Outline

 Motivation: reasoning for SW verification

 Idea: Unsound inferences to get decision procedures

 DPLL(Γ+T): Superposition + SMT + unsound inferences

 Decision procedures for type systems

 Discussion

Decision procedures with unsound inferences for software verification

Maria Paola Bonacina¹

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Schloß Dagstuhl Seminar # 09411: "Interaction vs. Automation: the Two Faces of Deduction" Schloß Dagstuhl, near Wadern, Germany, EU 6 October 2009

(Extended version based also on talks at ETHZ and EPFL, April 2009, and U. Trento, Sept. 2009)

¹Joint work with Chris Lynch and Leonardo de Moura \bigcirc \land \bigcirc \land \bigcirc \land \bigcirc \land \bigcirc

Maria Paola Bonacina

 Outline

 Motivation: reasoning for SW verification

 Idea: Unsound inferences to get decision procedures

 DPLL(Γ+T): Superposition + SMT + unsound inferences

 Decision procedures for type systems

 Discussion

Motivation: reasoning for SW verification

Idea: Unsound inferences to get decision procedures

DPLL(Γ +T): Superposition + SMT + unsound inferences

Decision procedures for type systems

Discussion

Motivation

- Software is everywhere
- Needed: Reliability
- Difficult goal: Software may be
 - Artful
 - Complex
 - Huge
 - Varied
 - Old (and undocumented)
- Software/hardware border: blurred, evolving

▲冊▶ ▲ 唐▶ ▲ 唐▶

Some approaches to software reliability

- Testing (test case generation ...)
- Programmer assistants
- Program analyzers
- Static analysis (types, extended static checking, abstract interpretations ...)
- Dynamic analysis (traces ...)
- Software model checkers (+ theorem proving, e.g., SMT-BMC, CEGAR-SMC)

Reasoning about software

< (17) > < (17) > (17)

Systems with reasoning about software

Typical architecture:

- Front-end: interface, problem modelling, compiling
 From programs to formulæ (via specifications, annotations, intermediate languages)
 Back-end: problem solving by reasoning engine
 Problem: determine satisfiability of formulæ
 - Objective: decision procedures

Ingredients of formulæ

- Propositional logic (PL): \lor , \neg , \land
- ▶ Equality: \simeq , \simeq , free constant and function symbols
- Theories of data structures, e.g.:
 - Lists, recursive data structures: constructors (cons), selectors (car, cdr)
 - Arrays, records: *select*, *store*
 - Bitvectors
- Linear arithmetic: \leq , +, -, ... 2, -1, 0, 1, 2, ...
- ► Formalizations of type systems, e.g.: subtype relation _, type constructor Array-of (monadic function f)

イロト イヨト イヨト イヨト 二日

► First-order logic (FOL): ∀, ∃, free predicate symbols

Problem statement

- Decide satisfiability of first-order formulæ generated by SW verification tools
- Satisfiability w.r.t. background theories
- With quantifiers to write, e.g.,
 - frame conditions over loops
 - auxiliary invariants over heaps
 - axioms of type systems and
 - application-specific theories without decision procedure
- Emphasis on *automation*

Shape of problem

- Background theory T
 - $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_{i}$, e.g., linear arithmetic
- ▶ Set of formulæ: $\mathcal{R} \cup P$
 - \mathcal{R} : set of *non-ground* clauses without \mathcal{T} -symbols
 - P: large ground formula (set of ground clauses) typically with *T*-symbols
- Determine whether R ∪ P is satisfiable modulo T (Equivalently: determine whether T ∪ R ∪ P is satisfiable)

イロト イポト イヨト イヨト

Tools

- Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
- T_i -solvers: Satisfiability procedures for the T_i 's
- DPLL(T)-based SMT-solver: Decision procedure for T with Nelson-Oppen combination of the T_i-sat procedures
- First-order engine Γ to handle R (additional theory): Resolution+Rewriting+Superposition: Superposition-based

イロト イポト イヨト イヨト

Combining strengths of different tools

- DPLL: SAT-problems; large non-Horn clauses
- ► Theory solvers: e.g., ground equality, linear arithmetic
- DPLL(*T*)-based SMT-solver: efficient, scalable, integrated theory reasoning
- **Superposition-based inference system** Γ:
 - Horn clauses, equalities with universal quantifiers (automated instantiation)
 - sat-procedure for several theories of data structures

How to get decision procedures?

