
High-performance deduction for verification: a case study in the

theory of arrays

Alessandro Armando

DIST
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Abstract

We outline an approach to use ordering-based theorem-proving strategies as satisfiability

procedures for certain decidable theories. We report on experiments with synthetic benchmarks

in the theory of arrays with extensionality, showing that a theorem prover – the E system –

compares favorably with the state-of-the-art validity checker CVC.

1 Introduction

Satisfiability procedures for theories of standard data-types, such as arrays, lists, bit-vectors,

are at the core of most state-of-the-art verification tools (e.g., ACL2 [8], PVS [12], Simplify [7],

CVC [18]). They are required for a wide range of verification tasks and are fundamental for

efficiency. Satisfiability problems have the form T ∪ S, where S is a set of ground literals (read

as conjunction), T is a background theory, and the goal is to prove that T ∪ S is unsatisfiable.

The endeavour of designing, proving correct, and implementing a satisfiability procedure for

each decidable theory of interest is far from simple. First, most problems involve more than one

theory, so that one needs to combine satisfiability procedures [11, 16]. Combination is complicated:

for example, understanding, formalizing and proving correct the method in [16] required signif-

icant effort (e.g., [14]). With a theorem prover, one may simply give in input the union of the

axiomatizations of the theories. Second, every satisfiability procedure needs to be proved correct

and complete: a key ingredient is to show that whenever the algorithm reports “satisfiable,” its

∗Supported in part by NSF grant CCR-97-01508 and a Dean Scholar Award, The University of Iowa.
†Supported in part by NSF grant CCR-97-01508.
‡Also supported by Università degli Studi di Genova.
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ouput represents a model of T ∪S. Model-construction arguments can be complex, and the more

concrete is the description of the procedure, the more difficult are the proofs (e.g., [14, 19]). If

one develops an abstract framework (e.g., [2]), the additional clarity is gained at the expense

of proximity with concrete procedures. On the other hand, if a theorem-proving strategy has a

sound and refutationally complete inference system, and a fair search plan, it is a semi-decision

procedure for unsatisfiability, and we can use it without additional proofs.

Given these attractive features of theorem proving, it would be all the more precious if we

could exclude the risk of non-termination on the decidable theories of interest. Results of this

nature were presented recently in [1], for the theories of lists, arrays with extensionality, and their

combination, among others. The analysis in [1] showed that a standard, paramodulation-based

inference system, for first-order logic with equality, is guaranteed to terminate on T ∪ S, if T is

any of the above theories. The proofs of termination rest on case analyses demonstrating that

the inference system can generate only finitely many clauses from such inputs. Thus, a strategy

that combines this inference system with a fair search plan is in itself a decision procedure for

satisfiability in those theories, and a theorem prover that implements it can be used off the shelf

as a validity checker. One could question whether a specific theorem prover is a sound and com-

plete implementation of such a theorem-proving strategy. However, this question applies also to a

validity checker implementing decision procedures, and perhaps even more seriously, considering

the common practice of designing and implementing from scratch both data structures and al-

gorithms for each new procedure. In contrast, a deduction-based approach also has potential for

better software reuse, since one can envision constructing satisfiability procedures, by combining

the generic reasoning modules offered by state-of-the-art theorem provers.

Even after termination has been proved and a higher degree of assurance about the soundness

of the procedure can be offered, the issue of efficiency remains. The general expectation is that

an implementation of a satisfiability procedure, with the theory built-in as a background theory,

will be always much faster than a theorem prover that takes T in input. In this paper, we

suggest that this may not be obvious. We consider synthetic benchmarks, because they allow to

assess the scalability of an approach by experimental asymptotic analysis. We propose two sets of

synthetic benchmarks in the theory of arrays with extensionality, and we report on experiments

with two tools: the E theorem prover [15], and the CVC validity checker [18]. E implements (a

variant of) the inference system used in [1] with several search plans. CVC combines decision

procedures in the style of [11], as described in [3], including that of [19] for the theory of arrays

with extensionality, and featuring either GRASP [17] or Chaff [10] as propositional solver. The

experiments show that, for both sets of benchmarks, there is a configuration of the general-purpose

prover that is competitive with the validity checker. This is preliminary, encouraging evidence

that the approach of [1], in addition to being theoretically elegant, is also applicable in practice.

