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Abstract

Reducing redundancy in search has been a major concern for automated deduction. Sub-

goal-reduction strategies, such as those based on model elimination and implemented in Pro-

log technology theorem provers, prevent redundant search by using lemmaizing and caching,

whereas contraction-based strategies prevent redundant search by using contraction rules, such

as subsumption. In this work we show that lemmaizing and contraction can coexist in the

framework of semantic resolution. On the lemmaizing side, we define two meta-level inference

rules for lemmaizing in semantic resolution, one producing unit lemmas and one producing

non-unit lemmas, and we prove their soundness. Rules for lemmaizing are meta-rules because

they use global knowledge about the derivation, e.g. ancestry relations, in order to derive lem-

mas. Our meta-rules for lemmaizing generalize to semantic resolution the rules for lemmaizing

in model elimination. On the contraction side, we give contraction rules for semantic strate-

gies, and we define a purity deletion rule for first-order clauses that preserves completeness.

While lemmaizing generalizes success caching of model elimination, purity deletion echoes fai-

lure caching. Thus, our approach integrates features of backward and forward reasoning. We

also discuss the relevance of our work to logic programming.

1 Introduction

Some of the most successful theorem-proving programs existing today implement either contrac-

tion-based strategies (e.g., [2, 16, 23]) or subgoal-reduction strategies (e.g., [4, 19, 31]). These two

classes of strategies represent two different approaches to refutational theorem proving.

Contraction-based strategies (e.g., [6, 13, 15, 28]) are forward-reasoning strategies, that prove

the target theorem by deriving consequences from the axioms. (Most forward-reasoning resolution

strategies do not differentiate between the target theorem (negated) and the axioms. They treat

them as a single set of clauses and try to derive a contradiction from it.) Because generated

clauses are kept, the strategy works on a database of clauses. The primary strength of the
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contraction strategies, and also the reason for their name, is that they apply eagerly contraction

inference rules, such as simplification and subsumption, to delete clauses that are not needed to

prove the target theorem. We call these deleted clauses redundant. Contraction inference rules

are defined based on well-founded orderings on terms and literals, so that by applying such rules

the strategy keeps its database mimimal with respect to those orderings [8, 28]. By effectively

reducing redundancy, contraction-based strategies keep the size of the database in check and have

been used successfully to prove many problems beyond the reach of other types of strategies (e.g.,

[1, 2, 17, 24]). The orderings are also used to restrict the applicability of expansion inference rules,

as in ordered resolution and ordered paramodulation. Because the strategies work on a database

of clauses, they may feature a variety of search plans to control the selection of clauses for the

inferences. Finally, these strategies employ indexing techniques [11, 22, 32] that allow them to

execute very rapidly operations such as, given a term, retrieve all its instances, anti-instances

or unifying terms in the database. The fast execution of these operations is fundamental to the

practical success of these strategies, because they need to test the applicability of inference rules

on large numbers of clauses.

The subgoal-reduction strategies are linear, backward-reasoning strategies. In such a strategy

an inference step consists in reducing the current goal to a set of subgoals, starting from the input

goal. Typical examples are the Prolog technology theorem provers [31], and model elimination

[20]. The latter is also a fundamental methodology on which many such strategies are based. A

weakness of a pure subgoal-reduction strategy is that by concentrating only on the current goal it

has no memory of previously solved goals. Therefore, if the same subgoals, or instances thereof,

are generated at different stages, the strategy solves them independently, repeating the same

steps. More sophisticated subgoal-reduction strategies avoid such repetitions by using techniques

of lemmaizing, that is, saving solved goals as lemmas. Lemmaizing for model elimination was

presented already in [20]. However, its first implementation in [14] was less efficient than expected

[4], because unrestricted lemmaizing generated more lemmas than the procedure could handle

efficiently. The C-reduction rule of [29] was essentially a sort of lemmaizing, but less powerful and

easier to control. Due to these early difficulties, lemmaizing in subgoal-reduction strategies did

not receive much attention for some years. More recently, lemmaizing and caching [25] in Horn

logic were reintroduced successfully in the framework of Prolog technology theorem proving [5, 19].

Caching comprises success caching and failure caching. The former is conceptually very close to

lemmaizing: solutions are stored in a cache for fast retrieval, rather than being added as lemmas.

The latter adds the capability of using the information that a goal failed before to avoid trying to

solve it again. Related techniques, called memoing or tabling, have been explored independently

in logic programming [36]. The experimental work has been followed by the theoretical analysis

of [26], which shows that lemmaizing and caching reduce from exponential to linear the amount

of duplication in the search spaces of model elimination for problems in propositional Horn logic.

Our intent in this paper is to show that lemmaizing and caching are meta-level inferences

that may apply to different types of strategies, including strategies that are not based on subgoal

reduction. For this purpose, we consider semantic resolution strategies. The reason for this

choice is that, among resolution strategies, semantic strategies are those that provide a general

notion of “goal”, by partitioning the database in a consistent set of “axioms” and a set of support
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of “goals”. We define meta-rules for lemmaizing in semantic-resolution strategies and we give

inference rules that implement them. Lemmaizing in model elimination then becomes a special

case. This generalization of lemmaizing is significant in at least two ways:

1. Semantic strategies require that all their inferences are supported, i.e. have a premise in

the set of support. We observe that lemmaizing consists in generating lemmas from the

complement of the set of support (e.g., from the axioms in model elimination), that is, lem-

mas are unsupported inferences. Indeed, lemmaizing in model elimination can be construed

as adding some forward-reasoning capability to an otherwise purely backward-reasoning

method.

Semantic-resolution strategies may do forward or backward reasoning depending on how the

set of support is defined. If supported inferences are forward inferences, lemmaizing adds

backward reasoning to a forward-reasoning strategy; if supported inferences are backward

inferences, lemmaizing adds forward reasoning to a backward-reasoning strategy. Therefore,

our treatment makes lemmaizing a general technique for combining forward and backward

reasoning in semantic resolution.

2. We point out that lemmaizing is a meta-level rule. A derivation is made of inference steps,

each justified by an inference rule. Lemmaizing derives a lemma based on a fragment of the

current derivation. Therefore, it is an inference at the meta-level with respect to the basic

inferences.

In the second part of the paper, we describe how contraction inference rules can be incorporated

into semantic-resolution strategies. Furthermore, we define a generalized notion of purity deletion,

and show how it provides additional power in reducing redundancy in these strategies. Roughly

speaking, purity deletion is similar to failure caching, although in a forward-reasoning setting. We

continue by formalizing success and failure caching in subgoal-reduction strategies as inference

rules. We follow the description of these techniques given in [5]. This also includes inference

rules for depth-dependent caching in model-elimination strategies with iterative deepening, and a

discussion of caching and contraction in subgoal-reduction strategies.

In summary, one can have a semantic-resolution strategy that features both contraction and

lemmaizing, which are two strengths of contraction-based and subgoal-reduction strategies re-

spectively. Furthermore, contraction-based strategies, unlike subgoal-reduction strategies, are

equipped with tools, such as contraction and indexing, to deal with a database of generated and

kept clauses. Therefore, while lemmaizing in semantic resolution will certainly need to be re-

stricted, contraction-based strategies might be less sensitive than subgoal-reduction strategies to

the risk of generating too many lemmas.

The rest of the paper is organized in the following way. In Section 2 we give a brief summary

of semantic resolution and how it plays a role in terms of forward and backward reasoning meth-

ods. Section 3 contains the theoretical treatment of lemmaizing as meta-level inference rules for

semantic resolution. In Section 4 we define concrete inference rules for lemmaizing in strategies

with set of support. In Section 5 we show how to incorporate contraction rules in semantic strate-

gies with lemmaizing, and we present purity deletion. Section 6 explains the relation of our work
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on lemmaizing with lemmaizing in model elimination. Sections 7 and 8 cover the formalization

of caching and caching with iterative deepening, respectively. A discussion section concludes the

paper. The contents of the first five sections of this paper appeared in preliminary form in [9].

2 Semantic resolution strategies

In this section we recall some background material and terminology on semantic or supported

strategies [10]. In semantic resolution [30], resolution is controlled by an interpretation I. A

given set of clauses S is partitioned into the subset T of all clauses in S that are satisfied by I and

its complement S − T . Resolution is restricted in such a way that the consistent subset T is not

expanded. Only resolution steps with at most one premise from T are allowed: a clause in either

T or S − T , called nucleus, resolves with one or more clauses in S − T , called electrons, until a

resolvent that is false in I, and therefore belongs to S −T , is generated. Semantic resolution may

also assume an ordering on predicate symbols, and then require that the literal resolved upon in

an electron contains the greatest predicate symbol in the electron.

Hyperresolution [27] is semantic resolution where the interpretation I is defined based on sign:

in positive hyperresolution, I contains all the negative literals, T contains the non-positive clauses,

S−T contains the positive clauses, and the electrons are positive clauses (from S−T ) that resolve

with all the negative literals in the nucleus (from T ) to generate a positive hyperresolvent. Dually,

in negative hyperresolution, I contains all the positive literals, T contains the non-negative clauses,

S − T contains the negative clauses, and the electrons are negative clauses (from S − T ) that

resolve with all the positive literals in the nucleus (from T ) to generate a negative hyperresolvent.

Hyperresolution is more restrictive than generic semantic resolution, because resolution steps

where both nucleus and electron are in S − T may not happen (e.g., two negative clauses do not

resolve).

In resolution with set of support [37], a set of support (SOS) is a subset of S such that S−SOS

is consistent. Only resolution steps with at most one premise from S − SOS are allowed and all

generated clauses are added to SOS. To keep the notation uniform, we use T = S − SOS for

the consistent subset and SOS = S − T for its complement in all strategies. Resolution with set

of support fits in the paradigm of semantic resolution, under the interpretation that the clauses

in T are true, the clauses in SOS and all their descendants are false. Positive resolution [27]

and negative resolution are sometimes considered supported strategies where SOS contains the

positive or negative clauses, respectively. However, they are not semantic strategies in the proper

sense, because they do not partition the clauses based on an interpretation, with the provision

that the consistent set is not expanded.

The original idea of set-of-support strategy in [37] was that the axioms of a problem usually

form a consistent set and that a strategy should not expand such a set, but rather work on the

goals. In this interpretation, T contains the axioms, SOS contains the goal clauses (the clauses

obtained from the transformation into clausal form of the negation of the target theorem) and

the effect of working with a set of support is that most of the work done by the strategy is

done on the goals, yielding backward-reasoning strategies. The general definitions of semantic
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resolution and resolution with set of support, however, imply neither backward reasoning nor

forward reasoning. For instance, if the axioms are non-negative clauses and the goals are negative

clauses, the positive strategies are forward-reasoning strategies and the negative strategies are

backward-reasoning strategies compatible with the set-of-support strategy. This is the case in

Horn logic. In general, the partition of S into T and SOS based on the distinction between axioms

and goals may not agree with the partition based on sign (e.g., the goals may not be negative

clauses), so that hyperresolution and the set-of-support strategy are not always compatible.

