High-performance deduction for verification: Synthetic benchmarks in the theory of arrays

Maria Paola Bonacina, Dip. Informatica, Università degli Studi di Verona, Italy
Joint work with:
Alessandro Armando, DIST, Università degli Studi di Genova, Italy Silvio Ranise, LORIA \& INRIA-Lorraine, Nancy, France Michaël Rusinowitch, LORIA \& INRIA-Lorraine, Nancy, France Aditya Kumar Sehgal, Dept. of Computer Science, U. Iowa, USA

Motivation

SW verification/debugging requires reasoning with theories of data types, e.g., integer, real, arrays, lists, sets.

Problem: infinite domains.

Approach: model checking with theorem proving support, e.g., abstract-check-refine paradigm
[Blast : Henzinger et al. POPL 2002]
[SLAM: Ball, Rajamani POPL 2002]
[Simplify: Nelson et al. 1996]

Objective

Offer better theorem proving support to (model checking for) software analysis :

Better trade-off's between termination and efficiency on one hand, and correctness, completeness and expressive power on the other

Satisfiability procedure

T : background theory (e.g., theory of arrays)

G: conjunction (set) of ground literals

Replace G by any quantifier-free formula : decision procedure

Common approach

- Design
- prove sound and complete
- and implement
a satisfiability procedure for each decidable theory of interest.

Basic ingredients:

- Defined symbols (in T) and free symbols
- Congruence closure (to handle equality and free symbols)
- Build axioms of T into congruence closure algorithm

Examples

Theory of lists :
congruence closure with axioms built-in
[Nelson, Oppen 1980]

Theory of arrays :
congruence closure with pre-processing wrt. axioms and partial equations (i.e., equalities that say that two arrays are equal except at certain indices)
[Stump et al., LICS 2001]

Issues

- Combination of theories/procedures
- Completeness proofs
- Implementation

Combination

Most problems involve multiple theories: combination of theories / procedures

Two congruence-closure based approaches:
[Nelson, Oppen 1979]
[Shostak 1984]
that generated much scholarship:
[Cyrluk, Lincoln, Shankar CADE 1996]
[Harandi, Tinelli 1998]
[Kapur RTA 2000]
[Ruess, Shankar LICS 2001]
[Barrett et al. FroCoS 2002]
[Ganzinger CADE 2002]

Completeness proofs

Each new decision procedure needs its own proofs of soundness and completeness:

- Proofs for concrete procedures : complicated, ad hoc [Shankar, Ruess LICS 2001]
[Stump et al. LICS 2001]
- Abstract frameworks : clarity, but gap wrt concrete procedures
[Bjorner Phd thesis 1998]
[Tiwari Phd thesis 2000]
[Bachmair, Tiwari, Vigneron JAR 2002]
[Ganzinger CADE 2002]

Implementation

Implement from scratch data structures and algorithms for each procedure in each context
(e.g., verification tool or proof assistant):

- Correctness of implementation?
- Flexibility?
- SW reuse?

Outline

- A deduction-based approach to address these issues
- Theory of arrays : synthetic benchmarks
- Experimental results
- Discussion

Relation to deduction

Although satisfiability procedures may not be presented/perceived as deduction proper, they are built out of deduction:

Congruence closure, normalization, canonical forms, reasoning modulo a theory, T- unification ...

Could deduction help ?

Theorem proving could help:

- Combination of theories: give union of the axiomatizations in input to the prover
- No need of ad hoc proofs for each procedure
- Reuse code of existing provers

Termination?

$\mathrm{C}=\langle\mathrm{I}, \Sigma\rangle$: theorem-proving strategy
I : refutationally complete inference system with superposition/ paramodulation, simplification, subsumption ...
Σ : fair search plan
is a semi-decision procedure:

Yes, iff $T \cup G$ is unsatisfiable
?

Termination results

[Armando, Ranise, Rusinowitch, CSL 2001]

T: theory of arrays, lists, sets and combinations thereof

Arbitrary quantifier-free formulae : [Ranise UNIF 2002]

Another way to put it

Pure equational: T* canonical rewrite system

Horn equational: T* saturated ground-preserving
[Kounalis \& Rusinowitch, CADE 1988]

FO special theories: e.g., $T=T^{*}$ for arrays [ARR, CSL 2001]

How about efficiency ?