2 A deduction-based approach and the E prover

The termination results of [1] require that the literals in S be flat. This means that the sum of the

depths of the sides of an equation, or disequation, has depth at most 1, or at most 0, respectively

(assuming constants and variables have depth 0). Literals that are not flat can be flattened by
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introducing new constant symbols:

Example 1 Assume the function symbols store:array × index × element −→ array and

select:array × index −→ element denote the operations of storing and retrieving a value at

a position in an array, respectively (e.g., [11]). The ground literals in S = {store(s, a, v) =

store(s1, a1, v1); select(s, a) = v; select(s1, a1) = v1; a = a1; v 6= v1} can be flattened by

introducing new constants c1, c2, c3, c4, yielding S′ = {store(s, a, v) = c1; store(s1, a1, v1) =

c2; select(s, a) = c3; select(s1, a1) = c4; c1 = c2; c3 = v; c4 = v1; a = a1; v 6= v1}. This

trasformation preserves satisfiability: T ∪ S is satisfiable if and only if T ∪ S′ is, for arbitrary T .

Flattening can be done in different ways: we call it strict, if all occurrences of a subterm

are replaced by the same constant, and non-strict, if each subterm occurrence is replaced by a

new constant. Non-strict flattening yields an under-constrained problem, whose unsatisfiability

obviously implies unsatisfiability of the strictly flattened version. Strict flattening minimizes the

number of new constants introduced, hence the number of clauses, “sharing” subterms as much

as possible. A non-strictly flattened version has less sharing of subterms and more clauses. After

this pre-processing, T ∪ S can be given to any fair theorem-proving strategy with the following

inference system (e.g., [1]): ordered superposition/paramodulation, reflection, and (ordered) equal-

ity factoring, as expansion inference rules, and subsumption, simplification and deletion (of trivial

equations), as contraction inference rules.

Like most ordering-based provers, E implements search plans based on the given-clause loop

[9]. The prover works with two lists of clauses, say To-be-selected and Already-selected: at every

iteration, it extracts a clause, the given clause, from To-be-selected, moves it to Already-selected,

performs all expansion inferences between the given clause and clauses in Already-selected, and

appends the normal forms of all new clauses thus generated to To-be-selected. Practical ordering-

based strategies require that contraction be applied eagerly, to avoid generating clauses from

clauses that can be deleted by contraction. Variants of the given-clause loop differ in the imple-

mentation of eager contraction: while the Otter version aims at keeping the union of To-be-selected

and Already-selected inter-reduced, E implements a version that keeps only Already-selected inter-

reduced, on the ground that all parents of expansion inferences are in Already-selected, with the

downside that clauses in To-be-selected are not applied as simplifiers.

The features of the search plans in E that were most relevant to our experiments are clause

selection and term ordering, and literal selection to a lesser extent. For clause selection, given a

heuristic evaluation function f , the given-clause loop implements a best-first search, by selecting

at each iteration a clause C such that f(C) is minimum. E uses pairs of functions (f1, f2), where

f1 is the clause priority function and f2 the heuristic weight function, to pick a clause of smallest

weight among those of highest priority. Ties are broken by selecting the oldest clause. Every pair

(f1, f2) defines a priority queue: E allows the user to activate and weight any number of them,

resulting in a weighted round robin scheme.