Linear resolution (see [10] for the many relevant references) can be regarded as a linear re-

finement of resolution with set of support. Given a set of clauses S = T ∪ {C0} with a selected

top clause C0, the strategy builds a linear derivation, where at step i clause Ci+1 is generated

by resolving the center clause Ci with a side clause, either a clause in T (an input clause), or a

clause Cj such that j < i (an ancestor clause). If S is unsatisfiable and T is consistent (C0 is the

negation of the target), there exists a linear refutation of S with C0 as the top clause. The center

clauses form the set of support, and the only needed resolution steps between clauses in SOS are

the resolutions with ancestors. Linear resolution is obviously compatible with the set-of-support

strategy, and because it is linear, it makes the backward-reasoning character more pronounced:

there is a notion of current goal, the most recently generated center clause, and each step consists

in reducing the current goal to a subgoal. We call such linear, backward-reasoning strategies

subgoal-reduction strategies.

Linear resolution, however, requires to keep the ancestors around. Linear input resolution,

where all side clauses are input clauses, is complete for Horn logic, but not for first-order logic.

On the other hand, model elimination [20] enjoys the advantage of being a linear input strategy
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that is complete for first-order logic. Roughly speaking, ancestor-resolution inferences are made

unnecessary by saving the literals resolved upon in the goals as framed literals, and allowing the

latter to resolve away subgoal literals. It follows that each step involves either the current goal

and an input clause (analogous to an input resolution step) or the current goal only. Therefore,

subgoal-reduction strategies based on model elimination usually work on a stack of goals, rather

than on a database of clauses, and at each step focus exclusively on the current goal, on top of

the stack. Since there is no database, orderings, contraction and indexing are not used. The

search plan is depth-first search with backtracking, and iterative deepening (DFID) [18] to ensure

refutational completeness1. Finally, since the axiom set of a problem is static, these strategies

yield fast implementations using the Warren Abstract Machine [35].

3 Generation of lemmas

In this section we present our treatment of lemmaizing. In Sections 3.1 and 3.2 we give meta-rules

for lemma generation in the class of semantic strategies. We assume derivations in the form

(T0;SOS0)`
C
(T1;SOS1)`

C
. . . (Ti;SOSi)`

C
. . . ,

where C is any strategy in the class, all generated resolvents are added to the SOS component,

but the T component is not assumed to be constant, because it may be modified by contraction

or lemmaizing. In Section 4 we give inference rules that implement the meta-rules for lemmaizing

and in Section 5 we treat the compatibility of contraction with semantic strategies.

3.1 Generating unit lemmas

In Horn logic, if T ∪ {¬L} |=
�
, then T |= Lσ for some substitution σ, and Lσ can be treated

as a lemma of T and be added to T . This also holds in first-order logic if
�

is derived from

T ∪ {¬L} by a linear input derivation with input set T and top clause ¬L. Such a linear input

derivation can be produced by a semantic strategy with consistent set T and ¬L in SOS. Then,

generalizing this idea slightly, if the strategy deduces a clause Cσ from ¬L ∨ C in SOS by using

T alone (without using any other clause in SOS), it means that T ∪ {¬L ∨ C} |= Cσ. Then Lσ

can also be added as a lemma to T .

There is a caveat, however. For this argument to be sound, it is necessary for the C in ¬L∨C

not to take any part in the derivation of Cσ from T ∪{¬L∨C}. More precisely, the derivation of

Cσ from T ∪ {¬L ∨ C} does not include any resolution or factoring step with a selected literal2

in C. This is necessary to make sure that the existence of a derivation of Cσ from T ∪ {¬L∨C}

implies the existence of a derivation of Lσ from T . If the derivation from T ∪ {¬L ∨ C} selects

literals in C, then the existence of a derivation of Lσ from T is not ensured, because the steps

1In theorem proving, one is usually interested in a refutation. If the subgoal-reduction tree contains solutions,

DFID is guaranteed to find one and halt. In logic programming, on the other hand, one is interested in all solutions.

DFID will reach all solutions eventually, but may still fail to terminate if the tree is infinite, deepening forever looking

for more solutions.
2A selected literal is a literal resolved upon in a resolution step or unified in a factoring step.
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selecting literals in C may not be reproducible in a derivation from T . The following definitions

will capture this requirement.

Definition 3.1 Let C be a clause and C ′ be a binary resolvent or a factor of C. The relation

A 7→ B holds if A is a literal in C different from the selected literal(s) in generating C ′, B is a

literal in C ′ and B = Aσ, where σ is the most general unifier of the inference generating C ′.

The relation A 7→ B captures the inheritance of literals that are not selected. By using the

transitive closure 7→∗ of 7→, we can represent inheritance of literals through a sequence of steps:

Definition 3.2 Given a resolution derivation S `∗ S′, where S and S ′ are sets of clauses, a clause

C ′ ∈ S′ is a strict descendant of a clause C ∈ S, if for every literal A′ ∈ C ′ there is a literal

A ∈ C, such that A 7→∗ A′.

Definition 3.3 Let S be a set of clauses. Cσ is linearly derived from ¬L∨C by using S if there

is a linear resolution derivation with input set of clauses S, top clause ¬L ∨ C and last center

clause Cσ. We denote such a derivation by ¬L ∨ C |� S Cσ.

If the derivation is a linear input derivation (i.e., all side clauses come from S) and Cσ is a strict

descendant of ¬L∨C, we say that Cσ is strictly linearly derived from ¬L∨C by using S and we

write ¬L ∨ C |�
h
S Cσ.

Coming back to the SOS strategy, given sets SOS and T , ¬L ∨ C |�
h
T Cσ indicates that Cσ is

derived from ¬L∨C and T , and that in the derivation, no literals in C and no clauses in SOS are

involved in any of the inference steps. We have now all the elements to write the first meta-rule

for lemma generation:

Definition 3.4 Unit Lemmaizing: if ¬L ∨ C |�
h
T Cσ, then add lemma Lσ to T.

In order to prove the soundness of Unit Lemmaizing, we generalize Definition 3.3:

Definition 3.5 Let S be a set of clauses. Clause Cσ is linearly derived from ¬L1∨ · · · ∨¬Lk ∨C

by using S, written ¬L1 ∨ · · · ∨ ¬Lk ∨ C |� S Cσ, if there exist substitutions σ1, · · · σk such that

∀i, 1 ≤ i ≤ k, (¬Li ∨ · · · ∨ ¬Lk ∨ C)σi−1 |� S(¬Li+1 ∨ · · · ∨ ¬Lk ∨ C)σi, where σ0 = ε (the empty

substitution) and σk = σ.

The notion of strictly linear derivation is generalized in the same way with |�
h
S at the place of

|� S . Then we prove a more general result:

Lemma 3.1 If ¬L1 ∨ · · · ∨ ¬Lk ∨ C |�
h
T Cσ, then T |= (L1 ∧ · · · ∧ Lk)σ.

Proof: we prove the lemma by induction on the length n of the linear derivation.

Basis: if n = 1, then k = 1 and there is a unit clause L′ ∈ T such that L1σ = L′σ. Then we have

T |= L1σ.
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Induction hypothesis: the lemma holds for length n.

Induction step: for n + 1, let L′ ∨ Q1 ∨ · · · ∨ Qm ∈ T be the side clause used in the first step of

the derivation. Without loss of generality, we assume that the first step resolves upon L ′ and ¬L1

with mgu ρ (i.e., L′ρ = L1ρ). Then the derivation can be refined into:

¬L1 ∨ · · · ∨ ¬Lk ∨ C ` (Q1 ∨ · · · ∨ Qm ∨ ¬L2 ∨ · · · ∨ ¬Lk ∨ C)ρ
h

|�
T

Cσ

where the first step determines the mgu ρ and the following n steps determine a substitution λ

such that σ = ρλ. By the induction hypothesis, T |= (L2 ∧ · · · ∧ Lk ∧ ¬Q1 ∧ · · · ∧ ¬Qm)λ. Then

T |= (L2 ∧ · · · ∧ Lk)σ, since λ •≤ σ. This takes care of the literals L2, · · · , Lk. For L1, we observe

that T |= L′ ∨ Q1 ∨ · · · ∨ Qm and T |= ¬Qiλ for all i, 1 ≤ i ≤ m. It follows that T |= L′λ, thus

T |= L′σ, because λ •≤ σ, and T |= L1σ. Finally we have T |= (L1 ∧ · · · ∧ Lk)σ.
�

The soundness of Unit Lemmaizing follows as a corollary:

Theorem 3.1 If ¬L ∨ C |�
h
T Cσ, then T |= Lσ.

3.2 Generating non-unit lemmas

The derivation ¬L ∨ C |�
h
T Cσ in the condition for Unit Lemmaizing satisfies the restrictions

that all side clauses of the (linear) derivation come from T and that the literals in C are not

selected in the derivation. In Horn logic, since linear input resolution is complete and factoring

is not necessary, Unit Lemmaizing is the only form of lemmaizing. In first-order logic, one may

have a derivation ¬L ∨ C |� T∪SOS Cσ, in which members of the set SOS are also used and Cσ

is not necessarily a strict descendant of C. This condition leads to a more general meta-rule

for lemmaizing, that may generate also non-unit lemmas. The general form of a lemma will be

(L ∨ F )σ, or (¬F ⊃ L)σ, where ¬Fσ is the “premise” for Lσ to hold. Operationally, F contains

those subgoals of ¬L that are resolved in the derivation ¬L∨C |� T∪SOS Cσ by using SOS or C,

but cannot be resolved by using T only. They are formally defined as follows:

Definition 3.6 Given a derivation ¬L1 ∨ · · · ∨ ¬Lk ∨ C |� T∪SOS Cσ, for all i, 1 ≤ i ≤ k, the

residue of ¬Li in T , denoted by RT (¬Li), is defined as follows.

• If ¬Li is removed by resolution, and D = L′ ∨Q1 ∨ . . .∨Qm is the clause that resolves with

¬L1 ∨ · · · ∨ ¬Lk ∨ C upon ¬Li and L′, then

RT (¬Li) =











¬Li if D ∈ SOS,

false if D ∈ T and m = 0,

RT (Q1) ∨ . . . ∨ RT (Qm) if D ∈ T and m ≥ 1.

