Decision procedures with unsound inferences for
software verification

Maria Paola Bonacinal

Dipartimento di Informatica
Universita degli Studi di Verona
Verona, ltaly, EU

SchloB Dagstuhl Seminar # 09411: “Interaction vs. Automation: the Two Faces of Deduction”
SchloB Dagstuhl, near Wadern, Germany, EU
6 October 2009

(Extended version based also on talks at ETHZ and EPFL, April 2009, and U. Trento, Sept. 2009)

! Joint work with Chris Lynch and Leonardo de Moura

Maria Paola Bonacina

Outline

Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures
DPLL(I+T7): Superposition + SMT + unsound inferences
Decision procedures for type systems

Discussion

Maria Paola Bonacina

Motivation: reasoning for SW verification

Motivation

> Software is everywhere

> Needed: Reliability
» Difficult goal: Software may be
> Artful
» Complex
> Huge
» Varied
» Old (and undocumented)

» Software/hardware border: blurred, evolving

Maria Paola Bonacina

Motivation: reasoning for SW verification

Some approaches to software reliability

>
>
>
>

Testing (test case generation ...)
Programmer assistants
Program analyzers

Static analysis (types, extended static checking, abstract
interpretations ...)

v

Dynamic analysis (traces ...)

v

Software model checkers (+ theorem proving, e.g.,
SMT-BMC, CEGAR-SMC)

Reasoning about software

Maria Paola Bonacina

Motivation: reasoning for SW verification

Systems with reasoning about software

Typical architecture:

» Front-end: interface, problem modelling, compiling

» From programs to formulae
(via specifications, annotations, intermediate languages)

» Back-end: problem solving by reasoning engine

» Problem: determine satisfiability of formula
» Objective: decision procedures

Maria Paola Bonacina

Motivation: reasoning for SW verification

Ingredients of formulae

» Propositional logic (PL): V, =, A
» Equality: ~, %, free constant and function symbols

» Theories of data structures, e.g.:

> Lists, recursive data structures: constructors (cons), selectors
(car, cdr)

> Arrays, records: select, store

» Bitvectors

» Linear arithmetic: <, 4+, —, ... —2,-1,0,1,2,...

» Formalizations of type systems, e.g.: subtype relation C, type
constructor Array-of (monadic function f)

» First-order logic (FOL): V, 3, free predicate symbols

Maria Paola Bonacina

Motivation: reasoning for SW verification

Problem statement

» Decide satisfiability of first-order formulae
generated by SW verification tools

» Satisfiability w.r.t. background theories

» With quantifiers to write, e.g.,

» frame conditions over loops

» auxiliary invariants over heaps

» axioms of type systems and

» application-specific theories without decision procedure

» Emphasis on automation

Maria Paola Bonacina

Motivation: reasoning for SW verification

Shape of problem

» Background theory T
> T=U"_, T, eg., linear arithmetic
» Set of formule: RUP

» R: set of non-ground clauses without 7T-symbols
> P: large ground formula (set of ground clauses)
typically with T-symbols

» Determine whether R U P is satisfiable modulo T
(Equivalently: determine whether 7 U R U P is satisfiable)

Maria Paola Bonacina

Motivation: reasoning for SW verification

» Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
» Ti-solvers: Satisfiability procedures for the T;'s

» DPLL(7)-based SMT-solver: Decision procedure for T with
Nelson-Oppen combination of the 7T;-sat procedures

» First-order engine I to handle R (additional theory):
Resolution+Rewriting+Superposition: Superposition-based

Maria Paola Bonacina

Motivation: reasoning for SW verification

Combining strengths of different tools

» DPLL: SAT-problems; large non-Horn clauses
> Theory solvers: e.g., ground equality, linear arithmetic
» DPLL(7)-based SMT-solver: efficient, scalable, integrated
theory reasoning
» Superposition-based inference system I':
» Horn clauses, equalities with universal quantifiers

(automated instantiation)
» sat-procedure for several theories of data structures

Maria Paola Bonacina

Idea: Unsound inferences to get decision procedures

How to get decision procedures?

