$\begin{array}{c} & \text{Outline} \\ & \text{Model-based reasoning} \\ & \text{DPLL}(\Gamma + \mathcal{T}): \text{ algorithmic reasoner + first-order prover} \\ & \text{DPLL}(\Gamma + \mathcal{T}) + \text{ speculative inferences: Decision procedures} \\ & \text{Current and future work} \end{array}$

On Model-Based Reasoning Recent Trends and Current Developments

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Invited talk 28th Italian Symposium on Computational Logic Catania, Italy, EU

26 September 2013

Image: A math a math

 $\begin{array}{l} \mbox{Model-based reasoning}\\ \mbox{DPLL}(\Gamma+\mathcal{T}): \mbox{ algorithmic reasoner } + \mbox{ first-order prover}\\ \mbox{DPLL}(\Gamma+\mathcal{T}) + \mbox{ speculative inferences: Decision procedures}\\ \mbox{ Current and future work} \end{array}$

Model-based reasoning

DPLL(Γ +T): algorithmic reasoner + first-order prover

 $\mathsf{DPLL}(\Gamma + \mathcal{T})$ + speculative inferences: Decision procedures

Current and future work

Outline Model-based reasoning

$$\begin{split} \mathsf{DPLL}(\Gamma + \mathcal{T}) &: \text{ algorithmic reasoner } + \text{ first-order prover} \\ \mathsf{DPLL}(\Gamma + \mathcal{T}) + \text{ speculative inferences: Decision procedures} \\ \mathsf{Current and future work} \end{split}$$

The gist of this talk

- Automated reasoning from proofs to models
- Models are relevant to applications (e.g., program testing, program synthesis)
- Theorem provers that terminate on satisfiable inputs (Decision procedures)
- Trade-off between decidability and expressivity

Model-based reasoning

Automated reasoning

- Logico-deductive reasoning
- Other kinds: Probabilistic ...

Model-based reasoning

Logico-deductive reasoning

- Proofs and Models
- Theorem Proving
 - Validity: $\mathcal{T} \models \varphi$
 - Refutationally: $\mathcal{T} \cup \{\neg \varphi\}$ unsatisfiable
 - If not: \mathcal{T} -model of $\neg \varphi$, counter-example for φ

Model Building

- Satisfiability: is there a *T*-model of φ?
- If not: $\mathcal{T} \cup \{\varphi\}$ unsatisfiable, $\mathcal{T} \models \neg \varphi$

Model-based reasoning

Theorem proving strategies (Semi-decision procedures)

- First-order logic with equality
- Unsatisfiability is semi-decidable, satisfiability is not
- Search for proof (refutation)

...

- Models for semantic guidance:
 - Hyper-resolution [Alan Robinson 1965]
 - Set of support [Larry Wos et al. 1965]
 - Semantic resolution [James Slagle 1967]

Model-based reasoning

Algorithmic reasoning (Decision procedures)

- Satisfiability decidable: Symmetry restored
- Propositional logic
- Decidable (fragments of) first-order theories
 - QFF: equality, recursive data structures, arrays
 - Linear arithmetic (integers, rationals), arithmetic (reals)

・ロト ・同ト ・ヨト ・ヨ

Model-based reasoning

Symmetry in the reasoner's operations

- Deduction guides search for model
- Candidate partial model guides deduction
- How?

Image: A matrix

Outline Model-based reasoning

Propositional logic (SAT)

Davis-Putnam-Logemann-Loveland (DPLL) procedure

[Martin Davis and Hilary Putnam 1960]

[Martin Davis and George Logemann and Donald Loveland 1962]

- Backtracking search for model
- State of derivation: M || F
 M: sequence of truth assignments
 - *F*: clauses to satisfy

 $\label{eq:output} \begin{array}{c} & \text{Outline} \\ & \text{Model-based reasoning} \\ & \text{DPLL}(\Gamma {+} \mathcal{T}) \text{: algorithmic reasoner + first-order prover} \\ & \text{DPLL}(\Gamma {+} \mathcal{T}) + \text{speculative inferences: Decision procedures} \\ & \text{Current and future work} \end{array}$

Conflict-Driven Clause Learning (CDCL)

- ▶ Conflict: *M* falsifies clause $L_1 \lor \ldots \lor L_n$: conflict clause
- Explain: resolve and get another conflict clause $L_1 \lor \ldots \lor L_n$ $\neg L_1 \lor Q_2 \ldots \lor Q_k$
- Learn: may add resolvent(s)
- Backjump: undoes at least an assignment, jumps back as far as possible to state where learnt resolvent can be satisfied