• If ¬Li is removed by factoring with a literal M , then

RT (¬Li) =

{

¬Li if M is a literal in C,

RT (¬Lj) if M is ¬Lj for 1 ≤ j 6= i ≤ k.
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Example 3.1 Assume that ¬L ∨ C |� T∪SOS Cσ is made of the following steps:

1. ¬L ∨ C resolves with L ∨ P generating P ∨ C,

2. P ∨ C resolves with ¬P ∨ Q ∨ R, generating Q ∨ R ∨ C,

3. Q ∨ R ∨ C resolves with ¬Q, generating R ∨ C,

4. R ∨ C resolves with ¬R, generating C.

We now analyze the residue RT (¬L), according to different situations. If L ∨ P ∈ SOS, then

RT (¬L) = ¬L. If L ∨ P ∈ T , then RT (¬L) = RT (P ). In the latter case, if ¬P ∨ Q ∨ R ∈ SOS,

then RT (¬L) = RT (P ) = P . On the other hand, if ¬P ∨ Q ∨ R ∈ T , then RT (¬L) = RT (P ) =

RT (Q)∨RT (R). Since RT (Q) = Q if ¬Q ∈ SOS and RT (Q) = false if ¬Q ∈ T , and the same is

true for R, the value of RT (¬L) in the last case can be determined by the different combinations

of RT (Q) and RT (R).

A meta-rule for generalized lemmaizing can then be formulated:

Definition 3.7 Generalized Lemmaizing: if ¬L∨C |� T∪SOS Cσ, then add lemma (L∨RT (¬L))σ

to T .

Unit Lemmaizing is the special case of Generalized Lemmaizing where RT (¬L) is false, and thus

(L ∨ RT (¬L))σ reduces to Lσ. If RT (¬L) is ¬L, it means that ¬L itself cannot be resolved in T

and therefore no lemma should be added. Indeed, in such a case (L ∨ RT (¬L))σ is a tautology.

Similar to Unit Lemmaizing, the soundness of Generalized Lemmaizing can be obtained as a

corollary of a more general result:

Lemma 3.2 If ¬L1∨ · · · ∨¬Lk ∨C |� T∪SOS Cσ, then for all i, 1 ≤ i ≤ k, T |= (Li ∨RT (¬Li))σ.

Proof: similar to Lemma 3.1, the proof is done by induction on the length n of the linear derivation.

Basis: if n=1, then k = 1. If ¬L1 resolves with a unit clause L′ ∈ T (L′σ = L1σ), RT (¬L1) = false

and the lemma reduces to Lemma 3.1. If ¬L1 resolves with a unit clause L′ ∈ SOS or is eliminated

by factoring (with a literal in C), then RT (¬L1) = ¬L1 and the lemma L1∨RT (¬L1) is a tautology.

Induction hypothesis: the lemma holds for length n.

Induction step: for n+1, we assume without loss of generality that the first selected literal is L1.

If ¬L1 is resolved upon with side clause L′ ∨ Q1 ∨ · · · ∨ Qm and mgu ρ such that L′ρ = L1ρ, we

have (Q1 ∨ · · ·∨Qm ∨¬L2∨ · · · ∨¬Lk ∨C)ρ |� T∪SOS Cσ in n steps. By the induction hypothesis,

T |= (Li ∨RT (¬Li))σ for all i, 2 ≤ i ≤ k, and T |= (¬Qi ∨RT (Qi))σ for all i, 1 ≤ i ≤ m. If ¬L1 is

eliminated by factoring with mgu ρ, we have (¬L2 ∨ · · · ∨ ¬Lk ∨C)ρ |� T∪SOS Cσ in n steps, and

T |= (Li ∨ RT (¬Li))σ for all i, 2 ≤ i ≤ k by induction hypothesis. This takes care of the literals

L2, · · · , Lk. For literal L1 there are three cases:

• If L′ ∨ Q1 ∨ · · · ∨ Qm ∈ SOS or ¬L1 is eliminated by factoring with a literal in C, then

¬L1 ∈ RT (¬L1) and (L1 ∨ RT (¬L1))σ is a tautology.
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• If ¬L1 is eliminated by factoring with ¬Lj for some j, 2 ≤ j ≤ k, then L1ρ = Ljρ, hence

L1σ = Ljσ, because ρ •≤ σ, and RT (¬L1) = RT (¬Lj), so that T |= (L1 ∨RT (¬L1))σ follows

from T |= (Lj ∨ RT (¬Lj))σ.

• If L′ ∨Q1 ∨ · · · ∨Qm ∈ T , then RT (¬L1) = RT (Q1)∨ · · · ∨RT (Qm). If T |= (RT (Q1)∨ · · · ∨

RT (Qm))σ, the conclusion is proved. Otherwise, it must be that T 6|= RT (Qi)σ for all i, 1 ≤

i ≤ m. Since for all i, 1 ≤ i ≤ m, T |= (¬Qi ∨ RT (Qi))σ holds by the induction hypothesis,

T 6|= RT (Qi)σ implies T |= ¬Qiσ, and therefore T 6|= Qiσ for all i. Then T |= L′σ, since

L′ ∨ Q1 ∨ · · · ∨ Qm ∈ T . Since L′σ = L1σ, we have T |= L1σ and T |= (L1 ∨ RT (¬L1))σ.
�

The following can be easily seen from the above proof:

Corollary 3.1 Given a derivation ¬L ∨ C |� T∪SOS Cσ, if literal ¬L can be eliminated only by

a resolution step with a side clause from SOS or by factoring, then no non-trivial lemma can be

generated.

The soundness of Generalized Lemmaizing is a direct consequence of Lemma 3.2:

Theorem 3.2 If ¬L ∨ C |� T∪SOS Cσ, then T |= (L ∨ RT (¬L))σ.

4 Inference rules for Generalized Lemmaizing

In this section we assume that the underlying strategy is resolution with set of support and we give

a set of inference rules for resolution and factoring that implement our meta-rules for lemmaizing

within such a strategy. In the inference rules the expression [F ]L, where F is a disjunction, and

L is a literal, is used to denote that F is part of RT (L). (In order to avoid negation in subscripts,

we use L at the place of the ¬L used throughout the previous section). In other words, F is a

partial list of subgoals of L resolved away by using SOS. Dually, ¬F , a conjunction of literals, is

a potential list of premises for resolving away L completely using only clauses in T . When F in

[F ]L contains the entire residue of L, the lemma ¬L ∨ F can be generated, because T |= ¬L ∨ F

(equivalently, T |= ¬F ⊃ ¬L, or T ∪ {¬F} |= ¬L). Some of the inference rules generate a

resolvent with literals labelled by a subscript L, such as QL. These are subgoals produced while

resolving away L, and they themselves need to be resolved away before a lemma concerning L

can be generated. We call a literal with subscript L an L-subgoal.

The inference rules are separated into three categories, one for resolution, one for factoring,

and one for lemmatization.

4.1 The resolution rules

Several different resolution rules are needed since, in a set of support strategy, the sets SOS and

T play different roles.

In the first rule for resolution, literal L in L ∨ C is resolved with a non-unit clause from T ,

and a lemma involving Lσ is initiated:
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Resolution with lemma initiation

(T ∪ {¬L′ ∨ D};SOS ∪ {L ∨ C})

(T ∪ {¬L′ ∨ D};SOS ∪ {L ∨ C, (DLσ ∨ [false]Lσ ∨ C)σ})
Lσ = L′σ

where L and L′ are literals, σ is their most general unifier, and C and D are disjunctions of

literals. DLσ has the same literals as D, except that they are labelled by a subscript Lσ. These

are the Lσ-subgoals. The expression [false]Lσ means that at this stage the residue of Lσ (the

premise of a potential lemma ¬Lσ) is empty. In this inference rule we assume that neither of the

clauses involved in the resolution step has any subscripted literals.

If the T -clause is a unit clause, no lemma is initiated, because lemmaizing would produce an

instance of the unit clause in T . Thus, plain unit resolution applies:

Plain Unit Resolution

(T ∪ {L′};SOS ∪ {¬L ∨ C})

(T ∪ {L′};SOS ∪ {¬L ∨ C,Cσ})
Lσ = L′σ

The next rule covers resolution with a clause from SOS:

Plain resolution

(T ;SOS ∪ {L′ ∨ D,¬L ∨ C})

(T ;SOS ∪ {L′ ∨ D,¬L ∨ C, (D ∨ C)σ})
Lσ = L′σ

We assume that neither of the two clauses involved in the resolution step has any subscripted

literals. In this case, if one were to produce a residue for L, it would be L itself (by the first case

of Definition 3.6), which would result in a lemma that is a tautology (Corollary 3.1). Thus, there

is no need to initiate a lemma.

Residue extension

(T ;SOS ∪ {¬L′ ∨ Q,PL ∨ DL ∨ C ∨ [F ]L})

(T ;SOS ∪ {¬L′ ∨ Q,PL ∨ DL ∨ C ∨ [F ]L, (QLσ ∨ DLσ ∨ C ∨ [F ∨ P ]Lσ)σ})
Pσ = L′σ

In this rule, F is the residue of L being constructed, and PL ∨ DL is the disjunction of the L-

subgoals to be solved. Since P , an L-subgoal, is resolved with a clause in SOS, the remaining

literals coming from that clause also become part of the set of L-subgoals, and P has to be added

to the residue. We remark that the clause ¬L′ ∨ Q may also be labelled. For instance, ¬L′ ∨ Q

may have the form ¬L′
M ∨ EM ∨ B ∨ [H]M . Then, the above rule may generate two resolvents:

(ELσ ∨ BLσ ∨ DLσ ∨ C ∨ [F ∨ P ]Lσ)σ and (DMσ ∨ CMσ ∨ EMσ ∨ B ∨ [H ∨ ¬L′]Mσ)σ.

Subgoal elimination

(T ∪ {¬L′ ∨ Q};SOS ∪ {PL ∨ DL ∨ C ∨ [F ]L})

(T ∪ {¬L′ ∨ Q};SOS ∪ {PL ∨ DL ∨ C ∨ [F ]L, (QLσ ∨ DLσ ∨ C ∨ [F ]Lσ)σ})
Pσ = L′σ

This rule is similar to residue extension except that the resolved literal P is not added to the

residue, because the clause which resolves P away is from T .
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4.2 The factoring rules

Similar to the resolution rules, the factoring rules need to consider the behaviour of the L-subgoals

and residues.

Residue extension factoring

(T ;SOS ∪ {PL ∨ DL ∨ [F ]L ∨ C ∨ P ′})

(T ;SOS ∪ {PL ∨ DL ∨ [F ]L ∨ C ∨ P ′, (DLσ ∨ [F ∨ P ]Lσ ∨ C ∨ P ′)σ})
Pσ = P ′σ

This rule says that if an L-subgoal is eliminated by factoring with a “normal” SOS-literal, then

it needs to be considered as part of the residue of L.

Subgoal deletion factoring

(T ;SOS ∪ {PL ∨ DL ∨ P ′
L ∨ C})

(T ;SOS ∪ {PL ∨ DL ∨ P ′
L ∨ C, (D ∨ P ′

Lσ ∨ C)σ})
Pσ = P ′σ

This rule says that, when factoring between two L-subgoals, one of them can be eliminated. This

rule corresponds to the fifth case in Definition 3.6.

Plain factoring

(T ;SOS ∪ {P ∨ DL ∨ P ′ ∨ C})

(T ;SOS ∪ {P ∨ DL ∨ P ′ ∨ C, (DL ∨ P ′ ∨ C)σ})
Pσ = P ′σ

For the last two rules, the premises may contain framed literals. They are not shown, because

the inferences do not change framed literals.

