
High-performance deduction for verification:
Synthetic benchmarks in the theory of arrays

Maria Paola Bonacina, Dip. Informatica, Università degli Studi di Verona, Italy

Joint work with:
Alessandro Armando, DIST, Università degli Studi di Genova, Italy
Silvio Ranise, LORIA & INRIA-Lorraine, Nancy, France
Michaël Rusinowitch, LORIA & INRIA-Lorraine, Nancy, France
Aditya Kumar Sehgal, Dept. of Computer Science, U. Iowa, USA

Motivation
SW verification/debugging requires reasoning with

theories of data types, e.g., integer, real, arrays, lists, sets.

Problem: infinite domains.

Approach: model checking with theorem proving support,

e.g., abstract-check-refine paradigm

[Blast : Henzinger et al. POPL 2002]

[SLAM: Ball, Rajamani POPL 2002]

[Simplify: Nelson et al. 1996]

Objective

Offer better theorem proving support
 to (model checking for) software analysis :

Better trade-off's between
 termination and efficiency on one hand,
 and correctness, completeness and expressive power
 on the other

Satisfiability procedure

T : background theory (e.g., theory of arrays)

G : conjunction (set) of ground literals

Sat procedure
 for T

G

unsat

sat

Replace G by any quantifier-free formula : decision procedure

Common approach

• Design
• prove sound and complete
• and implement
a satisfiability procedure for each decidable theory of interest.

Basic ingredients:
• Defined symbols (in T) and free symbols
• Congruence closure (to handle equality and free symbols)
• Build axioms of T into congruence closure algorithm

Examples

Theory of lists :
 congruence closure with axioms built-in
 [Nelson, Oppen 1980]

Theory of arrays :
 congruence closure with pre-processing wrt. axioms
 and partial equations (i.e., equalities that say that two
 arrays are equal except at certain indices)
[Stump et al., LICS 2001]

Issues

• Combination of theories/procedures

• Completeness proofs

• Implementation

Combination

Most problems involve multiple theories:
 combination of theories / procedures

Two congruence-closure based approaches:
[Nelson, Oppen 1979] [Shostak 1984]
that generated much scholarship:
 [Cyrluk, Lincoln, Shankar CADE 1996]
[Harandi, Tinelli 1998]
 [Kapur RTA 2000]
 [Ruess, Shankar LICS 2001]
 [Barrett et al. FroCoS 2002]
 [Ganzinger CADE 2002]

Completeness proofs

Each new decision procedure needs its own proofs of soundness
 and completeness:

• Proofs for concrete procedures : complicated, ad hoc
[Shankar, Ruess LICS 2001]
[Stump et al. LICS 2001]

• Abstract frameworks : clarity, but gap wrt concrete procedures
[Bjorner Phd thesis 1998]
[Tiwari Phd thesis 2000]
[Bachmair, Tiwari, Vigneron JAR 2002]
[Ganzinger CADE 2002]

Implementation

Implement from scratch data structures and algorithms for
 each procedure in each context
(e.g., verification tool or proof assistant):

• Correctness of implementation?
• Flexibility ?
• SW reuse?

Outline

• A deduction-based approach to address

 these issues

• Theory of arrays : synthetic benchmarks

• Experimental results

• Discussion

Relation to deduction

Although satisfiability procedures may not be
 presented/perceived as deduction proper,
 they are built out of deduction:

 Congruence closure, normalization, canonical forms,
 reasoning modulo a theory, T- unification …

Could deduction help ?

Theorem proving could help:

• Combination of theories: give union of the
axiomatizations in input to the prover

• No need of ad hoc proofs for each procedure

• Reuse code of existing provers

Termination ?

C = < I, Σ > : theorem-proving strategy
I : refutationally complete inference system with superposition/
 paramodulation, simplification, subsumption …
Σ: fair search plan
 is a semi-decision procedure:

T ∪ G

Yes, iff T ∪ G is
unsatisfiable

?

C

Termination results

[Armando, Ranise, Rusinowitch, CSL 2001]

T: theory of arrays, lists, sets and combinations thereof

flattenG

C
T

unsat

sat

Arbitrary quantifier-free formulae : [Ranise UNIF 2002]

Another way to put it

CCT T*
T*

G

unsat

 sat

Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving
 [Kounalis & Rusinowitch, CADE 1988]

FO special theories: e.g., T = T* for arrays [ARR, CSL 2001]

How about efficiency ?

A satisfiability procedure with T built-in is expected
to be always much faster than a theorem prover with
T in input !