Considering that our problems have the form T ∪S, one may think of a set-of-support strategy,

with T as consistent set and S as set of support. However, E does not emphasize supported

strategies, because using a set of support is complete for resolution, but not for (ordered) resolution

and paramodulation, unless T is saturated. If T is saturated, by definition, all inferences from T
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are redundant, and therefore using its complement as set of support does not add focus to the

search: e.g., T may generate very few clauses that are subsumed right away. This is the case for

the first presentation considered in our experiments (named T1 and introduced in Section 3): its

two axioms generate only one trivial clause. The second presentation we used (named T2 and

also introduced in Section 3), is not saturated, so that one could consider using T2 as consistent

set and S as set of support, since incomplete strategies are often used in experiments. However,

E, unlike Otter, does not let the experimenter choose the input set of support: with its clause

priority function SimulateSOS, which prefers supported clauses, the set of support is initialized

by the prover to contain the input negative clauses. Nevertheless, we chose to use it.

Among weight functions, we tried both Clauseweight and Refinedweight. The former, e.g.,

Clauseweight(x,y,z), is the number of symbols in the clause, with weights x for non-variable

symbols and y for variable symbols, and the resulting weight of each positive literal multiplied

by z. Refinedweight(x,y,z,w,t) is similar, but aims at taking the term ordering into account,

by multiplying the resulting weight of each maximal term and maximal (or selected) literal by w

and t, respectively. The term ordering is the ordering on terms and literals used for well-founded

rewriting and to restrict paramodulation/superposition. E implements Knuth-Bendix ordering

(KBO), and lexicographic path ordering (LPO) (e.g., [6]), and we experimented with both. These

orderings require a precedence on function symbols that can be given by the user, built by the

prover, or a combination of the two. KBO also requires to weight the symbols: by default, E

assigns all symbols weight 1, except the first non-constant maximal symbol which gets weight 0.

The literal selection functions select literals in clauses to restrict ordered paramodulation further.

We tried a few and settled for SelectComplex: it selects the first literal in the form x 6= y; if the

clause has none, it picks the smallest ground negative literal; if the clause has none, it picks an

arbitrary negative literal among those with the largest difference in number of symbols between

left and right side. In automatic mode, E determines automatically clause evaluation function,

term ordering and literal selection function for the given input.

3 Synthetic benchmarks in the theory of arrays

The presentation of the theory of arrays with extensionality is given by the following axioms:

∀A, I,E. select(store(A, I,E), I) = E (1)

∀A, I, J,E. (I 6= J =⇒ select(store(A, I,E), J) = select(A, J)) (2)

∀A,B. (∀I.select(A, I) = select(B, I) =⇒ A = B) (3)

where A and B are variables of sort array, I and J are variables of sort index, and E is a

variable of sort element. The clausal forms of axioms (1) and (2) are given in input to the prover

together with the ground literals of the specific problem. Axiom (3), the extensionality axiom, is

a universal-existential formula of sorted first-order logic with equality, which is not given to the

prover, but handled by pre-processing the input set of ground literals [1]. This pre-processing step

consists of replacing every disequality of the form t 6= t′, where t and t′ are terms of sort array,

by the disequality select(t, sk(t, t′)) 6= select(t′, sk(t, t′)), where sk is a skolem function of type

array× array −→ index. Indeed, this is the result of applying a resolution step to t 6= t′ and
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the clausal form of axiom (3), select(A, sk(A,B)) 6= select(B, sk(A,B))∨A = B. Unsatisfiability

in the theory is clearly preserved. Intuitively, sk(t, t′) is an index where the arrays t and t′ differ.

An alternative axiomatization of the theory of arrays with extensionality (e.g., [11]), leaves

axioms (1) and (2) unchanged, and replaces (3) by:

∀A, I. store(A, I, select(A, I)) = A (4)

∀A, I,E, F. store(store(A, I,E), I, F ) = store(A, I, F ) (5)

∀A, I, J,E. (I 6= J =⇒ store(store(A, I,E), J, F ) = store(store(A, J, F ), I, E)) (6)

where A is a variable of sort array, I and J are variables of sort index, and E and F are variables

of sort element. We shall refer to the first axiomatization as T1 and to the second one as T2. An

axiomatization for finite maps similar to T2 was given in [5] together with a model built in HOL:

it includes axioms (1), (2), (5), (6), plus an induction principle that allows one to derive (3) and