4.3 The lemma generation rule

Lemmaizing

(T ;SOS ∪ {[F ]L ∨ C})

(T ∪ {¬L ∨ F};SOS ∪ {C})
C does not contain any L−subgoals

In the rule for lemmaizing, all the subgoals of the literal L have been solved. Therefore F is

RT (L) and ¬L ∨ RT (L) is turned into a lemma.

Example 4.1 If T = {P ∨ R,¬R} and SOS = {¬P ∨ ¬Q}, the first resolvent is ¬Q ∨ R¬P ∨

[false]¬P . The new (¬P )-subgoal in the resolvent resolves with ¬R of T and derives ¬Q ∨

[false]¬P . By the Lemmaizing rule, the last resolvent becomes ¬Q and a lemma P can be added

to T . Note that since set-of-support forbids resolution among members of T , the same lemma

cannot be obtained from T directly.

Example 4.2 If T contains ¬P ∨ ¬Q and SOS contains P ∨ ¬Q, then ¬QP ∨ [false]P ∨ ¬Q is

inferred by Resolution with lemma initiation. If factoring is applied, the factor [false∨¬Q]P ∨¬Q

is generated. Since ¬Q is the residue of P , the lemma ¬P ∨¬Q is derived. In this case the lemma

is already in T so that it is not added. If T contains Q, and subgoal elimination instead of
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factoring is applied to Q and ¬QP ∨ [false]P ∨ ¬Q, we get [false]P ∨ ¬Q. Lemmaizing applied

to [false]P ∨¬Q adds the unit lemma ¬P to T , and leaves ¬Q in SOS, which will then generate

the empty clause with Q in T . Thus, different lemmas may be generated depending on different

selections of inferences.

5 Eliminating redundancy in contraction-based strategies

Forward-reasoning resolution strategies often adopt contraction inference rules such as clausal

subsumption and clausal simplification to reduce the database of clauses. Since space explosion

is usually the critical factor deciding whether a successful derivation is possible, the more power

contraction exhibits, the more effective the proof method is. In this section we discuss two results.

First we present schemes of inference rules to incorporate contraction in semantic strategies,

including strategies with lemmaizing. Then we present a notion of purity with which one can

utilize unresolvable literals to detect and delete redundant clauses.

For the first contribution, the combination of the set-of-support strategies and contraction

strategies seems to have been implemented in some provers including OTTER, but it is rarely

studied in the theorem-proving literature. Similarly, the notion of purity is known since the

Davis-Putnam procedure [12] for propositional logic, and may be part of the folk literature for

first-order logic. In addition to a formal treatment of purity in first-order logic, we point out an

analogy between purity deletion and “failure caching” in Prolog technology theorem proving.

5.1 Incorporating contraction in semantic strategies with lemmaizing

Informally speaking, contraction for semantic strategies is similar to that for plain forward-

reasoning strategies, except that some additional care must be taken to guarantee that contraction

steps preserve the property of semantic strategies that the set T is consistent. The following ex-

ample shows that this is not obvious:

Example 5.1 Assume a semantic strategy featuring clausal simplification and a contraction-first

search plan. Let T and SOS be T = {¬P, P ∨Q} and SOS = {¬Q}. According to the contraction-

first search plan, the strategy looks for contraction steps first, and it contracts P ∨Q in T to P , by

applying clausal simplification to P ∨Q and ¬Q. It follows that T and SOS become T = {¬P, P}

and SOS = {¬Q}. The set T has become inconsistent and no refutation can be found by a

semantic strategy, since resolution between clauses in T is not allowed.

Intuitively, this example shows that a careless application of contraction in a semantic strategy

may “move” the inconsistency of T ∪ SOS into T . Since a semantic strategy assumes that T is

consistent, it is not able to detect an inconsistency in T . Therefore, if contraction “moves” the

inconsistency in T , it “hides” it to the strategy, making it incomplete. It follows that preserving

the consistency of T is a necessary condition for preserving the completeness of the strategy.

Instead of giving an inference rule for each contraction rule in the context of a semantic stra-

tegy, we give general schemes of inference rules. In these schemes, we assume that “contraction”
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is any sound contraction inference rule that has been proved to preserve the completeness of

forward-reasoning resolution strategies. Proper clausal subsumption and clausal simplification

are two such rules for first-order theorem proving. Treatments of the completeness of forward-

reasoning (ordered) resolution strategies with contraction may be found in the literature (e.g.,

[6, 15]). In this way, we can focus on the compatibility of contraction with the semantic character

of the strategy. We assume that I is the interpretation controlling the semantic strategy. Then the

basic idea is that for contraction to be compatible with the semantic strategy, a clause generated

by contraction should be added to T only if the clause is true in I:

1. Contraction of SOS

(T ;SOS ∪ {C})

(T ;SOS ∪ {D})
C is contracted to D

If a clause in SOS is contracted, the resulting clause is also false in I and therefore belongs

to SOS.

2. Contraction of T by T

(T ∪ {C};SOS)

(T ∪ {D};SOS)
C is contracted to D by clauses in T

If a clause in T is contracted by clauses in T , the resulting clause is also true in I and

therefore belongs to T .

3. Contraction of T by SOS

(T ∪ {C};SOS)

(T ;SOS ∪ {D})
C is contracted to D by clauses in SOS and I 6|= D

(T ∪ {C};SOS)

(T ∪ {D};SOS)
C is contracted to D by clauses in SOS and I |= D

Unlike in the previous schemes, if a clause in T is contracted by clauses in SOS, one needs

to resort to the definition of the interpretation I guiding the semantic strategy in order

to decide the affiliation of the new clause. Otherwise, incompleteness such as shown in

Example 5.1 may occur. In resolution with set of support, all clauses descending from SOS

clauses are regarded as false clauses and belong to SOS. Thus, the above two rules can be

combined into the following simpler scheme:

(T ∪ {C};SOS)

(T ;SOS ∪ {D})
C is contracted to D by clauses in SOS

In case of deletion rules such as subsumption, C is simply deleted and no clause D is generated.

Example 5.2 If the strategy is resolution with set of support and clausal simplification is applied

to the sets T = {¬P, P ∨ Q} and SOS = {¬Q} of Example 5.1, according to Scheme 3, we get

T = {¬P} and SOS = {¬Q,P}. A resolution step between ¬P ∈ T and P ∈ SOS completes the

proof. In the specific case of clausal simplification, the choice of adding the new clause to SOS, if
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the simplifier is in SOS, is also justified operationally by considering that a clausal simplification

step can be viewed as the composition of a resolution step and a subsumption step. Thus, we

would first resolve P ∨ Q and ¬Q, yielding T = {¬P, P ∨ Q} and SOS = {¬Q,P}, where the

resolvent P is naturally added to SOS. Then P would subsume P ∨ Q leading to T = {¬P} and

SOS = {¬Q,P}.

Example 5.3 If the strategy is positive hyperresolution, the set of clauses of Example 5.1 is

partitioned into T = {¬P,¬Q} and SOS = {P ∨ Q}. The clausal simplification step transforms

them into T = {¬P,¬Q} and SOS = {P}, where P belongs to SOS, because it is positive. In

general, for positive hyperresolution, if a (positive) SOS clause is contracted, the resulting clause

is also positive, because contraction does not modify the sign, and therefore it belongs to SOS (see

Scheme 1). If a clause in T is simplified by another clause in T , both clauses are non-positive.

Since the simplifier in clausal simplification is a unit clause, it must be a negative unit clause,

that eliminates a positive literal. Thus the resulting clause is also non-positive and remains in

T (see Scheme 2). Finally, if a clause in T is simplified by a clause in SOS, the clause in T

is non-positive and the simplifier in SOS is a unit positive clause that deletes a negative literal.

The resulting clause may be either positive or non-positive and will be added to either SOS or T

accordingly. For instance, if T = {¬P ∨ ¬Q} and SOS = {P,Q}, the clausal simplification of

¬P ∨ ¬Q by Q gives T = {¬P} and SOS = {P,Q}, where ¬P stays in T , even if it is simplified

by a clause in SOS, because it is negative.

The following theorem summarizes the compatibility of contraction with semantic resolution

strategies:

Theorem 5.1 Let I1 denote a resolution inference system, I ′
1 a semantic restriction of I1, and

I2 a set of sound contraction inference rules. If

1. I ′1 is refutationally complete and

2. I1 ∪ I2 is refutationally complete,

then I ′1 ∪ I2, where the contraction rules in I2 are applied according to the above schemes, is also

refutationally complete.

Proof: let (T ′;SOS′) be derived from (T ;SOS) by a contraction rule in I2 applied following

the above schemes. We need to show that if T ∪ SOS is inconsistent and T is consistent, then

T ′ ∪ SOS′ is inconsistent and T ′ is consistent. Intuitively, the second part of this thesis (if T

is consistent, then T ′ is consistent) guarantees precisely that contraction does not “move” the

inconsistency of T ∪ SOS into T , thereby hiding it to the semantic strategy. The first part

(T ′∪SOS′ is inconsistent) follows from the hypothesis that I1∪ I2 is refutationally complete. For

the second part (T ′ is consistent), we observe that if Scheme 1 is applied, T ′ is equal to T and

thus is consistent. If Scheme 2 is applied, a clause C in T is contracted to D by a contraction

rule in I2 applied to premises in T . By the soundness of the rules in I2, we have T |= D. This,

together with the hypothesis that T is consistent, implies that T ′ = T −{C} ∪ {D} is consistent.
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In case of Scheme 3, let I be the interpretation used by the strategy and such that I |= T . In this

scheme, either T ′ is equal to T − {C}, or T ′ = T − {C} ∪ {D}. Since I |= T − {C} and I |= D,

T ′ is consistent.
�

For instance, I2 can contain clausal simplification and clausal subsumption. If I1 is plain resolu-

tion, I ′1 can be any semantic restriction. If I1 is ordered resolution as defined in [15], I ′
1 can be

ordered resolution with set of support.

The above schemes and theorem remain valid for resolution with set of support and lemmaizing

with lemmas generated according to the rules of Section 4.1. One only needs to take care that

whenever a contraction inference rule eliminates a subscripted literal in an SOS clause by applying

another SOS clause, the residue is updated. We give an inference rule for clausal simplification

as an example:

Clausal simplification of SOS by SOS

(T ;SOS ∪ {Q,¬Q′
L ∨ C ∨ [F ]L})

(T ;SOS ∪ {Q,C ∨ [F ∨ ¬Q′]L})
Qσ = Q′ for some σ

where Q is a unit clause which may be either positive or negative. It is presented here as positive

just for convenience. If Q′ is not subscripted, the inference rule works in the same way but

no residue is added. Notice that the difference between this clausal simplification rule and the

subgoal elimination rule of Section 4.1 is that clausal simplification replaces a clause by another

one, whereas subgoal elimination adds a new clause.