» SW development: false conjectures due to mistakes in
implementation or specification

> Need theorem prover that terminates on satisfiable inputs

» Not possible in general:

» FOL is only semi-decidable
» First-order formulae of linear arithmetic with uninterpreted
functions: not even semi-decidable

However we need less than a general solution.

Maria Paola Bonacina

Idea: Unsound inferences to get decision procedures

Problematic axioms do occur in relevant inputs

C: subtype relation

f: type constructor (e.g., Array-of)

» Transitivity
“(xCy)v-(yEz)vxCz

» Monotonicity
~(xEy)VIF(x) Ef(y)

Resolution generates unbounded number of clauses
(even with negative selection)

Maria Paola Bonacina

Idea: Unsound inferences to get decision procedures

In practice we need finitely many

Example:
L =a(xEy)VF(x)Ef(y)
2. a C b generate
3. {f(a) C f'(b)}ix0

E.g. f(a) C f(b) or f2(a) C £2(b) often suffice to show
satisfiability

Maria Paola Bonacina

Idea: Unsound inferences to get decision procedures

|dea: Allow possibly unsound inferences

> TP applied to maths: most conjectures are true

» Sacrifice completeness for efficiency
Retain soundness: if proof found, input unsatisfiable

> TP applied to verification: most conjectures are false

» Imperil soundness for termination
Retain completeness: if no proof, input satisfiable

» How do we do it: Additional axioms to enforce termination

» Detect unsoundness as conflict + Recover by backtracking
(overall derivation still sound!)

Maria Paola Bonacina

Idea: Unsound inferences to get decision procedures

Example

L =~(xEy)VF(x)Ef(y)
2.aCb

3. aC f(c)

4. ~(aCc)

Maria Paola Bonacina

Idea: Unsound inferences to get decision procedures

Example

1.
2.
3.
4.

y)V f(x) Ef(y)

YR YR
m
M = ©n

c)

<)

Add f(x) ~ x

2. Rewrite a C f(c) into a C ¢ and get O: backtrack!

A
W

[y

Maria Paola Bonacina

Idea: Unsound inferences to get decision procedures

Example

L =~(xEy)VF(x)Ef(y)

2.aCb

3. aC f(c)

4. =(aCc)

1. Add f(x) ~ x

2. Rewrite a C f(c) into a C ¢ and get O: backtrack!
3. Add f(f(x)) ~ x

4. aC byields only f(a) C f(b)

5. aC f(c) yields only f(a) C ¢

6. Reach saturated state and detect satisfiability

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

DPLL

State of derivation: M | F

» Decide: guess L is true, add it to M (decided literals)

» UnitPropagate: propagate consequences of assignment
(implied literals)

» Conflict: detect L1V ...V L, all false

» Explain: unfold implied literals and detect decided L; in
conflict clause

» Learn: may learn conflict clause

v

Backjump: undo assignment for L;

» Unsat: conflict clause is O (nothing else to try)

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

DPLL(T)

State of derivation: M | F

» T -Propagate: add to M an L that is 7T-consequence of M
» T -Conflict: detect that Ly,...,L, in M are T-inconsistent

If T;-solver builds 7;-model:
» PropagateEq: add to M a ground s ~ t true in T;-model

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

DPLL(M+T): integrate ' in DPLL(T)

| 2
| 2
| 2
>

Idea: literals in M can be premises of I-inferences
Stored as hypotheses in inferred clause
Hypothetical clause: H> C (equivalent to =H Vv C)

Inferred clauses inherit hypotheses from premises

v

Note: don't need I for ground inferences
Use each engine for what is best for:

» [works on non-ground clauses and ground unit clauses
» DPLL(T) works on all and only ground clauses

v

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

DPLL(I+T)

State of derivation: M| F
F: set of hypothetical clauses

» Deduce: T-inference, e.g., superposition, using non-ground
clauses in F and literals in M

