨ P(x , y) }
a : s1 b : s2 f : s2 → s2 P ⊆ s1 × s2 Q ⊆ s1 × s1

Neither ground-preserving nor stratified
SGGS with I− halts:

I Γ1 = [P(x , f (b))]

I Γ2 = [P(x , f (b))], ¬P(x , f (b)) ∨ Q(x , x) ∨ [P(x , b)]

I I[Γ2] |= S

I Positively ground-preserving for the cyclic sort s2

I P(x , f (y)) � P(x , y) for � any KBO or LPO
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Sort-restrained clauses

I Generalize restrained and stratified:
restrained on sorts with infinite domain

I Sort s with infinite domain: path from a cyclic sort to s

I Restraining quasi-ordering (with the subterm property)
I Clause C is positively sort-restrained:

I Positively ground-preserving on sorts with infinite domain:
Vars(C ) ⊆ Vars(C−)

I For all L ∈ C+ such that Gr(L) is infinite there exists M ∈ C−

such that M � L
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SGGS decides the sort-restrained fragments

I Set of all atoms L in S such that Gr(L) is finite

I Smallest instantiation-closed and �-closed superset

I Basis A�S ,Σ for S : all ground instances

I This basis is finite

I Any fair SGGS-derivation with suitable I is in A�S ,Σ
I Any fair SGGS-derivation halts, is a refutation if S is

unsatisfiable, and constructs a model if S is satisfiable

I Upper bound on model’s cardinality: |H(A�S,Σ)|+ 1
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Another new decidable fragment

I SGGS decides the sort-refined PVD fragment
generalize stratified and PVD
PVD on sorts with infinite domain

I PO-resolution and positive hyperresolution do not decide the
sort-restrained and sort-refined PVD fragments
(at least not directly)
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How to determine that a set of clauses is restrained

I Extract from S a rewrite system R on atoms

I For all clauses C ∈ S , for all non-ground literals L ∈ C+ there
exists literal ¬M ∈ C− such that (M → L) ∈ R

I →R terminating: →∗R restraining quasi-ordering

I Add E for permutations: differ(x , y) ≈ differ(y , x)

I Rewriting modulo: →R/E is ↔∗E ◦ →R ◦ ↔∗E
I →R/E terminating, Var(t) = Var(u) for all t ' u in E,

and ↔∗E has finite equivalence classes:
→∗R/E restraining quasi-ordering

I Apply a termination tool such as AProVE or TTT2
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Experimental results

I Source of clause sets: TPTP 7.4.0

I First-order problems without equality: 5,000 benchmarks

I Size and number of candidate rewrite systems grow
exponentially with number of literals in the set of clauses

I 1,539 clause sets yield too big rewrite systems

I AProVE and TTT2 applied to at most 100 candidates per set
I Out of the remaining 3,461 problems:

I 2,137 belong to at least one decidable class
I 1,399 (66%) belong to at least one SGGS-decidable class
I 97 are discovered decidable for the first time
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The Koala SGGS-based prototype theorem prover

I Written in OCAML by Sarah Winkler

I Trail as list of clauses with constraints in standard form
and selected literals in a discrimination tree to compute
substitutions for SGGS-extensions

I Fair search plans

I In the experiments: I− by default and I+ if the input is
negatively ground-preserving
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Experimental results with Koala

Koala solves (Time-out = 300 sec wall-clock time):

I 90% of the new decidable problems

I 78% of the problems in the SGGS-decidable classes

I 58% of the Horn problems

I 43% of the problems whose sat/unsat status is known
performing better on sat (64%) than unsat (38%)

Comparison with the state of the art:
in line with E 2.4, Vampire 4.4, and iProver 3.5 in terms of
# of problems solved in the new SGGS-decidable classes
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Current and future work

I Behavior of SGGS in the Horn case

I More work on strategies and inner algorithms for SGGS

I Further development of the Koala prover
I Extension to equality

I Integrate SGGS and superposition: SGGS(superposition)
I Integrate SGGS into CDSAT: CDSAT(SGGS)

I Initial interpretations not based on sign:
I Satisfiable subset of ground clauses
I SAT or SMT solver generates a model
I Use it as initial interpretation for SGGS
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Thanks

Thank you!
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