[João P. Marques-Silva and Karem A. Sakallah 1997]

[Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and Sharad Malik 2001]

・ロト ・回ト ・ヨト ・ヨト

Model-based reasoning

Example of CDCL

$$F = \{ \neg a \lor b, \neg c \lor d, \neg e \lor \neg f, f \lor \neg e \lor \neg b \}$$

$$M = a \ b \ c \ d \ e \ \neg f$$

blue: assignments; violet: propagations

Conflict: $f \lor \neg e \lor \neg b$ Explain by resolving $f \lor \neg e \lor \neg b$ and $\neg e \lor \neg f$: $\neg e \lor \neg b$ Learn $\neg e \lor \neg b$: no model with e and b true Jump back to earliest state with $\neg b$ false and $\neg e$ unassigned: $M = a \ b \neg e$

Chronological backtracking: $M = a b c d \neg e$

Model-based reasoning

Satisfiability modulo theories (SMT)

- ▶ DPLL(*T*) procedure
- Integrate \mathcal{T} -satisfiability procedure in DPLL
- Ground first-order literals abstracted to propositional variables
- CDCL: same

[Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli 2006]

Model-based reasoning

Theory combination by equality sharing

- Theories $\mathcal{T}_1, \ldots, \mathcal{T}_n$
- $\blacktriangleright \ \mathcal{T} = \bigcup_{i=1}^n \mathcal{T}_i$
- ► *T_i*-satisfiability procedures
- Disjoint: share only \simeq and uninterpreted constants
- Need to compute arrangement: which shared constants are equal and which are not
- Conservative approach: propagate all entailed (disjunctions of) equalities between shared constants

[Greg Nelson and Derek C. Oppen 1979]

・ロト ・回ト ・ヨト ・ヨト

Current and future work

Model-based theory combination (MBTC)

- Every T_i -satisfiability procedure builds a T_i -model
- Optimistic approach: propagate equalities true in T_i -model
- If not entailed: conflict + backjumping with CDCL + update *T_i*-model
- ▶ Rationale: few equalities matter in practice

[Leonardo de Moura and Nikolaj Bjørner 2007]

Model-based reasoning

CDCL for \exists -fragments of arithmetic

Linear arithmetic (rationals)

[Ken McMillan, A. Kuehlmann and Mooly Sagiv 2009]

[Konstantin Korovin, Nestan Tsiskaridze and Andrei Voronkov 2009] [Scott Cotton 2010]

Linear arithmetic (integers)

[Dejan Jovanović and Leonardo de Moura 2011]

Non-linear arithmetic (reals)

[Dejan Jovanović and Leonardo de Moura 2012]

Floating-point binary arithmetic

[Leopold Haller, Alberto Griggio, Martin Brain and Daniel Kroening 2012]

イロト イヨト イヨト イヨ

Outline Model-based reasoning

Model-constructing satisfiability procedures (MCsat)

- Satisfiability modulo assignment (SMA)
- *M*: both *L* (means $L \leftarrow true$) and $x \leftarrow 3$
- CDCL + MBTC
- Theory CDCL: explain theory conflicts and theory propagations
- Beyond input literals: finite bag for termination
- Equality, lists, arrays, linear arithmetic (rationals)

[Leonardo de Moura and Dejan Jovanović 2013]

[Dejan Jovanović, Clark Barrett and Leonardo de Moura 2013]

Model-based reasoning

Example of theory explanation (equality)

$$F = \{\ldots, v \simeq f(a), w \simeq f(b), \ldots\}$$

$$M = \dots \ \mathbf{a} \leftarrow \alpha \quad \mathbf{b} \leftarrow \alpha \quad \mathbf{w} \leftarrow \beta_1 \quad \mathbf{v} \leftarrow \beta_2 \ \dots$$

Conflict!