- SW development: false conjectures due to mistakes in implementation or specification
- Need theorem prover that terminates on satisfiable inputs
- Not possible in general:
 - FOL is only semi-decidable
 - First-order formulæ of linear arithmetic with uninterpreted functions: not even semi-decidable

However we need less than a general solution.

Problematic axioms do occur in relevant inputs

- \sqsubseteq : subtype relation
- f: type constructor (e.g., Array-of)

$$Transitivity \neg (x \sqsubseteq y) \lor \neg (y \sqsubseteq z) \lor x \sqsubseteq z$$

• Monotonicity $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$

Resolution generates unbounded number of clauses (even with negative selection)

In practice we need finitely many

Example:

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. $a \sqsubseteq b$ generate
- 3. $\{f^i(a) \sqsubseteq f^i(b)\}_{i \ge 0}$

E.g. $f(a) \sqsubseteq f(b)$ or $f^2(a) \sqsubseteq f^2(b)$ often suffice to show satisfiability

イロト イポト イヨト イヨト

Idea: Allow possibly unsound inferences

- TP applied to maths: most conjectures are true
- Sacrifice completeness for efficiency Retain soundness: if proof found, input unsatisfiable
- ► TP applied to verification: most conjectures are *false*
- Imperil soundness for termination Retain completeness: if no proof, input satisfiable
- How do we do it: Additional axioms to enforce termination
- Detect unsoundness as conflict + Recover by backtracking (overall derivation still sound!)

Example

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubset c)$

Maria Paola Bonacina

▲口 > ▲圖 > ▲ ヨ > ▲ ヨ > -

э

Example

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$

- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!

・ロト ・日ト ・ヨト ・ヨト

Example

1.
$$\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$

$$4. \neg (a \sqsubseteq c)$$

- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!
- 3. Add $f(f(x)) \simeq x$
- 4. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
- 5. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq c$
- 6. Reach saturated state and detect satisfiability

DPLL

State of derivation: $M \parallel F$

- Decide: guess L is true, add it to M (decided literals)
- UnitPropagate: propagate consequences of assignment (implied literals)
- Conflict: detect $L_1 \vee \ldots \vee L_n$ all false
- Explain: unfold implied literals and detect decided L_i in conflict clause

イロト イヨト イヨト イヨト 三日

- Learn: may learn conflict clause
- Backjump: undo assignment for L_i
- ▶ Unsat: conflict clause is □ (nothing else to try)

State of derivation: $M \parallel F$

- *T*-Propagate: add to M an L that is *T*-consequence of M
- ▶ T-Conflict: detect that L_1, \ldots, L_n in M are T-inconsistent

If \mathcal{T}_i -solver builds \mathcal{T}_i -model:

• PropagateEq: add to M a ground $s \simeq t$ true in \mathcal{T}_i -model

イロト イヨト イヨト イヨト

DPLL(Γ +T): integrate Γ in DPLL(T)

- **Idea**: literals in *M* can be premises of Γ-inferences
- Stored as hypotheses in inferred clause
- Hypothetical clause: $H \triangleright C$ (equivalent to $\neg H \lor C$)
- Inferred clauses inherit hypotheses from premises
- Note: don't need Γ for ground inferences
- Use each engine for what is best for:
 - Γ works on non-ground clauses and ground unit clauses

イロト イポト イヨト イヨト

DPLL(T) works on all and only ground clauses

State of derivation: $M \parallel F$

- F: set of hypothetical clauses
 - Deduce: Γ-inference, e.g., superposition, using non-ground clauses in F and literals in M
 - Backjump: remove hypothetical clauses depending on undone assignments

