
High-performance deduction for verification:
Synthetic benchmarks in the theory of arrays

Maria Paola Bonacina, Dip. Informatica, Università degli Studi di Verona, Italy

Joint work with:
Alessandro Armando, DIST, Università degli Studi di Genova, Italy
Silvio Ranise, LORIA & INRIA-Lorraine, Nancy, France
Michaël Rusinowitch, LORIA & INRIA-Lorraine, Nancy, France
Aditya Kumar Sehgal, Dept. of Computer Science, U. Iowa, USA



Motivation
SW verification/debugging requires reasoning with

theories  of data types, e.g., integer, real, arrays, lists, sets.

Problem: infinite domains.

Approach: model checking with theorem proving support,

e.g., abstract-check-refine paradigm

[Blast : Henzinger et al.   POPL 2002]

[SLAM: Ball, Rajamani   POPL 2002]

[Simplify: Nelson et al. 1996]



Objective

Offer better theorem proving support
 to (model checking for) software analysis :

Better trade-off's between
 termination and efficiency on one hand,
 and correctness, completeness and expressive power
 on the other



Satisfiability procedure

T  : background theory ( e.g., theory of arrays )

G  : conjunction ( set ) of ground literals

Sat procedure
 for T

G

unsat

sat

Replace G by any quantifier-free formula : decision procedure



Common approach

• Design
• prove sound and complete
• and implement 
a satisfiability procedure for each decidable theory of interest.

Basic ingredients:
• Defined symbols ( in T ) and free symbols
• Congruence closure (to handle equality and free symbols)
• Build axioms of T into congruence closure algorithm



Examples

Theory of lists : 
 congruence closure with axioms built-in
 [Nelson, Oppen 1980]

Theory of arrays :
 congruence closure with pre-processing wrt. axioms 
 and partial equations (i.e., equalities that say that two 
 arrays are equal except at certain indices)
[Stump et al., LICS 2001]



Issues

• Combination of theories/procedures

• Completeness proofs

• Implementation



Combination

Most problems involve multiple theories: 
                            combination of theories / procedures

Two congruence-closure based approaches:
[ Nelson, Oppen   1979]                            [ Shostak   1984]
that generated much scholarship:
                                        [ Cyrluk, Lincoln, Shankar   CADE 1996 ]
[ Harandi, Tinelli 1998]
                                        [ Kapur   RTA 2000]
                                        [ Ruess, Shankar   LICS 2001 ]
                                        [ Barrett et al.   FroCoS 2002 ]
                                        [ Ganzinger   CADE 2002]



Completeness proofs

Each new decision procedure needs its own proofs of soundness
 and completeness:

• Proofs for concrete procedures : complicated, ad hoc
[Shankar, Ruess   LICS 2001 ]
[ Stump et al.   LICS 2001]

• Abstract frameworks : clarity, but gap wrt concrete procedures
[ Bjorner    Phd thesis  1998]
[Tiwari    Phd thesis  2000]
[ Bachmair, Tiwari, Vigneron   JAR 2002 ]
[Ganzinger   CADE 2002]



Implementation

Implement from scratch data structures and algorithms for
 each procedure in each context 
(e.g., verification tool or proof assistant ): 

• Correctness of implementation? 
• Flexibility ?
• SW reuse?



Outline

• A deduction-based approach to address

 these issues

• Theory of arrays : synthetic benchmarks

• Experimental results

• Discussion



Relation to deduction

Although satisfiability procedures may not be
 presented/perceived as deduction proper,
 they are built out of deduction:

 Congruence closure, normalization, canonical forms,
 reasoning modulo a theory, T- unification …

Could deduction help ?



Theorem proving could help:

• Combination of theories: give union of the 
axiomatizations in input to the prover

• No need of ad hoc proofs for each procedure

• Reuse code of existing provers



Termination ?

C = < I, Σ >  : theorem-proving strategy
I : refutationally complete inference system with superposition/
 paramodulation, simplification, subsumption …
Σ: fair search plan
 is a semi-decision procedure:

T ∪ G

Yes, iff T ∪ G is
unsatisfiable

?

C



Termination results

[ Armando, Ranise, Rusinowitch, CSL 2001]

T: theory of arrays, lists, sets and combinations thereof

flattenG

C
T

unsat

sat

Arbitrary quantifier-free formulae :  [ Ranise   UNIF 2002 ]



Another way to put it

CCT T*
T*

G

unsat

 sat

Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving
 [Kounalis & Rusinowitch, CADE 1988]

FO special theories: e.g., T = T* for arrays [ARR, CSL 2001]



How about efficiency ?

A satisfiability procedure with T built-in is expected
to be always much faster than a theorem prover with
T in input !

