
SBR3: A Refutational Prover for Equational Theorems

Siva Anantharaman, Nirina Andrianarivelo
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1 Introduction

SBR3 is the latest version of a long line of term rewriting based theorem provers aimed
at proving theorems in equational logic. The first of them, Reve, was written by P.
Lescanne ([Le-83]). It evolved into the Reve2.n family, written and maintained mostly by
J. Guttag’s group at MIT [FG-84], and Reve3 for E-term rewriting at Nancy ([KK-85]).
The Reve family is mostly concerned with completing a set of equations into a canonical
system. Although well-worthy in its own right, such systems are not ideal for the purpose
of proving a specific equational theorem.

In 1986, Mzali and Hsiang started to develop a new system, SbReve1 [HM-88], based on
Reve2.4. The goal of SbReve1 was to modify the completion process in order to efficiently
prove a single theorem of an equational theory rather than generating a canonical system.
SbReve1 was overhauled into SbReve2 by Anantharaman at the Université d’Orléans
([AHM-89]). Much more sophisticated search mechanisms are further incorporated into
its current version, SBR3.

In this paper we describe the functionalities and features of SBR3. We also present
some theorems which SBR3 was able to prove. Some of these experimental results are
beyond the capability of other existing general purpose equational theorem provers.

2 The Functionalities of SBR3

The entire SbReve family provers employ the overall methodology of simplification-first.
Critical pairs are never generated as long as there is still room for simplification. Even if
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the superposition procedure is invoked, critical pairs are generated one at a time, and the
simplification process is re-started as soon as a divergent critical pair is generated. This
is the most significant design difference between the SbReve and Reve families.

The major difference between SBR3 and its predecessors is the incorporation of much
more sophisticated search strategies. In the rest of this section, we describe SBR3’s
features in two parts: its inference mechanisms, and its search mechanisms.

2.1 The Inference Mechanisms of SBR3

SBR3 takes as inputs an equational theory E and an equation s = t and tries to prove
that s = t is a theorem of E. If no target equation is given, it will perform as Knuth-
Bendix completion and try to generate a canonical system for E. It proves a theorem
the refutational way. That is, it replaces all variables in s = t by new Skolem constants
and tries to find a contradiction to E ∪ {s̃ 6= t̃}) where s̃ and t̃ are the skolemization of s

and t. Then the prover will try to reduce the inequality to an identity which yields the
contradiction.

In addition to the theory and the equation, the user should also provide an ordering for
ordering the terms. Usually the ordering should be a complete simplification ordering (a
simplification ordering which is total on ground terms). In SBR3 the user has the choice
of assigning a precedence among the operators in the theory and choose an ordering from
a list implemented in the system. However, SBR3 will not check the totality for the
user. The lack of totality on ground terms may actually be turned into a powerful search
strategy, as we shall see later.

The backbone of SBR3 is the AC-UKB procedure – the AC version of the Unfailing
Knuth-Bendix procedure ([AM-88]). Intuitively UKB allows an un-orientable equation
to be used for reduction and superposition without getting into infinite loops. For its
theory, see [HR-87] and [BDP-87]. AC-UKB incorporates AC-unification and completion
([PS-81]) into UKB and is described in detail in [AM-88].

Another feature is the inference rules for the cancellation axioms. An operator ∗ is left
cancellable if s ∗ l = s ∗ r implies l = r. If an operator is declared (left, right, or identity)
cancellable, bigger equations can be replaced by smaller equations through complete sets of
inference rules for cancellation [HRS-87]. Such inference rules are implemented in SBR3.

Other automatic inference mechanisms include functional subsumption and simplifica-
tion, as well as user-defined cancellation laws for inequalities.

2.2 The Search Mechanisms of SBR3

Although the above inference mechanisms are sufficient for proving relatively simple the-
orems, the search space quickly grows to an unmanageable size for moderately difficult
problems. The simplification-first search strategy coupled with cancellation controls the
growth of the number and size of rules to some extent, but more clever means are needed.

The first problem we tackle is one of finding a shorter path to a solution. UKB, being
complete, guarantees the existence of a proof through simplification and superposition
should there be one. It does not, however, guarantee to provide a short proof. Sup-
pose the prover can look at several different inequalities and tries to find a contradiction
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simultaneously1, then conceivably one can find a proof faster. On the other hand, one
should also keep in mind not to inundate the search space with irrelevant inequalities.

SBR3 provides a facility for increasing a reasonable number of inequalities to check for
shorter proofs as follows. When an un-orientable equation is generated, we superimpose
it into an existing inequality (say A) to create a new inequality if possible. Then the new
inequality is simplified using the rest of the equations and rules into B. The inequality B

is kept, without deleting A, if A 6≤ B according to the ordering. We term this method the
inequality ordered-saturation strategy. This strategy is indispensable for proving some of
the more difficult problems which we experimented ([AH-90]).

