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A mainstay in SMT: the theory of arrays

▶ Basic operations: read/write or select/store

▶ Sorts: indices, values, arrays

▶ Select-over-store axioms [McCarthy 1993]:
∀ a, v , i . select(store(a, i , v), i) ≃ v
∀ a, v , i , j . i ̸≃ j → select(store(a, i , v), j) ≃ select(a, j)

▶ Extensionality axiom:
∀ a, b. (∀i . select(a, i) ≃ select(b, i)) → a ≃ b

▶ Not decidable, but the quantifier-free fragment (QFF) is
[Stump, Barrett, Dill, Levitt 2001]

▶ Useful to reason about computer memory (e.g., heap)
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Arrays: finite or infinite?

Programming languages:

▶ Integer-indexed arrays

▶ Finite: indices in the interval [0, n − 1], length n
Ada: indices in the interval [n,m], length m − n + 1

▶ A store within bounds works, error otherwise

Theory of arrays:

▶ All arrays have the same length given by the cardinality of the
set used to interpret the sort of indices

▶ If integer-indexed: infinite arrays

▶ No distinction btw in-bounds and out-of-bounds store
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Adding quantified formulas to the QFF

▶ Array property fragment (APF)

▶ Limited usage of ∀ over index variables

▶ Integer-index arrays

▶ Bounded array equality: beq(a, b, l , u) iff
∀ i . l ≤ i ≤ u → select(a, i) ≃ select(b, i)

▶ APF is decidable: finitely many instances of ∀ +
decision procedure for combination of arrays, integers, values

[Bradley, Manna, Sipma 2006] [Bradley, Manna 2007] [Ge, de Moura 2009]

The theory of arrays is unchanged: its limitations remain
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Using finite sequences to model finite arrays

▶ Theory of sequences

▶ Empty sequence, binary associative concatenation: a monoid

▶ Unary constructor wrapping single element into sequence

▶ Extract or Slice: returns subsequence btw two positions

▶ Access: returns element at given position (similar to select)

▶ Length |x |: number of elements in sequence x

[Bjørner et al. 2012] [Jeż et al. 2023]
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Theories of finite sequences to model finite arrays

▶ Theory Seq with integer indices [0, |x |) and countably infinite
element sort [Sheng et al. 2023]:
▶ Add update function: access/update for select/store
▶ Extensionality: same length n and same elements in [0, n)
▶ Update axiom: update does not change length

only an update in [0, |x |) modifies the element

▶ Theory N-Seq [Ait-El-Hara, Bobot, Bury 2024] [Ait-El-Hara 2025]

to model Ada arrays:
▶ The first index is not necessarily 0
▶ Add other functions: e.g., relocate

▶ Decidability of QFF: unknown
Sound inference systems, neither termination, nor
completeness
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Quantifiers and sequences: APF with concatenation

▶ Arrays interpreted as finite integer-indexed sequences

▶ Add repeat: takes element e and length n and produces en

▶ Obtain update by concatenating a slice, e1, and another slice

▶ More expressive than APF: allows index shifting (e.g., a[i ] and
a[i + n]), concatenation can be defined

▶ Undecidable: halting problem of a two-register machine

▶ Decision procedure for certain formulas

[Wang, Appel 2023]

Summary: when addressing the limitations of the theory of arrays,
it is easy to lose decidability; SMT with ∀ still a challenge
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Adding a length function to the theory of arrays

▶ Maps every array to its length: len(a)≃ n

▶ Axiom of extensionality for integer-indexed arrays:
∀ a, b. [ len(a) ≃ len(b) ∧
(∀i . 0 ≤ i < len(a) → select(a, i) ≃ select(b, i)) ] → a ≃ b

▶ Arrays and integers share < ... no longer disjoint theories

▶ Bridging functions [Sofronie-Stokkermans 2009] and bridging
axioms [Ganzinger, Rueß, Shankar 2004]

▶ Most combination methods require disjoint theories
(only shared symbol: ≃)

▶ Seq, N-Seq, and APFC avoid non-disjoint combination by
reasoning in terms of reduction to a base theory

Maria Paola Bonacina Arrays, Maps, and Vectors With Abstract Domain for SMT



Solution: a theory of arrays with abstract domain

▶ Neither quantifiers nor sequences

▶ Enrich the theory of arrays itself

▶ Abstract domain: indices do not have to be integers,
nor even linearly ordered

▶ Also maps, and vectors meaning dynamic arrays

▶ View the problem as non-disjoint theory combination

▶ Extend the theory combination method CDSAT to
predicate-sharing theories: soundness, termination,
completeness

▶ The QFF is decidable: follows from fitting the three theories
in CDSAT + termination and completeness of CDSAT
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The theory of arrays with abstract domain: signature

▶ ArrAD: theory of arrays with abstract domain

▶ Sorts: indices I , values V , arrays A, lengths L, and Prop

▶ select : A× I → V store : A× I × V → A len : A → L

▶ Free admissibility predicate: Adm: I × L → Prop
Adm(i , l): index i is admissible wrt length l