» Backjump: remove hypothetical clauses depending on undone
assignments

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Unsound inferences

» Single unsound inference rule: add arbitrary clause C
» Simulate many:

» Suppress literals in long clause C Vv D:
add C and subsume

» Replace deep term t by constant a:
add t ~ a and rewrite

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Controlling unsound inferences

» Unsound inferences to induce termination on sat input

» What if the unsound inference makes problem unsat?!
» Detect conflict and backjump:

> Keep track by adding [C] > C
» [C]: new propositional variable (a “name” for C)
» Treat “unnatural failure” like “natural failure”

» Thus unsound inferences are reversible

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Unsound inferences in DPLL(I+7)

State of derivation: M | F

Inference rule:
» UnsoundIntro: add [C]>C to F and [C] to M

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Example as done by system

1.
2.
3.
4.

Maria Paola Bonacina

y)V f(x) Ef(y)

L
=

L oL
1 1M
I = < n

NLY

(9}
~

A
W

DPLL(I+T): Superposition + SMT + unsound inferences

Example as done by system

1.
2.
3.
4.
1.
2.

Maria Paola Bonacina

~(xEy)VIix)Ef(y)
aCb

aC f(c)

—(aEc)

Add [f(x) ~ x| > f(x) ~ x
Rewrite a C f(c) into [f(x) @ x|palc

DPLL(I+T): Superposition + SMT + unsound inferences

Example as done by system

1.
2.
3.
4.
1.
2.
3.

Maria Paola Bonacina

~(xEy) VE(x) Ef(y)

aCb

aC f(c)

—(aEc)

Add [f(x) ~ x| > f(x) ~ x

Rewrite a C f(c) into [f(x) @ x|palc

Generate [f(x) ~ x| > O; Backtrack, learn =[f(x) ~ x|

DPLL(I+T): Superposition + SMT + unsound inferences

Example as done by system

1.
2.
3.
4.
1.
2.
3.
4.
5.
6.

Maria Paola Bonacina

~(xEy) VIF(x)Ef(y)
aCb

aC f(c)

—(aEc)

Add [f(x) ~ x| > f(x) ~ x

Rewrite a C f(c) into [f(x) @ x|palc

Generate [f(x) ~ x| > O; Backtrack, learn =[f(x) ~ x|
Add [f(f(x)) =~ x] > f(f(x)) ~x

a C b yields only f(a) C f(b)

a C f(c) yields only f(a) C f(f(c))

rewritten to [f(f(x)) =x|>f(a)Cc

Reach saturated state and detect satisfiability

DPLL(I+T): Superposition + SMT + unsound inferences

Issues about completeness

» [is refutationally complete

» Since I does not see all the clauses, DPLL(I" + 7) does not
inherit refutational completeness trivially

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Issues about completeness

» [is refutationally complete

» Since I does not see all the clauses, DPLL(I" + 7) does not
inherit refutational completeness trivially

» DPLL(T7) has depth-first search: complete for ground SMT
problems, not when injecting non-ground inferences

» Solution: iterative deepening on inference depth

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Issues about completeness

» [is refutationally complete

» Since I does not see all the clauses, DPLL(I" + 7) does not
inherit refutational completeness trivially

» DPLL(T7) has depth-first search: complete for ground SMT
problems, not when injecting non-ground inferences

» Solution: iterative deepening on inference depth

» However refutationally complete only for 7 empty
Example: R = {x =aV x=b}, P=0, T is arithmetic
Unsat but can’t tell!

