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The evaluation of theorem-proving strategies has been done traditionally in
an empirical manner: a strategy is implemented in a theorem prover, the prover
is applied to a number of theorems, and the running times are reported and
compared with those of other systems. In recent years, a growing effort has been
devoted to make the evaluation of theorem provers more systematic. The need
for a standard collection of theorem-proving problems (e.g., the TPTP library
[9]) and a standard set of empirical measures has been recognized (e.g., [8]).

While benchmarking of theorem provers is necessary, and the progress in the
methodology of empirical evaluation is important for the field, the problem of
strategy evaluation remains open. A theorem prover is made of many compo-
nents in addition to the strategy, including data structures, indexing techniques
and service algorithms such as those for unification or term replacement. The
performance of a theorem prover depends on all these components and the over-
all engineering of the system. It is very difficult to establish quantitatively how
different features contribute to the observed performance. Therefore, empirical
evaluation is evaluation of theorem-proving systems, not theorem-proving strate-
gies. The goal of evaluating strategies independent of implementation requires
the development of a theory of “strategy analysis,” comparable to algorithm anal-
ysis, and with potentially similar beneficial consequences, not only for theorem
proving, but also for logic programming and all applications of deduction.

The idea of “strategy analysis” is new. Most of the work on search in ar-
tificial intelligence concentrates on the design of heuristics (e.g., [5]). Most of
the research in complexity related to theorem proving studies the complexity of
propositional proofs as part of the quest for NP 6= co−NP (e.g., see [10] for a
survey), or works with complexity measures based on the Herbrand theorem to
determine lower bounds for sets of clauses, not upper bounds for strategies (e.g.,
[2, 4, 7]). In resolution theorem proving, the classical source for the modelling
of search is [3], which was not concerned with evaluating the complexity of the
strategies.

The primary objective of strategy analysis is to study the complexity of
searching for a proof. An approach to this problem was proposed in [6]. It applies
classical techniques from algorithm analysis to derive worst-case upper bounds
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on the total size of the search space of various theorem-proving strategies in
propositional Horn logic. This approach assumes that the search space is finite,
so that presently it is not known how it could be extended to first-order logic.

An approach that aims at infinite search spaces was presented in [1]. The
first component of a methodology for strategy analysis is a model of the search

space and search process (i.e., the application of the search plan to the search
space). The second step is to define measures of complexity in such a model, so
that strategies can be evaluated and compared in terms of such measures. The
third step is to carry out the analysis. In [1], the model of the search space is a
marked search graph. The search graph represents all possible inferences. Unlike
expansion inferences, however, contraction inferences, such as simplification or
subsumption, cannot be represented by a static graph. Expansion inferences
visit the graph. Contraction inferences visit and modify the graph by deletions,
which cannot be represented prior to the search. Therefore, the search graph
is enriched with a marking. The marking is used to represent dynamically the
search process, including the selections by the search plan, the expansion steps
and the contraction steps.

This model of the search space supports measures of complexity of search
for infinite search spaces. The classical notion of complexity is complexity of a
computation which is guaranteed to halt, and therefore deals with finite objects.
For derivations that may not halt, the approach of [1] is to observe that while a
strategy operates with a finite amount of data, this data represents a portion of
the infinite space that the strategy is searching. In order to capture the complex-
ity of the search, the analysis needs to involve both the present and the future

of the derivation. In terms of the search graph, the present is the part explored
so far, and the future is the unexplored part. The analysis needs to study how
the inferences selected by the strategy affect both.

Complexity measures for this purpose are obtained by defining notions of
ancestor-graph and dynamic distance, which replace the conventional notions
of path and path-length. Unlike the latter, the distance is dynamic, because it
depends on the actions of the strategy. For instance, if present clauses are deleted
by contraction, clauses in the future may become unreachable. Given this notion
of distance, it is possible to define the bounded search space with bound j as
the space of clauses reachable within distance j. The infinite search space is
viewed as an infinite succession (for all j) of bounded search spaces. Since the
bounded search spaces are finite, they can be compared. Furthermore, they are
characterized as multisets of clauses, so that it is possible to compare them with
the multiset extension of a well-founded ordering on clauses. Thus, the notion
of bounded search space allows us to handle infinite search spaces finitely.

In [1] this framework is applied to compare two generic strategies with the
same expansion rules, the same search plan, but different contraction rules. It
is shown that contraction reduces the bounded search spaces, and therefore the
search complexity. Then it is proved that the strategy with more contraction
induces a higher reduction of search complexity. This is the first analysis that
translates the empirical observations of the efficacy of contraction in theorem



proving into a formal result of reduction of complexity.
At present, this type of analysis is not asymptotic. Possible directions for

future research include exploring approaches to make the analysis asymptotic,
comparing strategies with different search plans, extending the framework from
sequential to parallel search, and from forward-reasoning to backward-reasoning.
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