イロト イヨト イヨト イヨト

Unsound inferences

- Single unsound inference rule: add arbitrary clause C
- Simulate many:
 - Suppress literals in long clause C \vee D: add C and subsume
 - Replace deep term t by constant a: add t ~ a and rewrite

Controlling unsound inferences

- Unsound inferences to induce termination on sat input
- What if the unsound inference makes problem unsat?!
- Detect conflict and backjump:
 - Keep track by adding $\lceil C \rceil \triangleright C$
 - \triangleright $\lceil C \rceil$: new propositional variable (a "name" for C)
 - Treat "unnatural failure" like "natural failure"
- Thus unsound inferences are reversible

Unsound inferences in DPLL(Γ +T)

State of derivation: $M \parallel F$

Inference rule:

• UnsoundIntro: add $\lceil C \rceil \triangleright C$ to F and $\lceil C \rceil$ to M

Image: A math a math

Example as done by system

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

メロト メロト メヨト メヨト

크

Example as done by system

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

1. Add
$$\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$$

2. Rewrite
$$a \sqsubseteq f(c)$$
 into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$

メロト メロト メヨト メヨト

크

Example as done by system

1.
$$\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg (a \sqsubset c)$

1. Add
$$\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$$

- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
- 3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$

イロト イポト イヨト イヨト

Example as done by system

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubset f(c)$

4.
$$\neg(a \sqsubseteq c)$$

1. Add
$$\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$$

2. Rewrite
$$a \sqsubseteq f(c)$$
 into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$

3. Generate
$$\lceil f(x) \simeq x \rceil \triangleright \Box$$
; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$

4. Add
$$\lceil f(f(x)) \simeq x \rceil \triangleright f(f(x)) \simeq x$$

5.
$$a \sqsubseteq b$$
 yields only $f(a) \sqsubseteq f(b)$

6. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq f(f(c))$ rewritten to $\lceil f(f(x)) = x \rceil \triangleright f(a) \sqsubseteq c$

7. Reach saturated state and detect satisfiability

Issues about completeness

- Γ is refutationally complete
- Since Γ does not see all the clauses, DPLL(Γ + T) does not inherit refutational completeness trivially

Image: A math a math

Issues about completeness

- Γ is refutationally complete
- Since Γ does not see all the clauses, DPLL(Γ + T) does not inherit refutational completeness trivially
- DPLL(T) has depth-first search: complete for ground SMT problems, not when injecting non-ground inferences
- Solution: *iterative deepening* on inference depth

Issues about completeness

- Γ is refutationally complete
- Since Γ does not see all the clauses, DPLL(Γ + T) does not inherit refutational completeness trivially
- DPLL(T) has depth-first search: complete for ground SMT problems, not when injecting non-ground inferences
- Solution: *iterative deepening* on inference depth
- ► However refutationally complete only for *T* empty Example: *R* = {*x* = *a* ∨ *x* = *b*}, *P* = Ø, *T* is arithmetic Unsat but can't tell!

イロト イヨト イヨト イヨト

Solution

- Sufficient condition for refutational completeness with T ≠ Ø:
 R be variable-inactive (tested automatically by Γ)
 - it implies stable-infiniteness (needed for completeness of Nelson-Oppen combination)

イロト イヨト イヨト イヨト

• it excludes cardinality constraints (e.g., $x = a \lor x = b$)

Solution

- Sufficient condition for refutational completeness with T ≠ Ø:
 R be variable-inactive (tested automatically by Γ)
 - it implies stable-infiniteness (needed for completeness of Nelson-Oppen combination)
 - it excludes cardinality constraints (e.g., $x = a \lor x = b$)
- Use iterative deepening on both Deduce and UnsoundIntro to impose also termination: DPLL(Γ+T) gets "stuck" at k

イロト イポト イヨト イヨト

How to get decision procedures

To decide satisfiability modulo \mathcal{T} of $\mathcal{R} \cup P$:

- ► Find sequence of "unsound axioms" U
- Show that there exists k s.t. k-bounded DPLL(Γ +T) is guaranteed to terminate
 - with *Unsat* if $\mathcal{R} \cup P$ is \mathcal{T} -unsat
 - in a state which is not stuck at k if $\mathcal{R} \cup P$ is \mathcal{T} -sat

