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Abstract

Verification problems require to reason in theories of data structures and fragments of

arithmetic. Thus, decision procedures for such theories are needed, to be embedded in, or

interfaced with, proof assistants or software model checkers. Such decision procedures ought

to be sound and complete, to avoid false negatives and false positives, efficient, to handle large

problems, and easy to combine, because most problems involve multiple theories. The rewrite-

based approach to decision procedures aims at addressing these sometimes conflicting issues in a

uniform way, by harnessing the power of general first-order theorem proving. In this article, we

generalize the rewrite-based approach from deciding the satisfiability of sets of ground literals

to deciding that of arbitrary ground formulæ in the theory. Next, we present polynomial

rewrite-based satisfiability procedures for the theories of records with extensionality and integer

offsets. The generalization of the rewrite-based approach to arbitrary ground formulæ and the

polynomial satisfiability procedure for the theory of records with extensionality use the same

key property – termed variable-inactivity – that allows one to combine theories in a simple

way in the rewrite-based approach.

Keywords: rewrite-based theorem-proving, theory reasoning, satisfiability modulo theories, decision

procedures, theories of data structures

∗E-mail: mariapaola.bonacina@univr.it; Tel.: +39 045/802.7046
†E-mail: echenim@sci.univr.it; Tel.: +39 045/802.7908

1



1 Introduction

Decision procedures for satisfiability modulo a theory, or, equivalently, T -satisfiability, where T is

a theory, are essential components of reasoning-based verification systems from various approaches

(e.g., PVS [31], ACL2 [21], CVC Lite [4], Zap [23], Simplify [16], MathSAT [11], Yices [17] and

Barcelogic [28]). With this motivation, much research is being devoted to the concept and design

of T -satisfiability procedures, that are efficient and simple to combine. Indeed, most verification

problems of practical interest require the system to reason in several theories at the same time.

The problem of combination of theories is how to solve T -satisfiability problems, where T is the

union of theories T1, . . . ,Tn, by using theory solvers for each Ti in a modular way. A standard

solution is to resort to the Nelson-Oppen combination scheme, that was pioneered in [27] and

developed by several authors (e.g., [20] for a survey). This scheme requires that all involved

theories are stably infinite, which means a ground formula is T -satisfiable if and only if it is

T -satisfiable in a model with domain of infinite cardinality.

The rewrite-based approach [3, 1, 8] investigates ways to apply generic first-order theorem

proving to T -satisfiability problems. The central idea is that if a refutationally complete inference

system SP is guaranteed to terminate on T -satisfiability problems, a fair SP-strategy is a decision

procedure for T -satisfiability, where SP (e.g., [29]) is a standard, rewrite-based inference system,

named from superposition. This methodology was applied successfully to the T -satisfiability of

sets of ground literals in the theories of equality, non-empty possibly cyclic lists (so-called lists

à la Shostak and lists à la Nelson-Oppen), arrays with or without extensionality and finite sets

with extensionality [3]; records with or without extensionality, possibly empty possibly cyclic lists,

integer offsets and integer offsets modulo [1]; and recursive data structures as defined in [30], with

one constructor and multiple selectors, including non-empty acyclic lists [8].

The combination of theories is addressed as modularity of termination: if SP terminates on

Ti-satisfiability problems, it terminates also on T -satisfiability problems, provided the combined

theories are variable-inactive [1]. All the above mentioned theories from [3, 1, 8] satisfy this

requirement. Variable-inactivity appears to be a rather versatile property. In [10, 1], it was

shown that it implies stable infiniteness, thereby relating combination of theories in the rewrite-
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based approach to combination of theories à la Nelson-Oppen. In [22], variable-inactivity, and

the meta-saturation notion of [24], later revised in [25], were used to devise simple tests for stable

infiniteness and a so-called deduction completeness property.

