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Motivation

I Software is everywhere

I Needed: Reliability
I Difficult goal: Software may be

I Artful
I Complex
I Huge
I Varied
I Old (and undocumented)

I Software/hardware border: blurred, evolving
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Some approaches to software reliability

I Testing (test case generation ...)

I Programmer assistants

I Program analyzers

I Static analysis (types, extended static checking, abstract
interpretations ...)

I Dynamic analysis (traces ...)

I Software model checkers (+ theorem proving, e.g.,
SMT-BMC, CEGAR-SMC)

Reasoning about software
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Systems with reasoning about software

Typical architecture:

I Front-end: interface, problem modelling, compiling
I From programs to formulæ

(via specifications, annotations, intermediate languages)

I Back-end: problem solving by reasoning engine
I Problem: determine satisfiability of formulæ
I Objective: decision procedures
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Ingredients of formulæ

I Propositional logic (PL): ∨, ¬, ∧
I Equality: ', 6', free constant and function symbols
I Theories of data structures, e.g.:

I Lists, recursive data structures: constructors (cons), selectors
(car , cdr)

I Arrays, records: select, store
I Bitvectors

I Linear arithmetic: ≤, +, −, . . .− 2,−1, 0, 1, 2, . . .

I Formalizations of type systems, e.g.: subtype relation v, type
constructor Array-of (monadic function f )

I First-order logic (FOL): ∀, ∃, free predicate symbols
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Problem statement

I Decide satisfiability of first-order formulæ
generated by SW verification tools

I Satisfiability w.r.t. background theories
I With quantifiers to write, e.g.,

I frame conditions over loops
I auxiliary invariants over heaps
I axioms of type systems and
I application-specific theories without decision procedure

I Emphasis on automation

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification



Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T ): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Shape of problem

I Background theory T
I T =

⋃n
i=1 Ti , e.g., linear arithmetic

I Set of formulæ: R∪ P
I R: set of non-ground clauses without T -symbols
I P: large ground formula (set of ground clauses)

typically with T -symbols

I Determine whether R∪ P is satisfiable modulo T
(Equivalently: determine whether T ∪ R ∪ P is satisfiable)
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Tools

I Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT

I Ti -solvers: Satisfiability procedures for the Ti ’s
I DPLL(T )-based SMT-solver: Decision procedure for T with

Nelson-Oppen combination of the Ti -sat procedures

I First-order engine Γ to handle R (additional theory):
Resolution+Rewriting+Superposition: Superposition-based

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification



Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T ): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Combining strengths of different tools

I DPLL: SAT-problems; large non-Horn clauses

I Theory solvers: e.g., ground equality, linear arithmetic

I DPLL(T )-based SMT-solver: efficient, scalable, integrated
theory reasoning

I Superposition-based inference system Γ:
I Horn clauses, equalities with universal quantifiers

(automated instantiation)
I sat-procedure for several theories of data structures
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How to get decision procedures?

I SW development: false conjectures due to mistakes in
implementation or specification

I Need theorem prover that terminates on satisfiable inputs
I Not possible in general:

I FOL is only semi-decidable
I First-order formulæ of linear arithmetic with uninterpreted

functions: not even semi-decidable

However we need less than a general solution.
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Problematic axioms do occur in relevant inputs

v: subtype relation
f : type constructor (e.g., Array-of)

I Transitivity
¬(x v y) ∨ ¬(y v z) ∨ x v z

I Monotonicity
¬(x v y) ∨ f (x) v f (y)

Resolution generates unbounded number of clauses
(even with negative selection)
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In practice we need finitely many

Example:

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b generate

3. {f i (a) v f i (b)}i≥0

E.g. f (a) v f (b) or f 2(a) v f 2(b) often suffice to show
satisfiability
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Idea: Allow possibly unsound inferences

I TP applied to maths: most conjectures are true

I Sacrifice completeness for efficiency
Retain soundness: if proof found, input unsatisfiable

I TP applied to verification: most conjectures are false

I Imperil soundness for termination
Retain completeness: if no proof, input satisfiable

I How do we do it: Additional axioms to enforce termination

I Detect unsoundness as conflict + Recover by backtracking
(overall derivation still sound!)
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Example

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Reach saturated state and detect satisfiability
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DPLL

State of derivation: M ||F

I Decide: guess L is true, add it to M (decided literals)

I UnitPropagate: propagate consequences of assignment
(implied literals)

I Conflict: detect L1 ∨ . . . ∨ Ln all false

I Explain: unfold implied literals and detect decided Li in
conflict clause

I Learn: may learn conflict clause

I Backjump: undo assignment for Li

I Unsat: conflict clause is 2 (nothing else to try)
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DPLL(T )

State of derivation: M ||F

I T -Propagate: add to M an L that is T -consequence of M

I T -Conflict: detect that L1, . . . , Ln in M are T -inconsistent

If Ti -solver builds Ti -model:

I PropagateEq: add to M a ground s ' t true in Ti -model
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DPLL(Γ+T ): integrate Γ in DPLL(T )