5.2 Purity deletion

Our treatment of lemmaizing in semantic resolution has shown that also forward-reasoning strate-

gies may employ this technique. Thus, lemmaizing in forward-reasoning strategies correspond to

lemmaizing or success caching in subgoal-reduction strategies. On the other hand, the notion

of failure caching has been used quite effectively in subgoal-reduction strategies, but not at all

in forward reasoning. Failure caching says that if a goal literal fails, then it can be used to fail

any similar goals in the future. Since there is usually no notion of a goal in a forward-reasoning

strategy, it is little wonder that failure caching has not been used in this context.

A goal literal (in a subgoal-reduction strategy) fails if it does not unify with any literal of

opposite sign in the given set of clauses. One can in fact adopt this idea to get the opposite effect

of lemmaizing. To be more precise, if a literal cannot be resolved away, then obviously it cannot

play a role in any derivation of refutation. Therefore, any clause which contains such a literal can

be deleted. In fact, this idea already existed in the Davis-Putnam procedure [12], in which such

a literal was called a pure literal. We adopt the name and generalize the notion by the following

inductive definition:

Definition 5.1 Let S be a set of clauses and A be a literal occurring in S.

1. If for all clause C ∈ S there is no literal B ∈ C, such that Aσ = ¬Bσ for some substitution

σ, then A is pure in S.
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2. If for all the clauses C ∈ S that contains a B such that Aσ = ¬Bσ for some σ, C contains

an instance of a pure literal, then A is pure in S.

Condition 1 (basic purity) is the basis of the definition, and Condition 2 is the inductive case,

that represents a sort of transitive closure of purity. Its logical justification is that a clause that

contains a pure literal is not necessary for the refutation, and therefore a literal that can resolve

only with unnecessary clauses is also unnecessary, or pure.

Proposition 5.1 If a literal A is pure, then any instance of A is also pure.

Proof: If an instance, Aτ , of A unifies with some literal B of opposite sign, i.e. Aτρ = ¬Bρ for

some ρ, then A and B are also unifiable. Therefore by definition, Aτ is pure.
�

Our inference rule states that any clause which contains a pure literal can be deleted:

Purity deletion
S ∪ {C}

S
∃A ∈ C, A is pure

If clauses that contain pure literals are deleted, more literals may become pure. The inductive case

of the definition of purity captures the propagation of basic purity caused by the application of

the Purity Deletion rule: if all the clauses that A may resolve with contain a pure literal, all such

clauses will be deleted by the Purity Deletion rule and therefore A will become pure according to

basic purity. The inductive part of the definition “anticipates” this propagation effect. Therefore,

in order to show that clauses containing pure literals can be deleted while preserving refutational

completeness, it is sufficient to consider the basis of the definition of purity.

In propositional logic, if S is an unsatisfiable set of clauses and A is pure in S, then S ′ =

S − {C|A ∈ C} is also unsatisfiable. This is because if S ′ were satisfiable, there would be a

Herbrand model I of S ′. Since neither A nor ¬A appears in S ′, neither of them needs to be in

I. Then I ∪ {A} would be a model of S, contradicting the fact that S is unsatisfiable. The same

reasoning does not apply in this form to a set of first-order clauses for the following reason: if A

is a ground first-order literal, the fact that neither A nor ¬A appears in S ′ does not imply that

neither of them is in I, because A may be in the Herbrand base of S ′ even if it does not occur

in S′, and therefore either A or ¬A may be in I. A mapping of ground first-order atoms into

propositional variables, however, is sufficient to extend the reasoning to sets of ground first-order

clauses:

Lemma 5.1 Let S be a finite set of ground first-order clauses and A(t̄) be a pure literal in S. If

S is unsatisfiable, then S ′ = S − {C|A(t̄) ∈ C} is unsatisfiable.

Proof: let B0(s̄0), B1(s̄1), . . . Bn(s̄n) be an enumeration without repetitions of all the atoms that

occur in S. A(t̄) is Bk(s̄k) for some k, 1 ≤ k ≤ n. For each atom Bi(s̄i) in this list, we create a

distinct propositional variable Li, so that there is a bijection between the set {L0, L1, . . . Ln} and

the set {B0(s̄0), B1(s̄1), . . . Bn(s̄n)}. Let PS be the set of propositional clauses that is obtained

from S by replacing each occurrence of Bi(s̄i) by Li for all i, 1 ≤ i ≤ n. Since S is unsatisfiable,
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PS is also unsatisfiable. Since Bk(s̄k) is pure in S, Lk is pure in PS. Let PS ′ be the set

PS′ = PS − {C|Lk ∈ C}. Since PS is unsatisfiable, PS ′ is unsatisfiable by the propositional

argument given above. Since S ′ ⊆ S, all atoms that occur in S ′ also occur in S and thus in

the enumeration B0(s̄0), B1(s̄1), . . . Bn(s̄n). Let PS′′ be the set of propositional clauses that is

obtained from S ′ by replacing each occurrence of Bi(s̄i) by Li for all i, 1 ≤ i ≤ n. The two sets

PS′ and PS′′ are equal, and therefore PS ′′ is unsatisfiable. It follows that S ′ is unsatisfiable.
�

By applying the Herbrand theorem, the lemma can then be lifted to a set of general first-order

clauses:

Theorem 5.2 Let S be a finite set of first-order clauses and A(t̄) a pure literal in S. If S is

unsatisfiable, then S ′ = S − {C|A(t̄) ∈ C} is unsatisfiable.

Proof: since S is unsatisfiable, by the Herbrand theorem, there exists a finite unsatisfiable set S0

of ground instances of clauses in S. There are two mutually exclusive and exhaustive cases:

• For all C ′ ∈ S0 there is a C ∈ S ′ such that C ′ = Cσ for some substitution σ. In other

words, S0 is a finite unsatisfiable set of ground instances of clauses in S ′. It follows that S ′

is unsatisfiable by the Herbrand theorem.

• There exists a clause C ′ ∈ S0 such that for no C ∈ S ′ it is C ′ = Cσ. Thus, it must be

C ′ = Cσ for some C ∈ S − S ′, that is, for some C that contains A(t̄). Then A(t̄)σ occurs

in S0. We prove by way of contradiction that A(t̄)σ is pure in S0. If A(t̄)σ is not pure

in S0, then ¬A(t̄)σ occurs in S0. It follows that there is a clause D in S, that contains a

literal ¬A(s̄) of the same sign of ¬A(t̄)σ, and such that ¬A(t̄)σ is an instance of ¬A(s̄),

i.e. A(t̄)σ = A(s̄)ρ. Therefore A(t̄) and ¬A(s̄) in S are unifiable and have opposite signs,

contradicting the hypothesis that A(t̄) is pure in S. This proves that A(t̄)σ is pure in S0.

Let S′
0 be the set S ′

0 = S0 − {C ′|C ′ = Cσ, C ∈ S, A(t̄) ∈ C}. S′
0 is unsatisfiable by

Lemma 5.1 because S0 is unsatisfiable. Since S ′
0 is an unsatisfiable set of ground instances

of clauses in S ′, S′ is unsatisfiable by the Herbrand theorem.
�

In summary, a pure literal in the forward-reasoning context has some similarity with a failed goal

of subgoal-reduction strategies, since both notions are based on the impossibility of unifying the

literal. Indeed, instances of pure literals are pure, like instances of failed goals also fail. In this

sense, purity deletion echoes failure caching in forward-reasoning strategies.

6 Model elimination

In the previous sections we have presented our approach to integrate lemmaizing and contraction in

semantic strategies. In this and the following sections, we focus more closely on subgoal-reduction

strategies. First, we explain how lemmaizing in model elimination is covered by our meta-rules of

Section 3. Because of the importance of model elimination as the foundation of subgoal-reduction

strategies, we also report the inference rules of model elimination itself, thereby completing the
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survey of strategies of Section 2. This is done in the present section. The following two sections will

be dedicated to caching and depth-dependent caching, that is caching in strategies with iterative

deepening. Caching techniques are usually presented in operational terms. We shall give inference

rules that capture formally the working of the caching mechanisms. Thus, these inference rules

will fill the gap between the logical justification of caching, e.g., our meta-rules of Section 3, and

its implementations.

Model elimination was introduced independently of resolution in [20]. In addition to its

original formulation, model elimination may also be presented as a refinement of linear resolution

(e.g., [21]) and as a tableaux-based method (e.g., [19, 34]). For the purposes of this paper, it is

appropriate to adopt the view of model elimination as a refinement of linear resolution.

In model elimination, clauses are treated as ordered lists of literals, called chains. The deriva-

tion proceeds like a linear resolution derivation, with the provision that literals in the center

clauses are resolved in a pre-defined order, e.g., from left to right. A key feature is that at

each step the literal resolved upon in the center clause parent is saved as a framed literal in the

resolvent:

ME-extension
(T ∪ {L′ ∨ D};¬L ∨ C)

(T ∪ {L′ ∨ D}; (D ∨ [¬L] ∨ C)σ)
Lσ = L′σ

Saving the literals resolved upon allows the strategy to know exactly when resolution with an

ancestor is needed: when the leftmost literal in the current center clause unifies with a framed

literal of opposite sign in the same clause. Resolution with ancestor is not applied as such, but it

is replaced by a specific inference rule:

ME-reduction
(T ;¬L ∨ D ∨ [L′] ∨ C)

(T ; (D ∨ [L′] ∨ C)σ)
Lσ = L′σ

The set of inference rules is completed by adding ME-contraction, that removes any leftmost

framed literal in the current chain, and ordered factoring: if the leftmost non-framed literal in

the current chain unifies with a non-framed literal of the same sign, a factor may be generated by

removing the leftmost literal and applying the unifier. In the context of tableau-based methods,

factoring is also called merging (e.g., [34]). In addition to making model elimination a linear input

strategy, ME-reduction keeps the center clauses short, because ME-reduction simply removes the

leftmost literal, whereas ancestor resolution replaces it by the literals other than the one resolved

upon in the ancestor. Model elimination recognizes that in a linear derivation it is unnecessary to

reintroduce these literals from an ancestor, because they are already being solved in the derivation.

This appears in examples where resolution needs factoring to eliminate the extra literals, whereas

ME-reduction makes it unnecessary for model elimination.

The idea of putting frames around literals in the system of inference rules of Section 4 was

inspired by model elimination, although the purposes are different. The primary purpose of

framed literals in model elimination is ME-reduction, whereas in our system the purpose of framed

literals is lemmatization. The resulting effects are dual: in model elimination framed literals are

ancestor literals, while in our system they are residue literals, hence subgoal literals. In model

elimination framed literals are literals that were resolved away by ME-extension (corresponding
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to input resolution, hence resolution with clauses in T ), while there is no need to frame a literal

resolved by ME-reduction (corresponding to ancestor resolution, hence resolution with clauses in

SOS), because it is not an ancestor of other literals (and it would be immediately deleted by

ME-contraction). Dually, in our system framed literals are literals that were resolved away by

clauses in SOS, while there is no need to frame a literal resolved away by clauses in T , because

it is not part of the residue.