In this article, we study variable-inactivity to pursue two objectives:

1. Generalizing the rewrite-based approach from T -satisfiability of sets of ground literals to

that of ground formulæ and

2. Lowering the complexity of rewrite-based T -satisfiability procedures.

1.1 Rewrite-based T -decision procedures

In the literature on decision procedures for theory reasoning, a procedure is said to be a T -

satisfiability procedure, if it decides T -satisfiability of sets of ground literals, and a T -decision

procedure, if it decides T -satisfiability of arbitrary ground formulæ. Of course, a T -satisfiability

procedure could be applied to a formula after it has been reduced to disjunctive normal form,

but this approach is not practical. Another method would be to explore how to integrate rewrite-

based T -satisfiability procedures with a SAT-solver, that is, a solver for the satisfiability problem

in propositional logic. This is the approach of many authors (e.g., [5, 13, 2, 18, 11, 28]) for T -

satisfiability procedure based on congruence closure algorithms, to reason about ground equalities,

with the theory axioms built-in. A lose integration of the E theorem prover [32], used as a rewrite-

based T -satisfiability procedure, with a SAT-solver, was experienced with in the haRVey system

[14]. A tight integration has never been realized. Since SAT-solvers are based on case analysis

by backtracking, and rewrite-based inference engines are proof-confluent, which means they do

not require backtracking, their tight integration would require to address the issues posed by the

interplay of two radically different sorts of control.

A different direction was explored in [7], by introducing a set of conditions collectively termed

subterm-inactivity. In that article we proved that subterm-inactivity guarantees the termination of

SP on T -decision problems. In the above catalogue of theories, subterm-inactivity is satisfied by

decision problems in the theories of equality, finite arrays with or without extensionality, recursive

data structures, including integer offsets as a special case, sets with or without extensionality and
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two extensions of the theory of arrays with additional predicates. Thus, an SP-strategy is a

T -decision procedure for problems in these theories and in their combinations, because subterm-

inactivity implies variable-inactivity [7]. However, other theories, such as those of lists, records and

integer offsets modulo do not satisfy subterm-inactivity. Furthermore, although most subterm-

inactivity conditions can be tested automatically in principle, they are interwoven in a complex

way and therefore hard to understand.

In this article, we present a more general and much simpler approach. We prove that

variable-inactivity alone is sufficient to guarantee the termination of SP on T -decision prob-

lems. More precisely, if T is variable-inactive, a rewrite-based T -satisfiability procedure also

yields a rewrite-based T -decision procedure. This finding draws on an analysis of SP-inferences

in variable-inactive theories. It follows that an SP-strategy is a T -decision procedure for any

variable-inactive theory for which it is a T -satisfiability procedure. Since subterm-inactivity im-

plies variable-inactivity, this result improves that of [7] by weakening the sufficient condition for

termination. As mentioned above, while only some of the theories covered by the rewrite-based

approach [3, 1, 8] are subterm-inactive, all of them are variable-inactive. This means that an

SP-strategy is a T -decision procedure for the theories of equality, non-empty possibly cyclic lists,

arrays with or without extensionality, finite sets with or without extensionality, records with or

without extensionality, possibly empty possibly cyclic lists, integer offsets modulo, and recursive

data structures, including integer offsets and non-empty acyclic lists as subcases.

1.2 Polynomial rewrite-based T -satisfiability procedures

Using first-order theorem-proving strategies as T -satisfiability procedures offers several advan-

tages. First, it is not necessary to provide ad hoc proofs of correctness and completeness for each

procedure for each theory, since the inference system is known to be sound and refutationally

complete for first-order logic with equality. Second, proof generation and model generation are

considered as desirable, but not standard, features for T -satisfiability procedures at least since

[26]. On the other hand, proof generation is a standard feature of theorem provers, and if the

input set is satisfiable, the strategy generates a finite saturated set, that may form a basis to

build a model [12]. Third, one can apply an existing theorem prover “off the shelf,” as was done
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in [1] with very good results, or else modify it for T -satisfiability, re-using already developed data

structures, algorithms and code.