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Solution

» Sufficient condition for refutational completeness with T # (0
R be variable-inactive (tested automatically by I')
» it implies stable-infiniteness
(needed for completeness of Nelson-Oppen combination)
» it excludes cardinality constraints (e.g., x = aV x = b)

Maria Paola Bonacina

DPLL(I+T): Superposition + SMT + unsound inferences

Solution

» Sufficient condition for refutational completeness with T # (0
R be variable-inactive (tested automatically by I')

» it implies stable-infiniteness
(needed for completeness of Nelson-Oppen combination)
» it excludes cardinality constraints (e.g., x = aV x = b)

» Use iterative deepening on both Deduce and UnsoundIntro
to impose also termination: DPLL(I+7") gets “stuck” at k

Maria Paola Bonacina

Decision procedures for type systems

How to get decision procedures

To decide satisfiability modulo 7 of R U P:

» Find sequence of “unsound axioms” U

» Show that there exists k s.t. k-bounded DPLL(I+T) is
guaranteed to terminate

» with Unsat if R U P is T-unsat
» in a state which is not stuck at k if RU P is T-sat

Maria Paola Bonacina

Decision procedures for type systems

Decision procedures

» R has single monadic function symbol f

» Essentially finite: if R U P is sat, has model where range of f
is finite

» Such a model satisfies f/(x) ~ fk(x) for some j # k

Maria Paola Bonacina

Decision procedures for type systems

Decision procedures

» R has single monadic function symbol f

» Essentially finite: if R U P is sat, has model where range of f
is finite

» Such a model satisfies f/(x) ~ fk(x) for some j # k

» UnsoundIntro adds “pseudo-axioms” f/(x) ~ f*(x) for j > k

> Use f/(x) =~ f¥(x) as rewrite rule to limit term depth

Maria Paola Bonacina

Decision procedures for type systems

Decision procedures

» R has single monadic function symbol f

v

Essentially finite: if R U P is sat, has model where range of f
is finite

Such a model satisfies f/(x) ~ f*(x) for some j # k
Unsoundintro adds “pseudo-axioms" f/(x) ~ f¥(x) for j > k
Use f/(x) ~ f¥(x) as rewrite rule to limit term depth

Clause length limited by properties of ' and R

vVvYyyvyy

Only finitely many clauses generated: termination without
getting stuck

Maria Paola Bonacina

Decision procedures for type systems

Situations where clause length is limited

I": Superposition, Hyperresolution, Simplification
Negative selection: only positive literals in positive clauses are

active

» R is Horn

> R is ground-preserving: variables in positive literals appear
also in negative literals;
the only positive clauses are ground

Maria Paola Bonacina

Decision procedures for type systems

Concrete examples of essentially finite theories

Axiomatizations of type systems:

Reflexivity — x C x (1)
Transitivity —(xCy)V-(yCz)VxCz (2)
Anti-Symmetry a(xCy)V-(yCx)Vx~y (3)
Monotonicity — —(x C y) V f(x) C f(y) (4)
Tree-Property —(zCx)V-(zCy)VxCyVyLCx (5)

Ml

={(1),(2),(3),(4)}: type system with multiple inheritance
Sl =Ml t

(
U {(5)}: type system with single inheritance

Maria Paola Bonacina

Decision procedures for type systems

Concrete examples of decision procedures

DPLL(47) with Unsoundintro adding f/(x) ~ f*(x) for j > k
decides the satisfiability modulo 7 of problems

> MIUP (Ml is Horn)
» SIU P (all ground-preserving except Reflexivity)
» MIUTRUP and SIUTRU P (by combination)

TR = {~(g(x) =~ null), h(g(x)) ~ x}
where g represents the type representative of a type.

Maria Paola Bonacina

Discussion

Summary of contributions and directions for future work

» DPLL(I+7) + unsound inferences: termination

» Decision procedures for type systems with multiple/single
inheritance used in ESC/Java and Spec#

» DPLL(I+T7) + variable-inactivity: completeness for T # ()
and combination of both built-in and axiomatized theories

» Extension to more presentations
(e.g., y ExAuL v D map(x,u) C map(y,v))

» Avoid duplication of reasoning on ground unit clauses

Maria Paola Bonacina

	Outline
	Motivation: reasoning for SW verification
	Idea: Unsound inferences to get decision procedures
	DPLL(+T): Superposition + SMT + unsound inferences
	Decision procedures for type systems
	Discussion