Explain by $a \simeq b \supset f(a) \simeq f(b)$ (instance of substitutivity)

Outline Model-based reasoning

Summary: Recent trends in model-based reasoning

- Deduction guides search for model
- Candidate model guides deduction
- Propositional CDCL (both DPLL and DPLL(T))
- Model-based theory combination (MBTC)
- CDCL for arithmetic (aka Natural domain SMT)
- Model-constructing satisfiability procedures (MCsat)

 $\label{eq:constraint} \begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \textbf{DPLL}(\Gamma+\mathcal{T}): \ \textbf{algorithmic reasoner} + \ \textbf{first-order prover} \\ \text{DPLL}(\Gamma+\mathcal{T}) + \ \textbf{speculative inferences: Decision procedures} \\ \text{Current and future work} \\ \end{array}$

Motivation

- Decision procedures are most desirable, but ...
- Formulæ from SW verification tools (verifying compiler, static analyzer, test generator, synthesizer, model checker) use quantifiers to write
 - invariants
 - axioms of theories without decision procedure
- Need for generic first-order inferences

 $\begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \textbf{DPLL}(\Gamma+\mathcal{T}): \text{ algorithmic reasoner } + \text{ first-order prover} \\ \text{DPLL}(\Gamma+\mathcal{T}) + \text{ speculative inferences: Decision procedures} \\ \text{Current and future work} \\ \end{array}$

Shape of problem

Background theory T

• $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_i$ (linear arithmetic, data structures)

- Set of formulæ: $\mathcal{R} \cup P$
 - R: set of non-ground clauses without T-symbols
 - P: large ground formula (set of ground clauses) typically with *T*-symbols
- Determine whether $\mathcal{R} \cup P$ is satisfiable modulo \mathcal{T}

 $\label{eq:constraint} \begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \textbf{DPLL}(\Gamma+\mathcal{T}): \ \textbf{algorithmic reasoner} + \ \textbf{first-order prover} \\ \text{DPLL}(\Gamma+\mathcal{T}) + \ \textbf{speculative inferences: Decision procedures} \\ \text{Current and future work} \\ \end{array}$

DPLL(Γ +T): integrate Γ in DPLL(T)

Superposition-based inference system Γ:

- ► FOL+= clauses with universally quantified variables
- Expansion: generate clauses (resolution, superposition)
- Contraction: delete redundant clauses (subsumption, simplification)
- Well-founded ordering and literal selection
- Decision procedure for several theories of data structures (e.g., lists, arrays, records)

Model-based deduction:

literals in M as premises of Γ -inferences!

[Alessandro Armando, Maria Paola Bonacina, Silvio Ranise and Stephan Schulz 2009]

[Leonardo de Moura and Nikolaj Bjørner 2008]

 $\label{eq:constraint} \begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \textbf{DPLL}(\Gamma+\mathcal{T}): \ \textbf{algorithmic reasoner} + \ first-order \ prover \\ \text{DPLL}(\Gamma+\mathcal{T}) + \ speculative \ inferences: \ Decision \ procedures \\ \text{Current and \ future \ work} \end{array}$

Hypothetical clauses

- Literals from M used as premises of Γ-inferences stored as hypotheses in inferred clause:
 (L₁ ∧ ... ∧ L_n) ▷ (L'₁ ∨ ... L'_m) interpreted as
 ¬L₁ ∨ ... ∨ ¬L_n ∨ L'₁ ∨ ... ∨ L'_m
- Inferred clauses inherit hypotheses from premises
- Backjump: remove hypothetical clauses depending on undone assignments

DPLL(Γ +T): expansion inferences

- ▶ If non-ground clauses $C_1, ..., C_m$ and ground \mathcal{R} -literals $L_{m+1}, ..., L_n$ generate C: $H_1 \triangleright C_1, ..., H_m \triangleright C_m$ and $L_{m+1}, ..., L_n$ in M generate $H_1 \cup ... \cup H_m \cup \{L_{m+1}, ..., L_n\} \triangleright C$
- Only \mathcal{R} -literals: Γ -inferences ignore \mathcal{T} -literals
- ► Take ground unit *R*-clauses from *M* as MBTC puts them there

 $\label{eq:constraint} \begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \textbf{DPLL}(\Gamma+\mathcal{T}): \ \textbf{algorithmic reasoner} + \ \textbf{first-order prover} \\ \text{DPLL}(\Gamma+\mathcal{T}) + \ \textbf{speculative inferences:} \ \text{Decision procedures} \\ \text{Current and future work} \\ \end{array}$

