
Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Decision procedures with unsound inferences for
software verification

Maria Paola Bonacina1

Dipartimento di Informatica
Università degli Studi di Verona

Verona, Italy, EU

Schloß Dagstuhl Seminar # 09411: “Interaction vs. Automation: the Two Faces of Deduction”
Schloß Dagstuhl, near Wadern, Germany, EU

6 October 2009

(Extended version based also on talks at ETHZ and EPFL, April 2009, and U. Trento, Sept. 2009)

1Joint work with Chris Lynch and Leonardo de Moura
Maria Paola Bonacina

Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures

DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems

Discussion

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Motivation

I Software is everywhere

I Needed: Reliability
I Difficult goal: Software may be

I Artful
I Complex
I Huge
I Varied
I Old (and undocumented)

I Software/hardware border: blurred, evolving

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Some approaches to software reliability

I Testing (test case generation ...)

I Programmer assistants

I Program analyzers

I Static analysis (types, extended static checking, abstract
interpretations ...)

I Dynamic analysis (traces ...)

I Software model checkers (+ theorem proving, e.g.,
SMT-BMC, CEGAR-SMC)

Reasoning about software

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Systems with reasoning about software

Typical architecture:

I Front-end: interface, problem modelling, compiling
I From programs to formulæ

(via specifications, annotations, intermediate languages)

I Back-end: problem solving by reasoning engine
I Problem: determine satisfiability of formulæ
I Objective: decision procedures

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Ingredients of formulæ

I Propositional logic (PL): ∨, ¬, ∧
I Equality: ', 6', free constant and function symbols
I Theories of data structures, e.g.:

I Lists, recursive data structures: constructors (cons), selectors
(car , cdr)

I Arrays, records: select, store
I Bitvectors

I Linear arithmetic: ≤, +, −, . . .− 2,−1, 0, 1, 2, . . .

I Formalizations of type systems, e.g.: subtype relation v, type
constructor Array-of (monadic function f)

I First-order logic (FOL): ∀, ∃, free predicate symbols

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Problem statement

I Decide satisfiability of first-order formulæ
generated by SW verification tools

I Satisfiability w.r.t. background theories
I With quantifiers to write, e.g.,

I frame conditions over loops
I auxiliary invariants over heaps
I axioms of type systems and
I application-specific theories without decision procedure

I Emphasis on automation

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Shape of problem

I Background theory T
I T =

⋃n
i=1 Ti , e.g., linear arithmetic

I Set of formulæ: R∪ P
I R: set of non-ground clauses without T -symbols
I P: large ground formula (set of ground clauses)

typically with T -symbols

I Determine whether R∪ P is satisfiable modulo T
(Equivalently: determine whether T ∪ R ∪ P is satisfiable)

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Tools

I Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT

I Ti -solvers: Satisfiability procedures for the Ti ’s
I DPLL(T)-based SMT-solver: Decision procedure for T with

Nelson-Oppen combination of the Ti -sat procedures

I First-order engine Γ to handle R (additional theory):
Resolution+Rewriting+Superposition: Superposition-based

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Combining strengths of different tools

I DPLL: SAT-problems; large non-Horn clauses

I Theory solvers: e.g., ground equality, linear arithmetic

I DPLL(T)-based SMT-solver: efficient, scalable, integrated
theory reasoning

I Superposition-based inference system Γ:
I Horn clauses, equalities with universal quantifiers

(automated instantiation)
I sat-procedure for several theories of data structures

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

How to get decision procedures?

I SW development: false conjectures due to mistakes in
implementation or specification

I Need theorem prover that terminates on satisfiable inputs
I Not possible in general:

I FOL is only semi-decidable
I First-order formulæ of linear arithmetic with uninterpreted

functions: not even semi-decidable

However we need less than a general solution.

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Problematic axioms do occur in relevant inputs

v: subtype relation
f : type constructor (e.g., Array-of)

I Transitivity
¬(x v y) ∨ ¬(y v z) ∨ x v z

I Monotonicity
¬(x v y) ∨ f (x) v f (y)

Resolution generates unbounded number of clauses
(even with negative selection)

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

In practice we need finitely many

Example:

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b generate

3. {f i (a) v f i (b)}i≥0

E.g. f (a) v f (b) or f 2(a) v f 2(b) often suffice to show
satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Idea: Allow possibly unsound inferences

I TP applied to maths: most conjectures are true

I Sacrifice completeness for efficiency
Retain soundness: if proof found, input unsatisfiable

I TP applied to verification: most conjectures are false

I Imperil soundness for termination
Retain completeness: if no proof, input satisfiable

I How do we do it: Additional axioms to enforce termination

I Detect unsoundness as conflict + Recover by backtracking
(overall derivation still sound!)