6.1 Lemmaizing in model elimination

Lemmaizing in model elimination is based on the observation that when an ME-contraction step

deletes a framed literal [¬L] that is the leftmost in the current chain, it means that all the subgoals

of ¬L have been solved and therefore ¬L itself has been solved. Having solved goal ¬L means

T ∪ {¬L} |=
�
, that is, T |= L. Thus, L can be added as a lemma to T and may be used by

ME-extension to solve other goal literals. A unit lemma, however, may be generated only in the

absence of ME-reduction steps. If [A1], . . . , [An] were used in ME-reduction steps to eliminate

literals on the left of L, it means that ¬A1, . . . ,¬An are subgoals of L that cannot be solved by

T alone:

ME-contraction with Lemmaizing

(T ; [¬L] ∨ C1 ∨ [A1] ∨ . . . ∨ Cn ∨ [An] ∨ Cn+1)

(T ∪ {L ∨ ¬A1 ∨ . . . ∨ ¬An};C)

if [A1], . . . , [An] were used by ME-reduction

to solve subgoals of ¬L.

In [20] the literals [A1], . . . , [An] were identified by a scoping mechanism: each framed literal has

a scope; whenever a framed literal is used in an ME-reduction step, its scope is incremented;

when ME-contraction with Lemmaizing is applied, a calculation of scopes and relative positions

of framed literals determines which framed literals need to be in the lemma. Intuitively, the scope

of a framed literal represents how far to the left that literal has been used: [A1], . . . , [An] are the

framed literals whose scope includes ¬L. In our treatment, ¬A1 ∨ . . . ∨¬An is the residue of ¬L.

Similar to factoring in semantic resolution, the combination of lemmaizing and merging in

model elimination causes the generation of non-unit lemmas:

Example 6.1 We reconsider the clauses of Example 4.2 in the context of model elimination. If

T contains ¬P ∨ ¬Q and the current chain is P ∨ ¬Q, ME-extension derives ¬Q ∨ [P ] ∨ ¬Q. If

merging is applied, we obtain [P ]∨¬Q, hence ¬Q. If lemmaizing is applied when [P ] is removed,

the generated lemma is ¬P ∨¬Q, because the subgoal P has been solved only under the condition

that its subgoal ¬Q will be solved. If the strategy does not feature merging, no lemma may be

generated at this point. If T contains Q, ME-extension applied to Q and ¬Q ∨ [P ] ∨ ¬Q gives

[P ]∨¬Q, hence ¬Q, and the unit lemma ¬P may be generated. At the next step the empty clause

is reached.

Lemmaizing in the context of tableaux-based methods is treated in [19] and [34], where it is

called regressive merging, because its effect on the tableaux appears dual to that of merging.
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7 Inference rules for caching

If a strategy generates all the lemmas that can be generated, the set T (and therefore the search

space) may be expanded in such a way that the original characteristic of the strategy of not

expanding T is defeated, and the performance of the strategy may suffer rather than improve. A

simple criterion to limit the number of lemmas generated is to generate only unit lemmas. Since

all lemmas in Horn logic are unit lemmas, it may be feasible to generate and save all of them. For

the purpose of efficient implementation, however, strategies for Horn logic often employ caching

rather than lemmaizing. Caching has been used by many strategies in both theorem proving and

logic programming (e.g., [5, 25, 36]). In this and the following sections, first we summarize the

basic ideas in caching, and then we formalize the caching mechanisms following [5] as a set of

inference rules.

7.1 Caching

Caching has the same logical justification as lemmaizing: if ¬L ∨ C |�
h
T Cσ, then Lσ is a logical

consequence of T . Lemmaizing consists in adding Lσ to T and let the strategy use lemmas as

premises of inferences like any other clause in T . Caching differs from lemmaizing in that it

stores the solved goal literal ¬L and its solution σ in a fast data structure called cache, rather

than adding Lσ to T as lemma. Furthermore, the information stored in the cache is not used to

provide premises to the regular inference mechanism. Rather, whenever the current goal contains

an instance of ¬L, this instance is solved by an operation of cache look-up that retrieves the

solutions of ¬L. This is called success caching. In failure caching, the information that a goal

literal was tried and failed is also stored in the cache, and used to fail its instances. In both cases,

the idea is to solve or fail goals by reusing the results of previous deductions, without performing

other inference steps. In terms of search, caching allows to solve or fail goals based on the portion

of search space of the problem visited so far, without expanding it further.

The motivation for caching is that cache retrieval is faster than inferences. However, replacing

inferences by cache retrieval has two consequences. First, because cache retrieval depends on

the current goal, caching can be used by strategies that have a notion of current goal, that is,

subgoal-reduction strategies. On the other hand, lemmaizing can be used by a more general class

of strategies, because it makes the lemmas available to whatever inference system the strategy

has. Second, both lemmaizing and caching are conceived as enhancements of strategies that are

already complete. However, because cache retrieval replaces, whenever applicable, the regular

inference mechanism, it is necessary to cache all the solutions in order to retain completeness.

This requirement does not apply to lemmaizing, where there is no restriction to the application

of the inference mechanism, and one is interested in saving only those lemmas that appear useful.

7.2 Inference rules for caching in Horn logic

We first discuss the relatively simple case of caching for Horn logic.

We use a component Cache to represent the cache, and the notation A ↪→ Aρ1, . . . , Aρr to
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indicate a cache entry storing solutions Aρ1, . . . , Aρr of the goal literal A. The symbol ↪→ has

no logical meaning, it simply says that matching the pattern A in the cache gives access to the

solutions Aρ1, . . . , Aρr. To simplify the notation, we use A ↪→ Aρ when a specific solution Aρ is

being inserted or retrieved. If A failed, the corresponding cache entry is A ↪→ ∅. We emphasize

that the cache contains goals and goal solutions, not lemmas. In terms of the Unit Lemmaizing

rule, if ¬L ∨ C |�
h
T Cσ, then Lσ is the lemma, and ¬L ↪→ ¬Lσ is the corresponding cache entry.

To avoid negative signs, we use A and A′ rather than ¬L as goal literals. By expressing the

rules for success caching in terms of the meta-rule for unit lemmaizing, we make our formulation

independent from any specific subgoal-reduction strategy.

We consider first the insertion of data in the cache. An entry is inserted in the cache when

a goal literal succeeds or fails. A goal literal fails if it does not unify with any literal of opposite

sign in the set of axioms (Basic Failure) or if all its subgoals fail (Recursive Failure):

Insert cache entry

• Success

If A ∨ G |�
h
T Gρ, then add A ↪→ Aρ to Cache

where G is the disjunction of the remaining goal literals.

• Basic Failure

(T ;A ∨ G;Cache)

(T ; fail;Cache ∪ {A ↪→ ∅})
∀C ∈ T, ∀B ∈ C, ¬∃σ such that Aσ = ¬Bσ

where Aσ = ¬Bσ means that A and B unify and have opposite signs.

• Recursive Failure

(T ;A ∨ G;Cache)

(T ; fail;Cache ∪ {A ↪→ ∅})

∀Q1 ∨ . . . ∨ Qm ∈ T , such that ∃σ Aσ = ¬Q1σ,

(Q2 ∨ . . . ∨ Qm ∨ G)σ fails.

The strategy uses cached solutions of a goal to generate solutions of other goals that are

generated later. If all the solutions of a solved goal A′ are A′ρ1, . . . , A
′ρr, then all the solutions

of an instance A = A′σ are those A′ρj that are instances of A. Thus, if all the solutions of A′ are

in the cache, the solutions of A can be found by cache retrieval, with no need to use T (success

caching). Since the cache stores solutions, cache retrieval will consist essentially of a matching

operation: matching A with the solutions of A′ in the cache. (In lemmaizing, the lemmas ¬A′ρj ’s

would be added to T , and A would be solved by a unit-resolution step with one such lemma.)

If A′ failed, the information that A′ failed is retrieved from the cache and used to fail A (failure

caching). Indeed, if A had a solution Aρ, this solution would also be a solution of A ′, as A′σρ,

contradicting the fact that A′ failed:

Retrieve cache entry

• Success
(T ;A ∨ G;Cache ∪ {A′ ↪→ A′ρ})

(T ;Gτ ;Cache ∪ {A′ ↪→ A′ρ})
A = A′σ, A′ρ = A′στ
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• Failure
(T ;A ∨ G;Cache ∪ {A′ ↪→ ∅})

(T ; fail;Cache ∪ {A′ ↪→ ∅})
A = A′σ

7.3 Inference rules for caching in first-order logic

Caching may be inconsistent with inference rules for first-order logic. In operational terms, this is

because caching assumes that the subgoal-reduction process is context-free, in the sense that each

goal literal is reduced independently of its context. In logical terms, caching assumes that each

solution corresponds to a unit lemma. These assumptions hold in Horn logic, where all lemmas

are unit lemmas and context-free reduction, such as in ME-extension, is sufficient. In first-order

logic, reduction is not context-free (e.g., ME-reduction and factoring/merging are context-sensitive

rules), and there are non-unit lemmas (non-empty residues). Caching is inconsistent, because it

is not correct to solve A by matching it with a solution A′ρ of A′ in the cache, if the residue of

A′ is not empty. If the residue is not empty, Generalized Lemmaizing deduces (¬A ′ ∨ RT (A′))ρ,

not ¬A′ρ. Caching can be made compatible with subgoal-reduction strategies for first-order logic

by keeping track of the residue in the cache:

Insert cache entry

If A′ ∨ G |� T∪SOS Gρ, then add A′ ↪→ A′ρ :: RT (A′)ρ to Cache

where the notation :: is simply a separator between the solution and the residue.

Then, a proceeding goal A ∨ G such that A = A′σ can be reduced to Gτ by using the cache

entry A′ ↪→ A′ρ :: RT (A′)ρ only if A′ρ = Aτ (the retrieved solution is an instance of A) and Gτ

contains RT (A′)ρ. This ensures that solving Gτ will solve the subgoals of A′ that must be solved

for A′ρ to be a solution of A′ and thus of A:

Retrieve cache entry

(T ;A ∨ G;Cache ∪ {A′ ↪→ A′ρ :: RT (A′)ρ})

(T ;Gτ ;Cache ∪ {A′ ↪→ A′ρ :: RT (A′)ρ})

A = A′σ, A′ρ = A′στ

∀B ∈ RT (A′)ρ, ∃Gi ∈ G, B = Giτ

In logical terms, resolving the lemma (¬A′ ∨ RT (A′))ρ with the goal A ∨ G generates the new

goal RT (A′)ρ ∨ Gτ . If the subgoals in RT (A′)ρ are in Gτ (the condition of the above rule),

RT (A′)ρ ∨ Gτ is trivially equivalent to Gτ .