DPLL(Γ +T): contraction inferences

- Don't delete clause if clauses that make it redundant gone by backjumping
 - Level of a literal in M: its decision level
 - Level of a set of literals: the maximum
- ▶ If non-ground clauses $C_1, ..., C_m$ and ground \mathcal{R} -literals $L_{m+1}, ..., L_n$ simplify C to C': $H_1 \triangleright C_1, ..., H_m \triangleright C_m$ and $L_{m+1}, ..., L_n$ in M simplify $H \triangleright C$ to $H \cup H_1 \cup ... \cup H_m \cup \{L_{m+1}, ..., L_n\} \triangleright C'$
 - If $level(H) \ge level(H')$: delete
 - If level(H) < level(H'): disable (re-enable when backjumping level(H'))

 $\begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \textbf{DPLL}(\Gamma+\mathcal{T}): \text{ algorithmic reasoner } + \text{ first-order prover} \\ \text{DPLL}(\Gamma+\mathcal{T}) + \text{ speculative inferences: Decision procedures} \\ \text{Current and future work} \\ \end{array}$

Completeness of $\mathsf{DPLL}(\Gamma \!\!+\!\! \mathcal{T})$

Refutational completeness of the inference system:

- From that of Γ, DPLL(T) and equality sharing
- Combines both built-in and axiomatized theories

Fairness of the search plan:

- Depth-first search fair only for ground SMT problems;
- Add iterative deepening on inference depth:
 k-bounded DPLL(Γ+*T*)

 $\label{eq:constraint} \begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \textbf{DPLL}(\Gamma+\mathcal{T}): \ \textbf{algorithmic reasoner} + \ \textbf{first-order prover} \\ \text{DPLL}(\Gamma+\mathcal{T}) + \ \textbf{speculative inferences: Decision procedures} \\ \text{Current and future work} \\ \end{array}$

DPLL(Γ +T): Summary

Use each engine for what is best at:

- DPLL(\mathcal{T}) works on ground clauses and built-in theory
- Γ works on non-ground clauses and ground unit clauses taken from M: Γ works on *R*-satisfiability problem
- Γ-inferences guided by current partial model

Can DPLL(Γ +T) still be a decision procedure?

Problematic axioms do occur in relevant inputs:

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$
 (Monotonicity)

2.
$$a \sqsubseteq b$$
 generates by resolution

3.
$$\{f^i(a) \sqsubseteq f^i(b)\}_{i \ge 0}$$

When $f(a) \sqsubseteq f(b)$ or $f^2(a) \sqsubseteq f^2(b)$ often suffice to show satisfiability

 $\begin{array}{c} & \text{Outline} \\ & \text{Model-based reasoning} \\ & \text{DPLL}(\Gamma \!+\! \mathcal{T}) \text{: algorithmic reasoner } + \text{ first-order prover} \\ & \text{DPLL}(\Gamma \!+\! \mathcal{T}) + \text{speculative inferences: Decision procedures} \\ & \text{Current and future work} \end{array}$

Idea: Allow speculative inferences

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

イロト イヨト イヨト イヨト

臣

Idea: Allow speculative inferences

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!

Idea: Allow speculative inferences

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box : backtrack!
- 3. Add $f(f(x)) \simeq x$
- 4. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
- 5. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq c$
- 6. Terminate and detect satisfiability

Speculative inferences in DPLL(Γ +T)

- Speculative inference: add arbitrary clause C
- To induce termination on satisfiable input
- What if it makes problem unsatisfiable?!
- Detect conflict and backjump:
 - \triangleright [*C*]: new propositional variable (a "name" for *C*)
 - Add $\lceil C \rceil \triangleright C$ to clauses and $\lceil C \rceil$ to M
 - Speculative inferences are reversible

Example as done by system

1.
$$\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$$

2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

・ロト ・回ト ・ヨト ・ヨト

臣

Example as done by system

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- **4**. ¬(*a* ⊑ *c*)
- 1. Add $\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$

Example as done by system

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
- 3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

 $\begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \text{DPLL}(\Gamma + \mathcal{T}): \text{ algorithmic reasoner + first-order prover} \\ \textbf{DPLL}(\Gamma + \mathcal{T}) + \textbf{speculative inferences: Decision procedures} \\ \text{Current and future work} \\ \end{array}$

Example as done by system

- 1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
- 2. a ⊑ b
- 3. $a \sqsubseteq f(c)$
- 4. $\neg(a \sqsubseteq c)$
- 1. Add $\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$
- 2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
- 3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$
- 4. Add $\lceil f(f(x)) \simeq x \rceil \triangleright f(f(x)) \simeq x$
- 5. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
- 6. $a \sqsubseteq f(c)$ yields only $\lceil f(f(x)) = x \rceil \triangleright f(a) \sqsubseteq c$
- 7. Terminate and detect satisfiability