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$

 Outline
 Outline

 Idea: Unsound inferences to get decision procedures

 DPLL(Γ+T): Superposition + SMT + unsound inferences

 Decision procedures for type systems

 Discussion

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- UnsoundIntro adds "pseudo-axioms" $f^{j}(x) \simeq f^{k}(x)$ for j > k

イロト イヨト イヨト イヨト

• Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth

 Outline
 Outline

 Motivation: reasoning for SW verification
 Idea: Unsound inferences to get decision procedures

 DPLL(Γ+T): Superposition + SMT + unsound inferences
 Decision procedures for type systems

 Decision procedures for type systems
 Discussion

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- UnsoundIntro adds "pseudo-axioms" $f^{j}(x) \simeq f^{k}(x)$ for j > k
- Use $f^{j}(x) \simeq f^{k}(x)$ as rewrite rule to limit term depth
- Clause length limited by properties of Γ and \mathcal{R}
- Only finitely many clauses generated: termination without getting stuck

イロト イヨト イヨト イヨト

 Outline
 Outline

 Motivation: reasoning for SW verification
 Idea: Unsound inferences to get decision procedures

 DPLL(Γ+T): Superposition + SMT + unsound inferences
 Decision procedures for type systems

 Decision procedures for type systems
 Discussion

Situations where clause length is limited

Γ: Superposition, Hyperresolution, Simplification

Negative selection: only positive literals in positive clauses are active

▶ *R* is Horn

 R is ground-preserving: variables in positive literals appear also in negative literals; the only positive clauses are ground
 Outline
 Outline

 Idea:
 Unsound inferences to get decision procedures

 DPLL(Γ+T):
 Superposition + SMT + unsound inferences

 Decision procedures for type systems
 Discussion

Concrete examples of essentially finite theories

Axiomatizations of type systems:

Reflexivity $x \sqsubseteq x$ (1)Transitivity $\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq z) \lor x \sqsubseteq z$ (2)Anti-Symmetry $\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq x) \lor x \simeq y$ (3)Monotonicity $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$ (4)Tree-Property $\neg(z \sqsubseteq x) \lor \neg(z \sqsubseteq y) \lor x \sqsubseteq y \lor y \sqsubseteq x$ (5)

イロト イヨト イヨト イヨト

 $MI = \{(1), (2), (3), (4)\}$: type system with *multiple inheritance* $SI = MI \cup \{(5)\}$: type system with *single inheritance*

 Outline
 Outline

 Idea:
 Unsound inferences to get decision procedures

 DPLL(Γ+T):
 Superposition + SMT + unsound inferences

 Decision procedures for type systems
 Discussion

Concrete examples of decision procedures

DPLL(Γ + \mathcal{T}) with UnsoundIntro adding $f^{j}(x) \simeq f^{k}(x)$ for j > k decides the satisfiability modulo \mathcal{T} of problems

- $MI \cup P$ (MI is Horn)
- ► SI ∪ P (all ground-preserving except Reflexivity)
- $MI \cup TR \cup P$ and $SI \cup TR \cup P$ (by combination)

 $TR = \{\neg(g(x) \simeq null), h(g(x)) \simeq x\}$ where g represents the type representative of a type.
 Outline
 Outline

 Motivation: reasoning for SW verification
 Idea: Unsound inferences to get decision procedures

 DPLL(Γ+T): Superposition + SMT + unsound inferences
 Decision procedures for type systems

 Decision procedures for type systems
 Discussion

Summary of contributions and directions for future work

- ▶ DPLL(Γ +T) + unsound inferences: termination
- Decision procedures for type systems with multiple/single inheritance used in ESC/Java and Spec#
- DPLL(Γ+T) + variable-inactivity: completeness for T ≠ Ø and combination of both built-in and axiomatized theories
- Extension to more presentations (e.g., y ⊑ x ∧ u ⊑ v ⊃ map(x, u) ⊑ map(y, v))
- Avoid duplication of reasoning on ground unit clauses

イロト イヨト イヨト イヨト