The reasoning is essentially the same for model elimination. ME-extension of the chain A∨G

by the lemma (¬A′ ∨ RT (A′))ρ gives RT (A′)ρ ∨ Gτ . If for all literals B ∈ RT (A′)ρ, there is a

framed literal [Gi] in G, such that B = Giτ and B and Gi have opposite signs, then all the literals

in RT (A′) are eliminated by ME-reduction, and RT (A′)ρ ∨ Gτ reduces to Gτ . Thus, under this

condition, a goal A ∨ G such that A = A′σ can be reduced to Gτ in one caching step by using

the entry A′ ↪→ A′ρ :: RT (A′)ρ. Since in model elimination one works with ancestors, rather than

with residues, the condition to apply a cache entry is naturally expressed in terms of ancestors:

a goal literal A can be solved by retrieving from the cache a solution of A′ that was obtained by

using ancestors of A′, only if A has the same ancestors [3, 34]. Under this formulation, a cache

entry stores the ancestors, e.g. A′ ↪→ A′ρ :: Lρ, where Lρ is the list of ancestors of A′ that were
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used to generate the solution A′ρ. Then, a proceeding goal A ∨ G such that A = A′σ can be

reduced to Gτ by using A′ ↪→ A′ρ :: Lρ if A′ρ = Aτ and for all B ∈ Lρ, there is a [Gi] in G, such

that B = Giτ . This formulation is equivalent to the previous one, because in model elimination

residue literals and ancestor literals differ only in the sign (see Section 6.1).

We conclude this section by observing that the reliance of the caching mechanism on a context-

free subgoal-reduction process, makes caching incomplete in the presence of context-sensitive

pruning rules. In model elimination, one such rule is Identical ancestor pruning

(T ;A ∨ G1 ∨ [A] ∨ G2)

(T ; fail)

where a search path is pruned if a subgoal is identical to an ancestor. Caching is incompatible

with identical ancestor pruning [5]. If the search tree for A′ was pruned based on a certain

context, such as the presence of an ancestor, there is no guarantee that all the solutions of A can

be found by matching with the solutions of A′. This is because the context-sensitive condition of

the pruning rule may not be satisfied on the corresponding paths in the search tree for A. If the

regular search mechanism were used, those paths in the search tree for A would not be pruned,

and might yield additional solutions of A that are not solutions of A′. If cache retrieval replaces

the regular search mechanism, these additional solutions of A will not be computed. In practice, a

theorem proving may feature both a strategy with caching and a strategy with identical ancestor

pruning and apply them separately.

7.4 Caching and contraction

In order to work with contraction rules, a strategy needs to keep generated clauses, so that kept

clauses may be used to delete other generated clauses that are redundant. For instance, if a

strategy does not keep clauses, it cannot use them to subsume other clauses. Pure subgoal-

reduction strategies do not keep generated clauses, they work exclusively with the current goal

and the input axioms. Of course, the strategy may backtrack to a past goal, but it does not

build a database of clauses. Thus, pure subgoal-reduction strategies do not feature contraction.

In this sense, the use of contraction is intrinsically connected to forward reasoning: forward

reasoning needs contraction to keep the size of the database in check, and forward reasoning

makes contraction possible in the first place by generating the database.

Since lemmaizing (or caching) adds some forward reasoning to subgoal-reduction strategies,

it also makes some form of contraction applicable. Indeed, a subgoal-reduction strategy with

lemmaizing may feature subsumption among lemmas, or lemma subsumption. Cache subsumption

is the subsumption among solutions of a goal in the cache [5, 36]. From a practical point of

view, cache subsumption has a definite advantage over lemma subsumption for subgoal-reduction

strategies. The reason is that many subgoal-reduction strategies are implemented under the

assumption that elements in T will not be deleted. Therefore, adding lemma subsumption in T

may be problematic. On the other hand, caching adds goal solutions to the cache, not to T , so

that it is possible to augment the inference system with cache subsumption without disturbing

the basic working of the strategy.
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We consider how the rules given in Section 7.2 need to be modified to take cache subsumption

into account. Failure caching obviously remains unchanged. Success caching is modified as follows.

For the insertion of solutions, whenever the strategy tries to insert a solution A ′ρ of A′, it tests

whether A′ρ is subsumed by some other solution A′θ of A′ already in the cache. If A′ρ is subsumed,

there is no need to add it. If A′ρ is not subsumed, the strategy checks whether A′ρ subsumes

any pre-existing solution of A′, and finally adds A′ρ to the cache. For the retrieval of solutions,

the application of cache subsumption means that only the most general solutions are kept in

the cache. Therefore, unification, rather than matching, must be applied in order to generate a

solution of a goal literal A from a cache entry A′ ↪→ A′ρ:

(T ;A ∨ G;Cache ∪ {A′ ↪→ A′ρ})

(T ;Gτ ;Cache ∪ {A′ ↪→ A′ρ})
A = A′σ, A′ρτ = A′στ

We observe that a cache is organized in such a way that all the solutions of A′ can be accessed

together, so that the subsumption tests of cache subsumption can be executed very rapidly. In

other words, the cache itself provides a form of indexing.

In summary, exactly because caching is a form of forward reasoning, it is not compatible with

all pruning mechanisms that are typical of subgoal-reduction strategies (e.g. identical ancestor

pruning), but it makes contraction rules that are typical of forward-reasoning strategies (e.g.

subsumption) available to subgoal-reduction strategies.

8 Inference rules for depth-dependent caching

The rules for caching given in the previous section are depth-independent: a goal literal fails

regardless of when it is selected during the search process, and cached solutions are used inde-

pendently of the depth where they were found. In most backtracking-based strategies, exhaustive

search is implemented via iterative deepening, in which it is possible to define depth-dependent

notions of failure and success, and therefore depth-dependent caching mechanisms. In this section,

we assume a subgoal-reduction strategy with a DFID search plan, and we present inference rules

for depth-dependent caching in Horn logic. Let k be the depth bound at the current round of

iterative deepening and Q be the initial goal. A pair (G,n) denotes a goal with associated depth

bound n (0 ≤ n ≤ k): this means that k − n steps were used to reduce Q to G, and n more steps

are allowed to solve G as shown in Figure 2.

k-n

(Q,k)

(G,n)

n

k

Figure 2: Depth bound associated to a goal
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The notation (A,n) has the same meaning for a single goal literal A. The depth bound

associated to the current goal is decremented at each inference step:

(T ; (G,n); k)

(T ; (G′, n − 1); k)

If the depth bound of the goal reduces to 0 before a solution is found, the goal, e.g. (G, 0),

fails. This means that the allowed depth is not sufficient to find a solution. We call this type of

failure Basic Depth-dependent Failure, in addition to the Basic Failure and Recursive Failure of

Section 7.2. A failure (regardless of its type) will cause either one of two behaviours:

1. backtrack to an ancestor within depth limit k, e.g. to some (G′,m), 0 < m ≤ k, for which

there are still choice-points open;

2. if there is no such ancestor, i.e. the search space down to depth k has been exhausted, reset

the limit to some k + i, for i > 0, and start the next round of iterative deepening with the

query (Q, k + i).

We have now all the elements to write rules for depth-dependent caching. A solution from

the cache can be used for goal (A,n) only if it could have been found by search within the depth

bound n associated to A. Therefore, solutions need to be stored with an associated depth bound.

Let (A ∨ G,n), where n ≤ k, be the given goal. Assume that its literal (A,n) is resolved upon,

and after n − q steps, where 0 ≤ q ≤ n, all subgoals of (A,n) have been resolved away, so that

(A,n) is solved with an answer substitution ρ. This solution is written (Aρ, n − q), to say that it

took n − q steps (starting from (A ∨ G,n), not from the input goal) to generate the solution Aρ,

as shown in Figure 3.

q

n-q

(AvG ; n)

(G ρ; q) (A ρ; n-q) n

Figure 3: Depth bound associated to a solution

In summary, the depth bound associated to a goal indicates how deep the search procedure

can go to solve that goal, whereas the depth bound associated to a solution indicates the depth

where that solution was found.

Insert depth-dependent cache entry

• Success

If (A ∨ G,n) |�
h
T (Gρ, q), then add (A,n) ↪→ (Aρ, n − q) to Cache
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Remark that n−q ≤ n, that is, the depth bound associated to a solution is bounded by the depth

bound associated to the corresponding goal. After solving A, the current goal is (Gρ, q), because

we still have to solve Gρ and we have q steps to do it within the current depth bound.

The insertion of entries in the cache upon failure is modified slightly. There is no need to

introduce a caching rule for Basic Depth-dependent Failure, because adding to the cache an entry

in the form (A, 0) ↪→ ∅ is redundant. The rule for Basic Failure of Section 7.2 is unchanged, except

that given a current goal (A∨G;n), where A cannot be resolved away, an entry (A,n) ↪→ ∅, rather

than A ↪→ ∅ is added to Cache. The rule for Recursive Failure is changed in the same way. In

addition, the condition for Recursive Failure changes, because the base of the recursion may be

provided by any combination of Basic Failure and Basic Depth-dependent Failure.

A goal literal can be failed based on the cache if a more general goal with a higher associated

depth bound already failed:

Retrieve depth-dependent cache entry

• Failure
(T ; (A ∨ G,n); k;Cache ∪ {(A′,m) ↪→ ∅})

(T ; fail; k;Cache ∪ {(A′,m) ↪→ ∅})
A = A′σ, 0 < n ≤ m ≤ k

If it was not possible to find a solution for A′ by searching down to depth m, there must be no

solution for A within depth n ≤ m. Indeed, if A had a solution Aρ that can be found within

depth n, then A′ would have a solution A′σρ that can be found within depth m, since n ≤ m,

a contradiction. The condition n ≤ m ≤ k also implies that k − m ≤ k − n: since (A′,m) was

selected after k − m steps, and (A,n) is selected after k − n steps, this means that (A ′,m) was

selected before (A,n).

On the success side, a goal literal (A,n) can be solved by cache look-up, if a more general

goal literal (A′,m), with a higher associated depth bound (n ≤ m), was already solved, and had

solutions that can be found within the depth n allowed for A. More precisely, if a goal literal

(A′,m) was solved and (A′ρ1, p1), . . . , (A
′ρr, pr), where pj ≤ m for all j, 1 ≤ j ≤ r, are all its

solutions, then all the solutions of a goal literal (A,n), such that A = A′σ, and n ≤ m, are those

(A′ρj, pj) such that pj ≤ n, and A′ρj is an instance of A:

• Success

(T ; (A ∨ G,n); k;Cache ∪ {(A′,m) ↪→ (A′ρ, p)})

(T ; (Gτ, n − p); k;Cache ∪ {(A′,m) ↪→ (A′ρ, p)})
A = A′σ, 0 < p ≤ n ≤ m ≤ k, A′ρ = Aτ

The depth bound associated to the remaining goal Gτ is n− p, because a solution of depth p has

been used. The cache must contain all the solutions of (A′,m) to guarantee that all the solutions

of (A,n) may be found by caching. We remark that when we say “all the solutions” of a goal in

the form (A,n), we mean “all the solutions within depth n”.