Another challenge is to eliminate redundant critical pairs. This problem is especially
serious in AC-rewriting due to the potentially astronomical number of AC-unifiers. In the
term rewriting literature there are a handful of critical pair criteria, whose purpose is to
eliminate unnecessary critical pairs. However, all of them are designed not to destroy the
confluence property of any given two terms. In refutational theorem proving, on the other
hand, we are only interested in the confluence of the two terms of the targeted theorem.
Therefore a critical pair can be deleted or suspended as long as it does not destroy the
confluence of the intended terms.

Taking advantage of this property, we employed a notion of measure in SBR3. A mea-
sure is defined syntactically on the structure of terms such as the number of occurrences
of a specific operator. The measure estimates the likelihood of whether a critical pair may
contribute to an eventual proof of the intended theorem. Critical pairs are ordered accord-
ing to the measure which decides the next equation to be chosen to perform superposition.
Certain measures even allow us to delete critical pairs if they are deemed irrelevant for
producing a proof. This search strategy is called filtration-sorted strategy and its detail
can be found in [AA-90].

Three different measures are implemented in SBR3.

We remark that the filtration-sorted strategy may throw away critical pairs which
are useful for ensuring the global confluence of the system. Therefore this search strategy,
once invoked, no longer guarantees the confluence of the resulting system even if the prover
terminates and returns an alleged “canonical” set of rules.

3 Examples

As is clear now, SBR3 is not oriented towards a special domain of applications. So its
efficiency is surely not optimal for every problem. All the same we give below a few
examples coming from various fields, executed on a SUN 3-50, at Orléans. More detail
can be found in [AH-90] and [AB-90].

The Fifth Lukasiewicz Conjecture

Lukasiewicz’s many-valued logic is defined using the following four axioms:

true ⇒ x == x

(x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) == true

(x ⇒ y) ⇒ y == (y ⇒ x) ⇒ x

1The basic UKB only looks at one.
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(not(x) ⇒ not(y)) ⇒ (y ⇒ x) == true.

The theorem x ⇒ y ∨ y ⇒ x == true is known as the fifth Lukasiewicz conjecture [FRT-
84], [TL-56]. The conjecture was given by Lukasiewicz in the 20’s, as reported in [TL-56],
and proved many years later [RR-58], [MA-58].

The proof by SBR3 is done by first deriving a few lemmas from the axioms, one of
which leads to the definition of an additional operator or. Then SBR3 proves that or is
AC. Finally, the conjecture is proved in about 2 minutes. For the final session, the inputs
are

true ⇒ x == x

x ⇒ x == true

x ⇒ true == true

(x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) == true

not(not(x)) == x

(x ⇒ y) ⇒ y == (y ⇒ x) ⇒ x

or(not(x), y) == x ⇒ y

x ∨ y == (x ⇒ y) ⇒ y

Declared AC-operator: or.

Theorem proved: x ⇒ y ∨ y ⇒ x == true, (24 min).

A detailed description of the experiments in Lukasiewicz logic can be found in [AB-90].

Moufang identities in alternative rings.

Alternative rings are rings with the associativity of ∗ replaced by two alternative ax-
ioms. The Moufang identities are a set of equational theorems of alternative rings. The
Moufang identities as a challenge to theorem provers was first suggested in [Ste-87], al-
though no automated proof was given. They were later proved automatically using a
special-purpose theorem prover designed for ring theory ([Wa-87]). SBR3 is the first
syntactic theorem prover which proved them automatically.

Alternative rings are defined by

0 + x == x

0 ∗ x == 0

x ∗ 0 == 0

g(x) + x == 0

g(x + y) == g(x) + g(y)

g(g(x)) == x

x ∗ (y + z) == (x ∗ y) + (x ∗ z)

(x + y) ∗ z == (x ∗ z) + (y ∗ z)

(x ∗ y) ∗ y == x ∗ (y ∗ y)

(x ∗ x) ∗ y == x ∗ (x ∗ y)

g(x) ∗ y == g(x ∗ y)
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x ∗ g(y) == g(x ∗ y)

g(0) == 0

a(x, y, z) == ((x ∗ y) ∗ z) + g(x ∗ (y ∗ z)

where a is an auxiliary operator.

SBR3 proved the following properties (the middle alternative law and two skew-
symmetries of a) within 20 seconds:

(x ∗ y) ∗ x == x ∗ (y ∗ x)

a(y, x, z) == g(a(x, y, z))

a(z, y, x) == g(a(x, y, z))

The Moufang identities are defined as:

(((x ∗ y) ∗ x) ∗ z) = (x ∗ (y ∗ (x ∗ z))) (left Moufang)

(((z ∗ x) ∗ y) ∗ x) = (z ∗ (x ∗ (y ∗ x))) (right Moufang)

((x ∗ y) ∗ (z ∗ x)) = ((x ∗ (y ∗ z)) ∗ x) (middle Moufang)

and they are proved in 49, 55, and 41 minutes respectively.

By adding the left and right Moufang into the input set, we are able to give a direct
proof of

a(x ∗ x, y, z) == ((a(x, y, z) ∗ x) + (x ∗ a(x, y, z)))

in 13 minutes. A full account of our experiments in alternative rings is given in [AH-90],
although the time reported there was much more than what we are reporting here. The
time was significantly improved because of the better search strategies incorporated in
SBR3 later.
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