A satisfiability procedure with T built-in is expected to be always much faster than a theorem prover with T in input !

Totally obvious ? Or worth investigating ?

- theory of arrays
- synthetic benchmarks (allow to assess scalability by experimental asymptotic analysis)
- comparison of E prover and CVC validity checker with theory of arrays built-in

Theory of arrays: the signature

store : array \times index \times element \rightarrow array
select : array \times index \rightarrow element

The presentation (T_{1})

(1) \forall A , I, E. select (store $(\mathrm{A}, \mathrm{I}, \mathrm{E}), \mathrm{I})=\mathrm{E}$
(2) \forall A, I, J, E. $I \neq \mathrm{J} \Rightarrow$ $\operatorname{select}(\operatorname{store}(\mathrm{A}, \mathrm{I}, \mathrm{E}), \mathrm{J})=\operatorname{select}(\mathrm{A}, \mathrm{J})$
(3) Extensionality: $\forall \mathrm{A}, \mathrm{B}$. $\forall \mathrm{I}$. select $(\mathrm{A}, \mathrm{I})=\operatorname{select}(\mathrm{B}, \mathrm{I})$

$$
A=B
$$

Pre-processing extensionality

$\operatorname{select}(\mathrm{A}, \operatorname{sk}(\mathrm{A}, \mathrm{B})) \neq \operatorname{select}(\mathrm{B}, \operatorname{sk}(\mathrm{A}, \mathrm{B})) \vee \mathrm{A}=\mathrm{B}$

Another presentation (T_{2})

Keep (1) and (2) and replace extensionality (3) by:
(4) \forall A, I. store $(\mathrm{A}, \mathrm{I}, \operatorname{select}(\mathrm{A}, \mathrm{I}))=\mathrm{A}$
(5) $\forall \mathrm{A}, \mathrm{I}, \mathrm{E}, \mathrm{F}$. store $(\operatorname{store}(\mathrm{A}, \mathrm{I}, \mathrm{E}), \mathrm{I}, \mathrm{F})=\operatorname{store}(\mathrm{A}, \mathrm{I}, \mathrm{F})$
(6) $\forall \mathrm{A}, \mathrm{I}, \mathrm{J}, \mathrm{E} . \mathrm{I} \neq \mathrm{J} \Rightarrow$ store (store (A, I, E), J, F) = store (store (A, J, F), I, E)

T1 entails (4) (5) (6)

Usage of presentations

- T_{1} is saturated and application of C to $\mathrm{T}_{1} \cup \mathrm{G}$ is guaranteed to terminate [ARR2001]:
C acts as decision procedure
- T_{2} is not saturated (saturation does not halt):

C applied to $\mathrm{T}_{2} \cup \mathrm{G}$ acts as semi-decision procedure

Synthetic benchmarks

- storecomm(N):

Storing values at distinct places in an array is "commutative"

- $\operatorname{swap}(\mathrm{N}):$

Swapping pairs of elements in an array
in two different orders yields the same array

storecomm(N): definition

k1 .. kn : N indices
D : set of 2-combinations over $\{1$.. N$\}$
Indices must be distinct:

$$
\widehat{\mathrm{N}}_{\mathrm{p}, \mathrm{q}) \in \mathrm{D}} \quad \mathrm{kp} \neq \mathrm{kq}
$$

i 1 .. in, j 1 ...jn : two distinct permutations of $1 \ldots \mathrm{~N}$
store (...(store (a, ki1, eii), .. kin, ein) ...)
$=$
store (...(store (a, $\left.\left.\mathrm{kj}_{\mathrm{j} 1}, \mathrm{e}_{\mathrm{j} 1}\right), \ldots \mathrm{kjn}, \mathrm{ejp}_{\mathrm{j}}\right) \ldots$...)

storecomm(N) : schema

$$
\bigwedge_{\mathrm{p}, \mathrm{q}) \in \mathrm{D}} \quad \mathrm{k}_{\mathrm{p}} \neq \mathrm{k}_{\mathrm{q}}
$$

store (...(store (a, ki1, ei1), .. kin, ein) ...)

$$
=
$$

store (...(store (a, kjı, ej1), .. kjn, ejn) ...)