▶ Abstract domain: definition of Adm

▶ Concrete domain: set of admissible indices given Adm’s
definition and the interpretation of I

▶ Adm is shared with another theory T that defines it
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The theory of arrays with abstract domain: axioms

▶ Select-over-store axioms:
▶ ∀ a, v , i . select(store(a, i , v), i) ≃ v is replaced by

∀ a, v , i . Adm(i , len(a)) → select(store(a, i , v), i) ≃ v
a store at an inadmissible index has no effect

▶ ∀ a, v , i , j . i ̸≃ j → select(store(a, i , v), j) ≃ select(a, j)

▶ Store does not change length:
∀ a, i , v . len(store(a, i , v)) ≃ len(a)

▶ Extensionality:
∀ a, b. [ len(a) ≃ len(b) ∧
(∀i . Adm(i , len(a)) → select(a, i) ≃ select(b, i)) ]

→ a ≃ b
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The most common interpretation of admissibility

▶ Let LIA be the theory defining Adm

▶ Say LIA interprets indices as integers
lengths as integers
and defines Adm by

∀ i , n. Adm(i , n) ↔ 0 ≤ i < n

▶ The set of admissible indices is the interval [0, n)
▶ Under this interpretation extensionality in ArrAD covers

▶ Extensionality for integer-index arrays with length
▶ Extensionality in the theory Seq of sequences and in APFC
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Admissibility captures bounded equality as in APF

▶ Let LIA be the theory defining Adm

▶ Say LIA interprets indices as integers
lengths as pairs of integers
and defines Adm by

∀ i , l , u. Adm(i , (l , u)) ↔ l ≤ i ≤ u

▶ The set of admissible indices is the interval [l , u]
▶ Under this interpretation extensionality in ArrAD covers

▶ Bounded equality in APF
▶ Extensionality in the theory N-Seq of sequences
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Admissibility captures array equality in programming

▶ Let T be the theory defining Adm

▶ Say T interprets indices as integers, lengths as pairs (addr , n):
addr is a binary number: the starting address

n ≥ 0: the number of admissible indices

and defines Adm by

∀ i , addr , n. Adm(i , (addr , n)) ↔ 0 ≤ i < n

where the starting address plays no role

▶ Two arrays a and b with
same interval of admissible indices, say [0, 5)
but len(a) = (000100, 5) and len(b) = (010100, 5)
are different
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Admissibility as generic set membership

▶ Let T be the theory defining Adm

▶ Say T interprets the sort of indices as a set S
the sort of lengths as the powerset of S
and defines Adm by

∀i , N. Adm(i ,N) ↔ i ∈ N

▶ The set of admissible indices is the subset N ⊆ S

The set S does not have to be a set of numbers
does not have to be linearly ordered
does not have to be ordered
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A theory of maps with abstract domain

▶ MapAD: theory of maps with abstract domain

▶ Store at inadmissible index i makes i admissible:
∀ a, j , i , v . Adm(j , len(store(a, i , v))) ↔ (Adm(j , len(a)) ∨ j ≃ i)

▶ Store does not change length if the index is admissible:
∀ a, i , v . Adm(i , len(a)) → len(store(a, i , v)) ≃ len(a)

▶ Select-over-store axioms:
▶ Restored: ∀ a, v , i . select(store(a, i , v), i) ≃ v
▶ ∀ a, v , i , j . i ̸≃ j → select(store(a, i , v), j) ≃ select(a, j)

▶ Extensionality unchanged: ∀a, b. [ len(a) ≃ len(b) ∧
(∀i . Adm(i , len(a)) → select(a, i) ≃ select(b, i)) ] → a ≃ b
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A theory of vectors (dynamic arrays) with abstract domain

▶ VecAD: theory of vectors with abstract domain

▶ Store at an inadmissible index i makes i and the indices
smaller than i admissible:
∀ a, j , i , v . Adm(j , len(store(a, i , v))) ↔ (Adm(j , len(a)) ∨ j ≤ i)

▶ Everything else as in MapAD
except for adding to the signature an ordering < on indices
(does not have to be linear)

MapAD and VecAD: dynamic data structures modeled for the first time

Reasoning about ArrAD, MapAD and VecAD?

CDSAT
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CDSAT: Conflict-Driven SATisfiability in n theories

▶ Orchestrates theory modules in a conflict-driven model search

▶ The theory modules work on a shared trail: not a stack
▶ Generalizes MCSAT to theory combination:

▶ Assignments of values to terms: both Boolean and first-order
▶ Theory conflict explanation by theory inferences that can

generate new terms

▶ Propositional logic is one of the theories: no hierarchy btw
Boolean reasoning and theory reasoning

▶ Input first-order assignments:
Satisfiability Modulo Assignment

▶ Sound, terminating, and complete for predicate-sharing
theories without requiring stable infiniteness

Maria Paola Bonacina Arrays, Maps, and Vectors With Abstract Domain for SMT



How to fit a component theory in CDSAT?