(4) as theorems. One can easily prove by hand that T1 entails T2, so that if T2∪S is unsatisfiable,

T1 ∪ S is unsatisfiable also. T2 was not used in [1] and there is no termination result for this

presentation. Not surprisingly, saturation of T2, that we tried on the side of our experiments

with E, did not terminate. Thus, when working with T2, the theorem-proving strategy acts as a

semi-decision procedure, taking in input the clausal form of T2 ∪ S.

We present two sets of synthetic benchmarks for this theory. For the first one, the idea

is to express the “commutativity” of storing elements at distinct places in an array a. Let

{k1, . . . , kN} be N indices and CN
2 denote the set of 2-combinations over {1, . . . , N}. To say

that they are distinct, we write
∧

(p,q)∈CN
2
kp 6= kq: e.g., for N = 3, k1 6= k2 ∧ k1 6= k3 ∧ k2 6=

k3. Then, if i1, ..., iN and j1, ..., jN are two distinct permutations of 1, . . . , N , the equation

store(. . . (store(a, ki1 , ei1), . . . kiN , eiN ) . . .) = store(. . . (store(a, kj1 , ej1), . . . kjN , ejN ) . . .) captures

the desired property. For example, for N = 3, and permutations (1, 2, 3) and (2, 1, 3), we

get store(store(store(a, k1, e1), k2, e2), k3, e3) = store(store(store(a, k2, e2), k1, e1), k3, e3). Alto-

gether we have the following schema:

(
∧

(p,q)∈CN
2
kp 6= kq)⇒

store(. . . (store(a, ki1 , ei1), . . . kiN , eiN ) . . .) = store(. . . (store(a, kj1 , ej1), . . . kjN , ejN ) . . .).

Each choice of permutations generates a different instance of the schema, and since there are N !

permutations of {k1, . . . , kN}, the number of instances is the number of 2-combinations of N !

permutations, hence
(N !
2

)
or (N !(N !− 1))/2. In our experiments, for each value of N , we sampled

at most 10 permutations, hence 45 instances, in order to reduce the dependence of the results on

the structure of the formula. We use storecomm(N) to denote the generated instances for size N

and the problem of checking their validity, or the unsatisfiability of their negation.

For the second group, the intuition is that swapping pairs of elements in an array a in two

different orders yields the same array. The equations can be defined recursively. In the base case,

p = 0, k = 2p = 0, and for N = k + 2 = 2 elements, the equation is L2 = R2, where

L2 = store(store(a, i1, select(a, i0)), i0, select(a, i1))

R2 = store(store(a, i0, select(a, i1)), i1, select(a, i0))
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assuming L0 = R0 = a. In the recursive case, for any p > 0, k = 2p, the number of elements

swapped is N = k + 2, and the equation is Lk+2 = Rk+2, where

Lk+2 = store(store(Lk, ik+1, select(Lk, ik)), ik, select(Lk, ik+1))

Rk+2 = store(store(Rk, ik, select(Rk, ik+1)), ik+1, select(Rk, ik)).

For example, for N = 4 (k = 2), we get L4 = R4 with

L4 = store(store(L2, i3, select(L2, i2)), i2, select(L2, i3))

R4 = store(store(R2, i2, select(R2, i3)), i3, select(R2, i2)).

For every N we get different instances by choosing different permutations of the operations, e.g.,

for N = 4, we can also generate L′4 = R′4, where L′4 = L4, and

R′4 = store(store(R2, i3, select(R2, i2)), i2, select(R2, i3)).

The above recursive definition only generates equations where all the pairs are exchanged. We also

consider instances where only some of the pairs are exchanged. Thus, for N elements, there are N !

permutations, and N !(2N/2− 1) instances, where 2N/2− 1 is obtained from Σ
N/2
i=1

(N/2
i

)
= 2N/2− 1.