Totally obvious ?  Or worth investigating ?
•  theory of arrays
•  synthetic benchmarks (allow to assess scalability
 by experimental asymptotic analysis)
•  comparison of E prover and CVC validity checker
  with theory of arrays built-in



Theory of arrays: the signature

 store : array × index × element → array

 select : array × index → element



The presentation  ( T1 )

(1)  ∀ A, I, E. select ( store ( A, I, E ), I )  =  E

(2)  ∀ A, I, J, E.  I  ≠  J   ⇒
       select ( store ( A, I, E ), J )  =  select (A, J)

(3) Extensionality:   ∀ A, B.  
      ∀ I. select ( A, I )  =  select ( B, I )
                                    ⇒
                                A  = B



Pre-processing extensionality

 t ≠ t’

 select ( t, sk ( t, t’  )) ≠  select ( t’ , sk ( t, t’  ))

 select ( A, sk ( A, B )) ≠  select ( B, sk ( A, B ))  ∨  A  =  B



Another presentation ( T2 )
Keep (1) and (2) and replace extensionality (3) by:

(4) ∀ A, I. store ( A, I, select ( A, I ))  =  A

(5) ∀ A, I, E, F.
 store ( store ( A, I, E ), I, F )  =  store ( A, I, F )

(6) ∀ A, I, J, E.  I  ≠  J  ⇒
 store ( store ( A, I, E ), J, F )  =  store ( store ( A, J, F ), I, E )

T1 entails (4)  (5)  (6)



Usage of presentations

• T1 is saturated and application of C to

T1 ∪ G is guaranteed to terminate [ARR2001]:

C acts as decision procedure

• T2 is not saturated (saturation does not halt):

C applied to T2 ∪ G acts as semi-decision

procedure



Synthetic benchmarks

• storecomm(N):

 Storing values at distinct places

 in an array is “ commutative”

• swap(N):

 Swapping pairs of elements in an array
 in two different orders yields the same array



 storecomm(N) : definition

 k1 … kN  :   N indices
D  :  set of 2-combinations over { 1 … N }
Indices must be distinct:

        ∧(p, q) ∈  D     kp   ≠   kq

 i1 … iN, j1 … jN : two distinct permutations of  1 … N

 store (… ( store ( a, ki1, ei1 ), … kiN, eiN ) … )
                                  =
 store (… ( store ( a, kj1, ej1 ), … kjN, ejN ) … )



 storecomm(N) : schema

      ∧(p, q) ∈  D     kp   ≠   kq 

                                    ⇒
store (… ( store ( a, ki1, ei1 ), … kiN, eiN ) … )
                                  =
 store (… ( store ( a, kj1, ej1 ), … kjN, ejN ) … )
 



 swap(N) : definition
Recursively:
Base case: N = 2 elements:
L2 = store ( store ( a, i1, select ( a, i0 )), i0, select (a, i1))
R2 = store ( store ( a, i0, select ( a, i1 )), i1, select (a, i0))

                                       L2  =  R2

Recursive case: N = k+2 elements:
Lk+2 = store ( store ( Lk, ik+1, select ( Lk, ik )), ik, select (Lk, ik+1))
Rk+2 = store ( store ( Rk, ik , select ( Rk, ik+1 )), ik+1, select (Rk, ik))

                                      Lk+2  =  Rk+2



Experiments

• Two tools: CVC validity checker and E 
theorem prover

• E: auto mode and user-selected strategy

• Comparison of asymptotic behavior of E 
and CVC as N grows



The CVC validity checker

[Aaron Stump, David L. Dill et al., Stanford U.]

Combines procedures à la Nelson-Oppen
(e.g., lists, arrays, records, real arithmetics …)

Incorporates SAT solver (first GRASP then Chaff)
 to handle arbitrary quantifier-free formulae

Theory of arrays: congruence closure based algorithm
[Stump et al., LICS 2001]



The E theorem prover

[Stephan Schulz, TU-München]

Inference system I : o-superposition/paramodulation,
 reflection, o-factoring, simplification, subsumption

Search plans Σ : 
•  given-clause loop with clause selection functions and
   only already-selected list inter-reduced
•  term orderings: KBO and LPO
•  literal selection functions



Strategies in experiments

• E-auto: automatic mode

• E-SOS:               { problem in form T ∪ G }

    Clause selection: 
(SimulateSOS,RefinedWeight)

    Term ordering: LPO

• Precedence: select > store > sk > constants



First set of experiments on 
storecomm(N)

E takes presentation T1 in input 

N ranges from 2 to 150

Sample 10 permutations: 45 instances for each value of N
Non-uniform sampling     ( favors permutations with local changes )

Performance for N is average over all generated instances for value N

Versions : E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002



First set : storecomm(N)



Second set of experiments on 
storecomm(N)

E takes presentation T1 in input 

N ranges from 2 to 90
For each value of N pick one instance at random :
no averages

Only E-auto, E-SOS did not help

Versions : E 0.62
CVC/CHAFF October 2002



Second set : storecomm(N)



First set of experiments on swap
(N)

Sample up to 16 permutations and 20 instances for each value of N
Non-uniform sampling ( favors permutations with local changes )
Performance for N is average over all generated instances for value N

CVC: does up to N = 10, runs out of memory on
any instance of swap(12) 
E with presentation T1: same as above and slower

E with presentation T2: succeeds also for N ≥ 12

Versions : E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002



First set : swap(N)



Second set of experiments on 
swap(N)

E takes presentation T1 in input 

For each value of N pick one instance at random : no averages

Only E-auto, E-SOS did not help

CVC : does only up to N = 6,  E goes beyond

Versions : E 0.62
CVC/CHAFF October 2002



Second set : swap(N)



Discussion

• Deduction may help build better decision 
procedures

• More experiments: other synthetic benchmarks, 
theories, combinations, real-world problems

• Other provers, e.g., with more inter-reduction?

• ATP needs more work on auto mode and search 
plans (search, not blind saturation)

• Termination results for other theories?

• Complexity of specific strategies / theories



Broad picture : integration

• ATP based satisfiability procedures

• Integration with SAT : decision procedures

• Integration with automated model building:

 counterexample generation

• Integration within debugging tools or proof 
assistants