▶ A theory module Ik for theory Tk : an inference system
(abstraction of a decision procedure)

▶ Requirements on a theory module:
▶ Soundness (for the soundness of CDSAT)
▶ Finite local basis: basisk(X ) – all the terms that Ik can

generate from set X of input terms
Used to construct the finite global basis for the theory union
(for the termination of CDSAT)

▶ Completeness(for the completeness of CDSAT):
▶ Leading theory T1: has all sorts and all shared predicates
▶ Leading theory T1: I1 is complete
▶ All other theories Tk : Ik is leading-theory complete
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Theory modules for ArrAD, MapAD, VecAD

▶ From axioms to inference rules, e.g.:
▶ n≃m, i ≃ j , Adm(i , n), ¬Adm(j ,m) ⊢ ⊥
▶ a≃ b ⊢ len(a)≃ len(b)
▶ b≃ store(a, i , v), len(b) ̸≃ len(a) ⊢ ⊥

for ArrAD
▶ len(a)≃ n, Adm(i , n), b≃ store(a, i , v), len(b) ̸≃ len(a) ⊢ ⊥

for MapAD and VecAD

▶ Some rules generate ⊥ (conflict detection) others do not:
balancing finite local basis design and completeness

▶ A finite local basis for ArrAD, MapAD, VecAD
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Interpretation of arrays with abstract domain

Interpretation of arrays:

▶ An array: a function from indices to values

▶ Sort of arrays: an updatable function set X :
g differs from f ∈ X at finitely many indices: g ∈ X

Interpretation of arrays with abstract domain:

▶ An array of length n: a function from the set In of admissible
indices for length n to values

▶ Sort of arrays: a collection of updatable function sets (Xn)n
one for each n in the interpretation of the sort L of lengths
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Interpretation of maps with abstract domain

▶ A map of length n: a function from the set In of admissible
indices for length n to values

▶ Sort of maps: an incrementally updatable collection of
function sets (Xn)n:
one for each n in the interpretation of the sort L of lengths
g differs from f ∈ Xn at finitely many indices: ∃m, g ∈ Xm

▶ Either m = n: store at an admissible index

▶ Or Im = In ∪ {i}: store at an inadmissible index i that is
admissible in the resulting map
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Interpretation of vectors with abstract domain

▶ A vector of length n: a function from the set In of admissible
indices for length n to values

▶ Sort of vectors: an extensibly updatable collection of function
sets (Xn)n:
one for each n in the interpretation of the sort L of lengths
g differs from f ∈ Xn at finitely many indices: ∃m, g ∈ Xm

▶ Either m = n: store at an admissible index

▶ Or Im = In ∪ {j | j ≤ i}: store at an inadmissible index i that
is admissible in the resulting vector together with the smaller
indices
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Leading-theory-completeness for ArrAD

▶ Theorem: the module for ArrAD is leading-theory-complete
for all ArrAD-suitable leading theories T1

▶ A leading theory T1 is ArrAD-suitable if:
▶ T1 has all the sorts of ArrAD
▶ T1 shares with ArrAD equality and Adm
▶ For all T1-models M1 there exists a collection of updatable

function sets (Xn)n such that
▶ n ranges over all possible values for lengths according to M1

▶ f ∈ Xn is a function from admissible indices to values in the
M1-interpretation of indices, admissibility, and values

▶ The sum of the cardinalities of the Xn determines the
cardinality of the sort A of arrays in M1

▶ Suitability does not restrict combinability
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Leading-theory-completeness for MapAD

▶ Theorem: the module for MapAD is leading-theory-complete
for all MapAD-suitable leading theories T1

▶ A leading theory T1 is MapAD-suitable if:
▶ T1 has all the sorts of MapAD
▶ T1 shares with MapAD equality and Adm
▶ For all T1-models M1 there exists an incrementally updatable

collection of function sets (Xn)n such that
▶ n ranges over all possible values for lengths according to M1

▶ f ∈ Xn is a function from admissible indices to values in the
M1-interpretation of indices, admissibility, and values

▶ The sum of the cardinalities of the Xn determines the
cardinality of the sort A of maps in M1
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Leading-theory-completeness for VecAD

▶ Theorem: the module for VecAD is leading-theory-complete
for all VecAD-suitable leading theories T1

▶ A leading theory T1 is VecAD-suitable if:
▶ T1 has all the sorts of MapAD
▶ T1 shares with MapAD equality, Adm, and <
▶ For all T1-models M1 there exists an extensibly updatable

collection of function sets (Xn)n such that
▶ n ranges over all possible values for lengths according to M1

▶ f ∈ Xn is a function from admissible indices to values in the
M1-interpretation of indices, admissibility, and values

▶ The sum of the cardinalities of the Xn determines the
cardinality of the sort A of maps in M1
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Future work

▶ Add concatenation (may subsume sequences): QF decidability
to be determined

▶ Other theories and bridging functions: appropriate shared
predicates and CDSAT modules

▶ QSMA(CDSAT) (for quantified satisfiability)

▶ Implementation ... AR SW crisis!
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