Totally obvious ? Or worth investigating ?
• theory of arrays
• synthetic benchmarks (allow to assess scalability
 by experimental asymptotic analysis)
• comparison of E prover and CVC validity checker
 with theory of arrays built-in

Theory of arrays: the signature

 store : array × index × element → array

 select : array × index → element

The presentation (T1)

(1) ∀ A, I, E. select (store (A, I, E), I) = E

(2) ∀ A, I, J, E. I ≠ J ⇒
 select (store (A, I, E), J) = select (A, J)

(3) Extensionality: ∀ A, B.
 ∀ I. select (A, I) = select (B, I)
 ⇒
 A = B

Pre-processing extensionality

 t ≠ t’

 select (t, sk (t, t’)) ≠ select (t’ , sk (t, t’))

 select (A, sk (A, B)) ≠ select (B, sk (A, B)) ∨ A = B

Another presentation (T2)
Keep (1) and (2) and replace extensionality (3) by:

(4) ∀ A, I. store (A, I, select (A, I)) = A

(5) ∀ A, I, E, F.
 store (store (A, I, E), I, F) = store (A, I, F)

(6) ∀ A, I, J, E. I ≠ J ⇒
 store (store (A, I, E), J, F) = store (store (A, J, F), I, E)

T1 entails (4) (5) (6)

Usage of presentations

• T1 is saturated and application of C to

T1 ∪ G is guaranteed to terminate [ARR2001]:

C acts as decision procedure

• T2 is not saturated (saturation does not halt):

C applied to T2 ∪ G acts as semi-decision

procedure

Synthetic benchmarks

• storecomm(N):

 Storing values at distinct places

 in an array is “ commutative”

• swap(N):

 Swapping pairs of elements in an array
 in two different orders yields the same array

 storecomm(N) : definition

 k1 … kN : N indices
D : set of 2-combinations over { 1 … N }
Indices must be distinct:

 ∧(p, q) ∈ D kp ≠ kq

 i1 … iN, j1 … jN : two distinct permutations of 1 … N

 store (… (store (a, ki1, ei1), … kiN, eiN) …)
 =
 store (… (store (a, kj1, ej1), … kjN, ejN) …)

 storecomm(N) : schema

 ∧(p, q) ∈ D kp ≠ kq

 ⇒
store (… (store (a, ki1, ei1), … kiN, eiN) …)
 =
 store (… (store (a, kj1, ej1), … kjN, ejN) …)

 swap(N) : definition
Recursively:
Base case: N = 2 elements:
L2 = store (store (a, i1, select (a, i0)), i0, select (a, i1))
R2 = store (store (a, i0, select (a, i1)), i1, select (a, i0))

 L2 = R2

Recursive case: N = k+2 elements:
Lk+2 = store (store (Lk, ik+1, select (Lk, ik)), ik, select (Lk, ik+1))
Rk+2 = store (store (Rk, ik , select (Rk, ik+1)), ik+1, select (Rk, ik))

 Lk+2 = Rk+2

Experiments

• Two tools: CVC validity checker and E
theorem prover

• E: auto mode and user-selected strategy

• Comparison of asymptotic behavior of E
and CVC as N grows

The CVC validity checker

[Aaron Stump, David L. Dill et al., Stanford U.]

Combines procedures à la Nelson-Oppen
(e.g., lists, arrays, records, real arithmetics …)

Incorporates SAT solver (first GRASP then Chaff)
 to handle arbitrary quantifier-free formulae

Theory of arrays: congruence closure based algorithm
[Stump et al., LICS 2001]

The E theorem prover

[Stephan Schulz, TU-München]

Inference system I : o-superposition/paramodulation,
 reflection, o-factoring, simplification, subsumption

Search plans Σ :
• given-clause loop with clause selection functions and
 only already-selected list inter-reduced
• term orderings: KBO and LPO
• literal selection functions

Strategies in experiments

• E-auto: automatic mode

• E-SOS: { problem in form T ∪ G }

 Clause selection:
(SimulateSOS,RefinedWeight)

 Term ordering: LPO

• Precedence: select > store > sk > constants

First set of experiments on
storecomm(N)

E takes presentation T1 in input

N ranges from 2 to 150

Sample 10 permutations: 45 instances for each value of N
Non-uniform sampling (favors permutations with local changes)

Performance for N is average over all generated instances for value N

Versions : E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002

First set : storecomm(N)

Second set of experiments on
storecomm(N)

E takes presentation T1 in input

N ranges from 2 to 90
For each value of N pick one instance at random :
no averages

Only E-auto, E-SOS did not help

Versions : E 0.62
CVC/CHAFF October 2002

Second set : storecomm(N)

First set of experiments on swap
(N)

Sample up to 16 permutations and 20 instances for each value of N
Non-uniform sampling (favors permutations with local changes)
Performance for N is average over all generated instances for value N

CVC: does up to N = 10, runs out of memory on
any instance of swap(12)
E with presentation T1: same as above and slower

E with presentation T2: succeeds also for N ≥ 12

Versions : E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002

First set : swap(N)

Second set of experiments on
swap(N)

E takes presentation T1 in input

For each value of N pick one instance at random : no averages

Only E-auto, E-SOS did not help

CVC : does only up to N = 6, E goes beyond

Versions : E 0.62
CVC/CHAFF October 2002

Second set : swap(N)

Discussion

• Deduction may help build better decision
procedures

• More experiments: other synthetic benchmarks,
theories, combinations, real-world problems

• Other provers, e.g., with more inter-reduction?

• ATP needs more work on auto mode and search
plans (search, not blind saturation)

• Termination results for other theories?

• Complexity of specific strategies / theories

Broad picture : integration

• ATP based satisfiability procedures

• Integration with SAT : decision procedures

• Integration with automated model building:

 counterexample generation

• Integration within debugging tools or proof
assistants