The variants of the caching rules described in the previous section to make caching compati-

ble with first-order strategies and to keep into account cache subsumption, can be extended to

depth-dependent caching. Cache subsumption also becomes depth-dependent: given two solutions

(A′ρ1, p1) and (A′ρ2, p2) of (A′,m) such that A′ρ1 subsumes A′ρ2, (A′ρ2, p2) can be deleted if
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p1 ≤ p2, because we do not need a solution of A′ that is less general and requires to search deeper

in order to be found. On the other hand, if p1 > p2, then (A′ρ2, p2) must be kept, because it yields

a solution for all those goals (A,n) with A = A′σ such that p2 ≤ n ≤ m but p1 > n. (A′ρ1, p1)

would not yield a solution for such an (A,n), because p1 > n.

An additional variant of caching in the depth-dependent case is Heuristic Caching [5], where

the depth bound associated to the current goal is decreased by an heuristical value h, 0 < h < p,

rather than by the depth p of the applied solution:

(T ; (A ∨ G,n); k;Cache ∪ {(A′,m) ↪→ (A′ρ, p)})

(T ; (Gτ, n − h); k;Cache ∪ {(A′,m) ↪→ (A′ρ, p)})
A = A′σ, 0 < h < p ≤ n ≤ m ≤ k, A′ρ = Aτ

The advantage of this heuristic is that the strategy has more steps available to solve Gτ , since

h < p. Thus, it may find more solutions in the current round of iterative deepening than it would

if pure caching (i.e., caching without heuristic) or no caching were applied. The disadvantage

is that the portion of search space searched within the current round of iterative deepening will

be larger than with pure caching or no caching: it may happen that no additional solutions are

found, while more memory and time are consumed.

Caching and iterative deepening are especially well-suited for one another. For instance,

depth-dependent failure caching may apply more often than basic failure caching, because there

is a notion of depth-dependent failure. Depth-dependent failure is a relative failure: it may be

that (A′,m) fails while (A′, p) for some p > m succeeds. All (A,n) with A = A′σ and n ≤ m,

however, can be failed based on the failure of (A′,m), thereby saving a significant amount of

redundant search. On the other hand, basic failure caching does not apply until A ′ has failed

absolutely. Similarly, basic success caching does not apply until all solutions of A ′ have been

found. Depth-dependent success caching only needs that all solutions within a given depth have

been found. Therefore, depth-dependent caching allows to use the cache more eagerly than basic

caching.

9 Discussion

Forward-reasoning resolution strategies for first-order logic often suffer from generating too many

irrelevant clauses. In order to control the growth of the database of clauses, contraction inference

rules are usually employed. Subgoal-reduction strategies, on the other hand, lack the ability of

producing useful lemmas which may reduce the search effort. The question of how to combine

the best of the two worlds has long been a challenge to the automated deduction community.

In this paper we address this question by working on the idea of lemmaizing. Lemmaizing

is a concept used in the logic programming community for saving previous execution results for

later use. It has been used effectively both in enhancing Prolog [36] and in Prolog technology

theorem proving [5]. We show how to generalize lemmaizing to semantic resolution, formulating

the principle of lemmaizing as meta-level inference rules. From this starting point we give the

following contributions towards integrating features of forward and backward reasoning:

• We define concrete inference rules that implement the meta-rules for lemmaizing in forward-
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reasoning strategies with set of support. This shows that lemmaizing, a native feature of

goal-oriented strategies, can be done also in forward reasoning.

• We show how contraction rules can be incorporated in semantic strategies, even with lem-

maizing. This means that lemmaizing, a backward-reasoning feature, and contraction, a

forward-reasoning feature, can coexist. Furthermore, contraction rules can take advantage

of the unit lemmas produced by lemmaizing.

• We present a redundancy deletion method for forward-reasoning strategies which is based

on a notion of purity.

• We explain how our meta-rules for lemmaizing cover the lemmaizing of model elimination

as a special case.

• We formalize the caching techniques of subgoal-reduction strategies as inference rules justi-

fied by the lemmaizing meta-rules, including the depth-dependent caching of strategies with

a DFID search plan.

• We observe that lemmaizing and caching, by allowing subgoal-reduction strategies to keep

some generated clauses, make available to these strategies forms of contraction, such as

subsumption, that are typical of forward-reasoning strategies.

Our approach has a number of advantages. Unlike previous work on lemmatization which is

mostly limited to model elimination, it provides a general way of adding lemmas to the complement

of the set of support. Therefore, it offers a flexible way of adding some forward-reasoning ability to

goal-oriented strategies or, vice versa, some backward-reasoning ability to forward strategies. The

fact that our meta-rules for lemmaizing provide a logical foundation for many techniques, including

lemmaizing in set-of-support strategies, lemmaizing in model elimination, caching and depth-

dependent caching, shows that these meta-rules capture the essence of lemmaizing independently

of specific strategies and even classes of strategies. Our work on purity highlights an intui-

tive correspondence between purity deletion and failure caching. This is complementary to the

intuitive correspondence between subsumption and success caching suggested in [33], and therefore

reinforces the understanding that while contraction eliminates redundancy in contraction-based

strategies, caching eliminates redundancy in subgoal-reduction strategies.

We conclude with a discussion of the relation between this work and logic programming, con-

sidering logic programming with Horn clauses and the less known paradigm of logic programming

with rewrite rules.

The dichotomy of forward reasoning and subgoal-reduction that we have described for theo-

rem proving is very well-known also in logic programming and deductive databases. Top-down

evaluation of Horn clauses is a subgoal-reduction strategy, and some of its strengths (e.g., it is

goal-oriented) and weaknesses (e.g., the repetition of subgoals) are essentially the same as those of

subgoal-reduction strategies for theorem proving. Symmetrically, bottom-up evaluation of Horn

clauses is a forward-reasoning strategy: it is not goal-oriented, but since it proceeds by generating

and keeping facts, it can use them to eliminate duplicates, which is a simple form of contraction.

Techniques similar to lemmaizing and especially caching, known under the names of memoing ,
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tabling or OLDT-resolution, have been developed independently in logic programming with the

purpose of preventing repetition of subgoals in top-down evaluation3. On the other hand, in

deductive databases, the magic template or magic sets transformation of Horn clauses without

function symbols (Datalog programs) has been designed to make bottom-up evaluation sensitive

to the query. A survey of these approaches may be found in [36].

While it is well-known that the tabling techniques in logic programming are essentially forms

of lemmaizing (at least from a logical point of view that abstracts from the sophistication of

actual implementations), we observe that also the magic template can be interpreted in terms of

lemmaizing. This is best shown by means of a simple example taken from [36]: the (semi-näıve)

bottom-up evaluation of the clauses

(1) arc(a, b).

(2) arc(c, b).

(3) arc(b, d).

(4) path(X,Y ) :−arc(X,Y ).

(5) path(X,Z) :−arc(X,Y ), path(Y,Z).

generates first the facts {arc(a, b), arc(c, b), arc(b, d)}, then {path(a, b), path(c, b), path(b, d)}, and

finally {path(c, d), path(a, d)}. The magic transformation driven by the query ?− path(c,X)

replaces clauses (4) and (5) by

(6) path(X,Y ) :−calls to path(X,Y ), arc(X,Y ).

(7) path(X,Z) :−calls to path(X,Z), arc(X,Y ), path(Y,Z).

(8) calls to path(c,X).

(9) calls to path(Y,Z) :−calls to path(X,Z), arc(X,Y ).

The bottom-up evaluation of the transformed program generates first {arc(a, b), arc(c, b), arc(b, d),

calls to path(c,X)}, then adds {path(c, b), calls to path(b, Z)} at the first iteration, {path(b, d),

calls to path(d, Z)} at the second iteration, and {path(c, d)} at the third iteration, after which

the fixed-point is reached. The evaluation is partially goal-driven in that the facts path(a, b)

and path(a, d), that are irrelevant to the query, are not generated. What is interesting to this

discussion, however, is the generation of the facts calls to path(b, Z) and calls to path(d, Z). Since

path(b, Z) and path(d, Z) are subgoals of path(c,X), the magic transformation has forced bottom-

up evaluation to generate subgoals, that is, lemmas from the goal. Of course, it is well-known that

while tabling techniques add a bottom-up character to top-down evaluation, magic sets add a top-

down character to bottom-up evaluation. We would like to emphasize that both mechanisms are

an instance of lemmatization from the logical point of view: lemmas from the axioms in tabling

and lemmas from the goal in magic sets. Magic sets are different, because in magic sets lemma

generation is induced by transforming the program, rather than by enriching the inference system.

For instance, in the above example, the inference system is positive unit resolution (the inference

rule which corresponds to bottom-up evaluation) in both executions. However, in the second

execution the presence of clauses (8) and (9) introduced by the magic transformation causes the

inference system to generate the lemmas calls to path(b, Z) and calls to path(d, Z).

We observe that lemmatization appears also in logic programming with rewrite programs and

3In logic programming the main motivation for avoiding the repetition of subgoals is to improve the termination

properties of programs.
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Linear Completion. Rewrite programs are made of rewrite rules interpreted as logical equi-

valences of conjunctions of atoms: facts have the form A → true, and rules may have the

form A,B1, . . . Bn → B1, . . . Bn (meaning A if B1, . . . Bn), or A → B1, . . . Bn (meaning A iff

B1, . . . Bn). A query ∃x̄ Q1, . . . Qk is written as Q1, . . . Qk → answer(x̄), and if a rule in the form

answer(x̄)σ → true, called answer rule, is deduced, σ is an answer substitution. The Linear

Completion of rewrite programs is basically a subgoal-reduction strategy, where at each step a

program rule overlaps with the current goal to generate a new goal. In [7], Linear Completion also

features Simplification of the current goal by its ancestor goals, and the addition of the generated

answer rules to the program. The use of simplification, coupled with the additional expressive

power of iff-rules, modifies the behaviour of the programs in several ways, including some loop

avoidance and pruning of the search space, that were studied in detail in [7]. Here we emphasize

that the addition of the answer rules to the program is another form of lemmaizing. Indeed,

Linear Completion treats the answer rules like the input program rules, using them for overlap

and simplification of the current goal. Also, both simplification and lemmatization of answers are

forward-reasoning features added to a subgoal-reduction mechanism.

In summary, lemmatization is a powerful idea, which covers seemingly disparate mechanisms,

such as memoing, magic sets and answer rules, emerged in different approaches to logic program-

ming. In this paper, we have shown that lemmatization can be done in full first-order logic, and

for inference systems as general as semantic resolution. In our treatment, lemmaizing may be used

to add forward-reasoning to backward-reasoning strategies and backward-reasoning to forward-

reasoning strategies, thereby extending to first-order logic and theorem proving the duality that

was known in logic programming.
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