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Example

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Reach saturated state and detect satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Example

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Reach saturated state and detect satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Example

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add f (x) ' x

2. Rewrite a v f (c) into a v c and get 2: backtrack!

3. Add f (f (x)) ' x

4. a v b yields only f (a) v f (b)

5. a v f (c) yields only f (a) v c

6. Reach saturated state and detect satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

DPLL

State of derivation: M ||F

I Decide: guess L is true, add it to M (decided literals)

I UnitPropagate: propagate consequences of assignment
(implied literals)

I Conflict: detect L1 ∨ . . . ∨ Ln all false

I Explain: unfold implied literals and detect decided Li in
conflict clause

I Learn: may learn conflict clause

I Backjump: undo assignment for Li

I Unsat: conflict clause is 2 (nothing else to try)

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

DPLL(T)

State of derivation: M ||F

I T -Propagate: add to M an L that is T -consequence of M

I T -Conflict: detect that L1, . . . , Ln in M are T -inconsistent

If Ti -solver builds Ti -model:

I PropagateEq: add to M a ground s ' t true in Ti -model

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

DPLL(Γ+T): integrate Γ in DPLL(T)

I Idea: literals in M can be premises of Γ-inferences

I Stored as hypotheses in inferred clause

I Hypothetical clause: H . C (equivalent to ¬H ∨ C)

I Inferred clauses inherit hypotheses from premises

I Note: don’t need Γ for ground inferences
I Use each engine for what is best for:

I Γ works on non-ground clauses and ground unit clauses
I DPLL(T) works on all and only ground clauses

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

DPLL(Γ+T)

State of derivation: M ||F

F : set of hypothetical clauses

I Deduce: Γ-inference, e.g., superposition, using non-ground
clauses in F and literals in M

I Backjump: remove hypothetical clauses depending on undone
assignments

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Unsound inferences

I Single unsound inference rule: add arbitrary clause C
I Simulate many:

I Suppress literals in long clause C ∨ D:
add C and subsume

I Replace deep term t by constant a:
add t ' a and rewrite

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Controlling unsound inferences

I Unsound inferences to induce termination on sat input

I What if the unsound inference makes problem unsat?!
I Detect conflict and backjump:

I Keep track by adding dCe . C
I dCe: new propositional variable (a “name” for C)
I Treat “unnatural failure” like “natural failure”

I Thus unsound inferences are reversible

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Unsound inferences in DPLL(Γ+T)

State of derivation: M ||F

Inference rule:

I UnsoundIntro: add dCe . C to F and dCe to M

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x

2. Rewrite a v f (c) into df (x) ' xe . a v c

3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x

5. a v b yields only f (a) v f (b)

6. a v f (c) yields only f (a) v f (f (c))
rewritten to df (f (x)) = xe . f (a) v c

7. Reach saturated state and detect satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x

2. Rewrite a v f (c) into df (x) ' xe . a v c

3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x

5. a v b yields only f (a) v f (b)

6. a v f (c) yields only f (a) v f (f (c))
rewritten to df (f (x)) = xe . f (a) v c

7. Reach saturated state and detect satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x

2. Rewrite a v f (c) into df (x) ' xe . a v c

3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe

4. Add df (f (x)) ' xe . f (f (x)) ' x

5. a v b yields only f (a) v f (b)

6. a v f (c) yields only f (a) v f (f (c))
rewritten to df (f (x)) = xe . f (a) v c

7. Reach saturated state and detect satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Example as done by system

1. ¬(x v y) ∨ f (x) v f (y)

2. a v b

3. a v f (c)

4. ¬(a v c)

1. Add df (x) ' xe . f (x) ' x

2. Rewrite a v f (c) into df (x) ' xe . a v c

3. Generate df (x) ' xe .2; Backtrack, learn ¬df (x) ' xe
4. Add df (f (x)) ' xe . f (f (x)) ' x

5. a v b yields only f (a) v f (b)

6. a v f (c) yields only f (a) v f (f (c))
rewritten to df (f (x)) = xe . f (a) v c

7. Reach saturated state and detect satisfiability

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Issues about completeness

I Γ is refutationally complete

I Since Γ does not see all the clauses, DPLL(Γ + T) does not
inherit refutational completeness trivially

I DPLL(T) has depth-first search: complete for ground SMT
problems, not when injecting non-ground inferences

I Solution: iterative deepening on inference depth

I However refutationally complete only for T empty
Example: R = {x = a ∨ x = b}, P = ∅, T is arithmetic
Unsat but can’t tell!

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Issues about completeness

I Γ is refutationally complete

I Since Γ does not see all the clauses, DPLL(Γ + T) does not
inherit refutational completeness trivially

I DPLL(T) has depth-first search: complete for ground SMT
problems, not when injecting non-ground inferences

I Solution: iterative deepening on inference depth

I However refutationally complete only for T empty
Example: R = {x = a ∨ x = b}, P = ∅, T is arithmetic
Unsat but can’t tell!

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Issues about completeness

I Γ is refutationally complete

I Since Γ does not see all the clauses, DPLL(Γ + T) does not
inherit refutational completeness trivially

I DPLL(T) has depth-first search: complete for ground SMT
problems, not when injecting non-ground inferences

I Solution: iterative deepening on inference depth

I However refutationally complete only for T empty
Example: R = {x = a ∨ x = b}, P = ∅, T is arithmetic
Unsat but can’t tell!