Indeed,
(N/2

i

)
is the number of i-combinations over the set of N/2 pairs, or the number of ways

of picking i pairs (for exchanging them) out of N/2. This expression counts each equation twice

(e.g., L = R and R = L), so that the number of distinct instances is 1/2(N !(2N/2 − 1)). In our

experiments, for each value of N , we sampled at most 16 permutations and 20 instances. We use

swap(N) to denote both the set of generated instances and the corresponding problem.

4 The experiments with E and CVC

We ran E (version 0.62 “Mullootar”) and CVC on a dual AMD Athlon 1.2GHz machine, with

512MB of RAM, running Linux 2.4.7. We used both CVC/GRASP and CVC/Chaff, because they

are two different versions of CVC, the latter released later. The SAT solver should not play a role

with the theory of arrays. For all experiments, we gave precedence select � store � sk, completed

by E by making all constant symbols smaller than the function symbols. As an exercise, we tried

eight problems in the theory of arrays from the SVC distribution (SVC was CVC’s predecessor:

http://sprout.Stanford.EDU/SVC/). E in automatic mode solved each problem in 0.01 sec or

less, with or without flattening, and CVC did each problem in approximately 0.04 sec.

We wrote a Prolog program that, given N , generates the instances of storecomm(N) and

swap(N), in either E-LOP syntax, the Prolog-like syntax of E, or CVC syntax; it applies flatten-

ing for the experiments with E, and pre-processes the generated equations with respect to exten-

sionality, for the experiments with E and T1. Different instances of the same problem may have

different numbers of distinct subterms: since the latter determines the number of new constants

introduced by flattening, and each new constant is defined by an equation, different instances

yield sets of equations of different size. The reported performance of a system on storecomm(N),

or swap(N), is the average performance over all generated instances for size N .

We start with storecomm(N), with presentation T1 and strict flattening for the input to E. In

Figure 1, E-Auto refers to E in automatic mode, while E-SOS refers to the plan (SimulateSOS,Re-

finedweight(2,1,2,1,1)), with selection function SelectComplex and ordering LPO, which was
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among the best we observed. The curve for E-SOS is just a bit above those for CVC/GRASP

and CVC/Chaff up to N = 110, then crosses them, and stays clearly below them for N > 110.

The curve for E-Auto remains above the others, and is very smooth, which appears a welcome

sign of regularity, considering how theorem provers have been often considered very sensitive to

even minor input variations. Altogether, the theorem prover fared very well.
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Figure 1: Behavior of E, with presentation T1, and CVC on storecomm(N), for N ranging from 2 to 150.

For swap(N), we report the data in Table 1, because N ranges only from 2 to 10, since both E,

with presentation T1, and CVC, with either GRASP or Chaff, ran out of memory on any instance

of swap(12). We tried both strict and non-strict flattening, and E did best with the latter and a

slight modification of the above search plan: (SimulateSOS,Refinedweight(3,2,3,2,1)) with

SelectComplex and KBO. With the exception of swap(2), CVC performed better than E by one

order of magnitude. The outcome is strikingly different, however, if we give T2 in input to E,

while using strict flattening. Figure 2 compares the performance of E on this input with that of

CVC-Chaff from Table 1. Both E-Auto and E-SOS terminate successfully also for N ≥ 12: the

curve for E-SOS (with LPO and weights as for storecomm(N)) grows extremely slowly, while

that for E-Auto is much higher but still smooth for the most part.

When we submitted in error redundant versions of storecomm(N), E surpassed CVC sooner

(in Figure 1, the E-SOS curve was below the CVC curves for N ≥ 60 instead of N ≥ 110).

This suggests that E may be better than CVC in deleting redundant data. The algorithm of

[19], in essence, pre-processes the input problem with respect to the axioms in T1, eliminates

the occurrences of store by recurring to partial equations, and computes a congruence closure.