$\operatorname{swap}(\mathrm{N}):$ definition

Recursively:
Base case: $\mathrm{N}=2$ elements:
$\mathrm{L} 2=\operatorname{store}($ store $(\mathrm{a}, \mathrm{i} 1$, select ($\mathrm{a}, \mathrm{i} 0)$), i0, select (a, i1))
R2 $=$ store $($ store $(a, i 0$, select ($a, i 1)$), i1, select ($a, i 0)$)

$$
\mathrm{L} 2=\mathrm{R} 2
$$

Recursive case: $\mathrm{N}=\mathrm{k}+2$ elements:
$L_{k+2}=\operatorname{store}(\operatorname{store}(\operatorname{Lk}, i k+1$, select $(L k, i k))$, ik , select $(L k, i k+1))$
$R k+2=\operatorname{store}(\operatorname{store}(R k, i k, \operatorname{select}(R k, i k+1)), i k+1$, select $(R k, i k))$

$$
L k+2=R k+2
$$

Experiments

- Two tools: CVC validity checker and E theorem prover
- E: auto mode and user-selected strategy
- Comparison of asymptotic behavior of E and CVC as N grows

The CVC validity checker

[Aaron Stump, David L. Dill et al., Stanford U.]
Combines procedures à la Nelson-Oppen (e.g., lists, arrays, records, real arithmetics ..)

Incorporates SAT solver (first GRASP then Chaff) to handle arbitrary quantifier-free formulae

Theory of arrays: congruence closure based algorithm [Stump et al., LICS 2001]

The E theorem prover

[Stephan Schulz, TU-München]

Inference system I : o-superposition/paramodulation, reflection, o-factoring, simplification, subsumption

Search plans Σ :

- given-clause loop with clause selection functions and only already-selected list inter-reduced
- term orderings: KBO and LPO
- literal selection functions

Strategies in experiments

- E-auto: automatic mode
- E-SOS: $\{$ problem in form $T \cup G$ \}

Clause selection:
(SimulateSOS,RefinedWeight)
Term ordering: LPO

- Precedence: select > store > sk > constants

First set of experiments on storecomm(N)

E takes presentation T_{1} in input
N ranges from 2 to 150
Sample 10 permutations: 45 instances for each value of N
Non-uniform sampling (favors permutations with local changes)
Performance for N is average over all generated instances for value N
Versions: E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002

First set : storecomm(N)

Second set of experiments on storecomm(N)

E takes presentation T_{1} in input
N ranges from 2 to 90
For each value of N pick one instance at random : no averages

Only E-auto, E-SOS did not help
Versions: E 0.62
CVC/CHAFF October 2002

Second set : storecomm(N)

First set of experiments on swap (N)

Sample up to 16 permutations and 20 instances for each value of N Non-uniform sampling (favors permutations with local changes) Performance for N is average over all generated instances for value N

CVC: does up to $\mathrm{N}=10$, runs out of memory on any instance of swap(12)
E with presentation T_{1} : same as above and slower
E with presentation T_{2} : succeeds also for $\mathrm{N} \geq 12$
Versions: E 0.62
CVC/GRASP Fall 2001, CVC/CHAFF January 2002

First set : swap(N)

Second set of experiments on $\operatorname{swap}(\mathrm{N})$

E takes presentation T_{1} in input
For each value of N pick one instance at random : no averages
Only E-auto, E-SOS did not help

CVC : does only up to $N=6$, E goes beyond
Versions : E 0.62
CVC/CHAFF October 2002

Second set : swap(N)

Discussion

- Deduction may help build better decision procedures
- More experiments: other synthetic benchmarks, theories, combinations, real-world problems
- Other provers, e.g., with more inter-reduction?
- ATP needs more work on auto mode and search plans (search, not blind saturation)
- Termination results for other theories?
- Complexity of specific strategies / theories

Broad picture : integration

- ATP based satisfiability procedures
- Integration with SAT : decision procedures
- Integration with automated model building:
counterexample generation
- Integration within debugging tools or proof assistants