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Solution

I Sufficient condition for refutational completeness with T 6= ∅:
R be variable-inactive (tested automatically by Γ)
I it implies stable-infiniteness

(needed for completeness of Nelson-Oppen combination)
I it excludes cardinality constraints (e.g., x = a ∨ x = b)

I Use iterative deepening on both Deduce and UnsoundIntro
to impose also termination: DPLL(Γ+T) gets “stuck” at k

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Solution

I Sufficient condition for refutational completeness with T 6= ∅:
R be variable-inactive (tested automatically by Γ)
I it implies stable-infiniteness

(needed for completeness of Nelson-Oppen combination)
I it excludes cardinality constraints (e.g., x = a ∨ x = b)

I Use iterative deepening on both Deduce and UnsoundIntro
to impose also termination: DPLL(Γ+T) gets “stuck” at k

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

How to get decision procedures

To decide satisfiability modulo T of R∪ P:

I Find sequence of “unsound axioms” U
I Show that there exists k s.t. k-bounded DPLL(Γ+T) is

guaranteed to terminate
I with Unsat if R∪ P is T -unsat
I in a state which is not stuck at k if R∪ P is T -sat

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Decision procedures

I R has single monadic function symbol f

I Essentially finite: if R∪ P is sat, has model where range of f
is finite

I Such a model satisfies f j(x) ' f k(x) for some j 6= k

I UnsoundIntro adds “pseudo-axioms” f j(x) ' f k(x) for j > k

I Use f j(x) ' f k(x) as rewrite rule to limit term depth

I Clause length limited by properties of Γ and R
I Only finitely many clauses generated: termination without

getting stuck

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Decision procedures

I R has single monadic function symbol f

I Essentially finite: if R∪ P is sat, has model where range of f
is finite

I Such a model satisfies f j(x) ' f k(x) for some j 6= k

I UnsoundIntro adds “pseudo-axioms” f j(x) ' f k(x) for j > k

I Use f j(x) ' f k(x) as rewrite rule to limit term depth

I Clause length limited by properties of Γ and R
I Only finitely many clauses generated: termination without

getting stuck

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Decision procedures

I R has single monadic function symbol f

I Essentially finite: if R∪ P is sat, has model where range of f
is finite

I Such a model satisfies f j(x) ' f k(x) for some j 6= k

I UnsoundIntro adds “pseudo-axioms” f j(x) ' f k(x) for j > k

I Use f j(x) ' f k(x) as rewrite rule to limit term depth

I Clause length limited by properties of Γ and R
I Only finitely many clauses generated: termination without

getting stuck

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Situations where clause length is limited

Γ: Superposition, Hyperresolution, Simplification

Negative selection: only positive literals in positive clauses are
active

I R is Horn

I R is ground-preserving: variables in positive literals appear
also in negative literals;
the only positive clauses are ground

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Concrete examples of essentially finite theories

Axiomatizations of type systems:

Reflexivity x v x (1)

Transitivity ¬(x v y) ∨ ¬(y v z) ∨ x v z (2)

Anti-Symmetry ¬(x v y) ∨ ¬(y v x) ∨ x ' y (3)

Monotonicity ¬(x v y) ∨ f (x) v f (y) (4)

Tree-Property ¬(z v x) ∨ ¬(z v y) ∨ x v y ∨ y v x (5)

MI = {(1), (2), (3), (4)}: type system with multiple inheritance
SI = MI ∪ {(5)}: type system with single inheritance

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Concrete examples of decision procedures

DPLL(Γ+T) with UnsoundIntro adding f j(x) ' f k(x) for j > k
decides the satisfiability modulo T of problems

I MI ∪ P (MI is Horn)

I SI ∪ P (all ground-preserving except Reflexivity)

I MI ∪ TR ∪ P and SI ∪ TR ∪ P (by combination)

TR = {¬(g(x) ' null), h(g(x)) ' x}
where g represents the type representative of a type.

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

Outline
Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(Γ+T): Superposition + SMT + unsound inferences

Decision procedures for type systems
Discussion

Summary of contributions and directions for future work

I DPLL(Γ+T) + unsound inferences: termination

I Decision procedures for type systems with multiple/single
inheritance used in ESC/Java and Spec#

I DPLL(Γ+T) + variable-inactivity: completeness for T 6= ∅
and combination of both built-in and axiomatized theories

I Extension to more presentations
(e.g., y v x ∧ u v v ⊃ map(x , u) v map(y , v))

I Avoid duplication of reasoning on ground unit clauses

Maria Paola Bonacina
Decision procedures with unsound inferences for software verification

	Outline
	Motivation: reasoning for SW verification
	Idea: Unsound inferences to get decision procedures
	DPLL(+T): Superposition + SMT + unsound inferences
	Decision procedures for type systems
	Discussion