Thus, there might not be a provision to eliminate redundant equations, as theorem provers do

by contraction. For E, the presentation T2 may represent more information than T1 with pre-

processing with respect to extensionality, so that the prover behaves better on swap(N), even if
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N E-Auto E-SOS CVC-GRASP CVC-Chaff

2 0.010 0.010 0.043 0.057

4 0.144 0.136 0.059 0.060

6 2.205 2.110 0.189 0.187

8 63.630 62.230 4.091 2.400

10 2069.700 2039.700 1297.000 95.780

Table 1: Behavior of E with presentation T1 and CVC on swap(N).
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Figure 2: Behavior of E, with presentation T2, and CVC on swap(N), for N ranging from 2 to 24.

T2 is not saturated and the prover is acting as a semi-decision procedure. We regard this behavior

as evidence of the flexibility of an approach based on general-purpose deduction. Both E and

CVC come with proof checkers. The E distribution features two tools, e2pcl, to extract a proof

object from E’s output, and checkproof, to check it by using another prover. While we did not

use flea, the proof checker for CVC [20], we tried e2pcl, checkproof and Otter on sample outputs

of E, and no error was detected.

5 Discussion

We tested the usage of theorem-proving strategies as decision procedures, on synthetic benchmarks

in the theory of arrays with extensionality. The results indicate that this investigation should

continue, and we envision several directions, in experimentation, implementation, and theory.

For experimentation, we intend to work with more synthetic benchmarks (e.g., in the theory of
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extensional finite sets, also covered in [1]), real-world problems (e.g., completing those in [4],

already successfully started in [1]), problems involving other theories (e.g., for other data-types

[13]) and combinations of theories. We also plan to conduct more experiments to understand the

role of flattening better. Flattening aids by inducing a fully shared representation of terms as

dags, which has been traditionally considered an advantage of congruence closure, and by making

terms shallow, while increasing the number of equations. The first factor might not play such a

key role for E, however, since E represents terms internally as perfectly shared terms regardless

of the input [15]. The second factor might, since shallow terms simplify matching and all term

indexing operations. The impact of the additional equations should be negligible, since provers are

designed to handle millions, and a prover that inter-reduces its input uses only then an equation

reducing a complex term to a constant. Surprisingly, and unlike Otter, E does not inter-reduce

its input before starting the search.

It would be interesting to try other provers, especially those that implement the Otter version

of the given-clause loop, to see whether a broader application of eager contraction helps in these

problems. In our experiments, the difference between automatic mode and user-selected search

plan had a visible impact on asymptotic behavior. This, together with the need of reducing

the time spent testing search plans, invites more work on the automatic mode of provers, and

more attention to search plan design. We felt at times that architecture and presentation of

contemporary provers overemphasize blind saturation at the expense of search control.

Directions for theoretical research include termination and complexity results for more decid-

able theories. Satisfiability of a conjunction of literals in the theory of arrays with extensionality

is NP-complete [19]. The algorithm of [19] has worst-case time complexity O(2n logn), where n is

the size of the set of literals. For the deduction-based approach, the upper bound on the num-

ber of clauses that can be generated from T ∪ S, where T contains the first two axioms of the

theory and S is a set of flat equational literals, pre-processed with respect to extensionality, is

O(2n
2
) [1]. However, this analysis refers to saturation, and does not take any search plan into

account. The complexity of theorem-proving strategies, defined as the combination of inference

system and search plan, is still largely unexplored, primarily because the underlying problem is

only semi-decidable in the general first-order case. Results such as those of [1] exclude infinite

derivations, and open the way to studying the complexity of concrete theorem-proving strategies

for specific decidable theories. For theories where termination of saturation may not be proved,

one may investigate obtaining a decision procedure by integrating theorem proving and model

building. Indeed, the perspective of system integration encompasses all these directions: since one

of the motivations for studying decision procedures is to integrate them into proof assistants, using

theorem-proving strategies as decision procedures goes in the direction of fostering the integration

of proof assistants and theorem provers.
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