I Idea: literals in M can be premises of Γ-inferences

I Stored as hypotheses in inferred clause

I Hypothetical clause: H . C (equivalent to ¬H ∨ C )

I Inferred clauses inherit hypotheses from premises

I Note: don’t need Γ for ground inferences
I Use each engine for what is best for:

I Γ works on non-ground clauses and ground unit clauses
I DPLL(T ) works on all and only ground clauses
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DPLL(Γ+T )

State of derivation: M ||F

F : set of hypothetical clauses

I Deduce: Γ-inference, e.g., superposition, using non-ground
clauses in F and literals in M

I Backjump: remove hypothetical clauses depending on undone
assignments
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Unsound inferences

I Single unsound inference rule: add arbitrary clause C
I Simulate many:

I Suppress literals in long clause C ∨ D:
add C and subsume

I Replace deep term t by constant a:
add t ' a and rewrite
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Controlling unsound inferences

I Unsound inferences to induce termination on sat input

I What if the unsound inference makes problem unsat?!
I Detect conflict and backjump:

I Keep track by adding dCe . C
I dCe: new propositional variable (a “name” for C )
I Treat “unnatural failure” like “natural failure”

I Thus unsound inferences are reversible
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Unsound inferences in DPLL(Γ+T )

State of derivation: M ||F

Inference rule:

I UnsoundIntro: add dCe . C to F and dCe to M
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Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x

2. Rewrite a v f (c) into df (x) ' xe . a v c

3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x

5. a v b yields only f (a) v f (b)

6. a v f (c) yields only f (a) v f (f (c))
rewritten to df (f (x)) = xe . f (a) v c

7. Reach saturated state and detect satisfiability
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Issues about completeness

I Γ is refutationally complete

I Since Γ does not see all the clauses, DPLL(Γ + T ) does not
inherit refutational completeness trivially

I DPLL(T ) has depth-first search: complete for ground SMT
problems, not when injecting non-ground inferences

I Solution: iterative deepening on inference depth

I However refutationally complete only for T empty
Example: R = {x = a ∨ x = b}, P = ∅, T is arithmetic
Unsat but can’t tell!
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Solution

I Sufficient condition for refutational completeness with T 6= ∅:
R be variable-inactive (tested automatically by Γ)
I it implies stable-infiniteness

(needed for completeness of Nelson-Oppen combination)
I it excludes cardinality constraints (e.g., x = a ∨ x = b)

I Use iterative deepening on both Deduce and UnsoundIntro
to impose also termination: DPLL(Γ+T ) gets “stuck” at k
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How to get decision procedures

To decide satisfiability modulo T of R∪ P:

I Find sequence of “unsound axioms” U
I Show that there exists k s.t. k-bounded DPLL(Γ+T ) is

guaranteed to terminate
I with Unsat if R∪ P is T -unsat
I in a state which is not stuck at k if R∪ P is T -sat
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Decision procedures

I R has single monadic function symbol f

I Essentially finite: if R∪ P is sat, has model where range of f
is finite

I Such a model satisfies f j(x) ' f k(x) for some j 6= k

I UnsoundIntro adds “pseudo-axioms” f j(x) ' f k(x) for j > k

I Use f j(x) ' f k(x) as rewrite rule to limit term depth

I Clause length limited by properties of Γ and R
I Only finitely many clauses generated: termination without

getting stuck
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Situations where clause length is limited

Γ: Superposition, Hyperresolution, Simplification

Negative selection: only positive literals in positive clauses are
active

I R is Horn

I R is ground-preserving: variables in positive literals appear
also in negative literals;
the only positive clauses are ground
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Concrete examples of essentially finite theories

Axiomatizations of type systems:

Reflexivity x v x (1)

Transitivity ¬(x v y) ∨ ¬(y v z) ∨ x v z (2)

Anti-Symmetry ¬(x v y) ∨ ¬(y v x) ∨ x ' y (3)

Monotonicity ¬(x v y) ∨ f (x) v f (y) (4)

Tree-Property ¬(z v x) ∨ ¬(z v y) ∨ x v y ∨ y v x (5)

MI = {(1), (2), (3), (4)}: type system with multiple inheritance
SI = MI ∪ {(5)}: type system with single inheritance

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification



Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T ): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Concrete examples of decision procedures

DPLL(Γ+T ) with UnsoundIntro adding f j(x) ' f k(x) for j > k
decides the satisfiability modulo T of problems

I MI ∪ P (MI is Horn)

I SI ∪ P (all ground-preserving except Reflexivity)

I MI ∪ TR ∪ P and SI ∪ TR ∪ P (by combination)

TR = {¬(g(x) ' null), h(g(x)) ' x}
where g represents the type representative of a type.
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Summary of contributions and directions for future work

I DPLL(Γ+T ) + unsound inferences: termination

I Decision procedures for type systems with multiple/single
inheritance used in ESC/Java and Spec#

I DPLL(Γ+T ) + variable-inactivity: completeness for T 6= ∅
and combination of both built-in and axiomatized theories

I Extension to more presentations
(e.g., y v x ∧ u v v ⊃ map(x , u) v map(y , v))

I Avoid duplication of reasoning on ground unit clauses
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