イロト イヨト イヨト

 $\begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \text{DPLL}(\Gamma + \mathcal{T}): \text{ algorithmic reasoner } + \text{ first-order prover} \\ \text{DPLL}(\Gamma + \mathcal{T}) + \text{ speculative inferences: Decision procedures} \\ \text{Current and future work} \end{array}$

Decision procedures with speculative inferences

To decide satisfiability modulo \mathcal{T} of $\mathcal{R} \cup P$:

- Find sequence of speculative axioms U
- Show that there exists k s.t. k-bounded DPLL(Γ+T) is guaranteed to terminate
 - returning Unsat if $\mathcal{R} \cup P$ is \mathcal{T} -unsatisfiable
 - in a state which is not stuck at k otherwise

Decision procedures

- \mathcal{R} has single monadic function symbol f
- ► Essentially finite: if R ∪ P is satisfiable, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$

Decision procedures

- R has single monadic function symbol f
- ► Essentially finite: if R ∪ P is satisfiable, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- Add pseudo-axioms $f^j(x) \simeq f^k(x), j > k$
- Use $f^{j}(x) \simeq f^{k}(x)$ as rewrite rule to limit term depth

Decision procedures

- R has single monadic function symbol f
- ► Essentially finite: if R ∪ P is satisfiable, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- Add pseudo-axioms $f^j(x) \simeq f^k(x), j > k$
- Use $f^{j}(x) \simeq f^{k}(x)$ as rewrite rule to limit term depth
- **Clause length limited** by properties of Γ and \mathcal{R}
- Only finitely many clauses generated: termination

Situations where clause length is limited

Γ: Superposition, Resolution + negative selection, Simplification Negative selection: only positive literals in positive clauses resolve or superpose

- \blacktriangleright \mathcal{R} is Horn: number of literals in each clause is bounded
- R is ground-preserving: all variables appear also in negative literals the only positive clauses are ground only finitely many clauses generated

Axiomatizations of type systems

Reflexivity $x \sqsubseteq x$ (1)Transitivity $\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq z) \lor x \sqsubseteq z$ (2)Anti-Symmetry $\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq x) \lor x \simeq y$ (3)Monotonicity $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$ (4)Tree-Property $\neg(z \sqsubseteq x) \lor \neg(z \sqsubseteq y) \lor x \sqsubseteq y \lor y \sqsubseteq x$ (5)

Multiple inheritance: $MI = \{(1), (2), (3), (4)\}$ Single inheritance: $SI = MI \cup \{(5)\}$

 $\begin{array}{c} \text{Outline} \\ \text{Model-based reasoning} \\ \text{DPLL}(\Gamma + \mathcal{T}): \text{ algorithmic reasoner } + \text{ first-order prover} \\ \text{DPLL}(\Gamma + \mathcal{T}) + \text{ speculative inferences: Decision procedures} \\ \text{Current and future work} \end{array}$

Concrete examples of decision procedures

DPLL(Γ + \mathcal{T}) with addition of $f^j(x) \simeq f^k(x)$ for j > k decides the satisfiability modulo \mathcal{T} of problems

- ► MI ∪ P
- ► SI ∪ P
- $\blacktriangleright \mathsf{MI} \cup \mathsf{TR} \cup P \text{ and } \mathsf{SI} \cup \mathsf{TR} \cup P$

where $TR = \{\neg(g(x) \simeq null), h(g(x)) \simeq x\}$ has only infinite models!

(because g is injective, since it has left inverse, but not surjective, since there is no pre-image for null)

[Maria Paola Bonacina, Chris Lynch and Leonardo de Moura 2011]

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Model-based reasoning} \\ \mbox{DPLL}(\Gamma + \mathcal{T}): \mbox{ algorithmic reasoner + first-order prover} \\ \mbox{DPLL}(\Gamma + \mathcal{T}) + \mbox{speculative inferences: Decision procedures} \\ \mbox{Current and future work} \\ \mbox{Current and future work} \end{array}$

Current and future work

- MCsat procedures for more first-order theories e.g., Boolean algebra with Presburger arithmetic (BAPA)
- Many-sorted DPLL($\Gamma + T$)
- Weakening conditions for completeness
- More decision procedures by speculative inferences

MCsat + Γ

[Joint work with Serdar Erbatur]