These advantages are balanced by the consideration that the rewrite-based T -satisfiability

procedures in [3, 1, 8] are exponential, except those for non-empty possibly cyclic lists [3], records

without extensionality and integer offsets modulo [1]. For some theories, the T -satisfiability

procedure is exponential, because the problem itself is exponential, as it is the case for arrays. In

general, it is clearly desirable to have polynomial procedures and to know if they can be obtained.

In the second part of this article, we present polynomial rewrite-based T -satisfiability procedures

for the theories of records with extensionality and integer offsets. Thus, all the above advantages

can be combined with polynomial complexity for more theories. While other polynomial T -

satisfiability procedures for integer offsets are known (e.g., [28]), to the best of our knowledge

ours is the first polynomial T -satisfiability procedures for records with extensionality.

The polynomial result for records with extensionality rests on two ingredients that may apply

to all variable-inactive theories. The first one is the same analysis of derivable clauses that we

use to obtain the T -decision procedures. The second one is a technique where the SP-strategy

is used as a pre-processor for part of the problem. The result on integer offsets does not use

variable-inactivity, but requires a reduction to finitize the problem, because the axiomatization of

the theory of integer offsets is infinite. A first reduction was devised in [1] and extended to any

theory of recursive data structures in [8]. That reduction was based on preprocessing the input set

of unit clauses and introducing an injectivity lemma, which resulted in an exponential procedure.

In this article we show how to select a finite subset of the axioms, while preserving satisfiability

of the considered problem. The resulting reduction is cleaner and simpler than that of [1], since

it requires neither preprocessing nor introducing additional lemmata. Because it stems from a

better understanding of the theory, it yields a polynomial T -satisfiability procedure.

The article is organized as follows: Section 2 recalls basic definitions; Section 3 presents

variable-inactivity, the analysis of SP-inferences in variable-inactive theories, and the proof of

the termination of SP on T -decision problems. Sections 4 and 5 show how to obtain polynomial

rewrite-based T -satisfiability procedures for the theories of records with extensionality and integer

offsets, respectively.
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2 Preliminaries

Given a signature Σ, we assume the standard definitions of Σ-terms, Σ-literals, Σ-clauses and

Σ-sentences, where Σ is omitted when it is clear from context. Clauses are variable-disjoint and

a clause is positive (resp. negative) if it only contains positive (resp. negative) literals. A theory

is presented by a set T of Σ-sentences, called its presentation or axiomatization. The theory

presented by T is the set of all its theorems: Th(T ) = {ϕ | T |= ϕ}. For notation, ≃ is unordered

equality1, ⊲⊳ is either ≃ or 6≃, while = is identity. Lower-case letters l, r, u, v, t denote generic terms,

while we reserve w, x, y, z for variables and a, b, c for constants. The notation l[u] represents a

term where u appears as subterm in context l. Upper-case letters C,D,C ′,D′ denote clauses or

disjunctions of literals, L is used for literals, and S,F,N for sets of clauses. More notation may

be introduced as needed.

We consider the standard definition of Σ-algebras and Σ-models. Given a Σ-algebra M =

(D, I), for all function symbols f ∈ Σ, [f ]I denotes the interpretation of f , and for all constant

symbols c ∈ Σ, I(c) denotes the interpretation of c. If M is a model for a formula ϕ (or, equiv-

alently, a set of clauses S), by the Löwenheim-Skolem theorem, we may assume that the domain

D is denumerable. In the sequel, we assume that all considered Σ-algebras have denumerable

domain. Since an arbitrary ground formula can be reduced to a set of ground clauses, we have:

Definition 2.1 For a presentation T , a T -satisfiability problem is given by T ∪ S, where S is a

set of ground unit clauses. A T -decision problem is given by T ∪ S, where S is a set of ground

clauses. ✸

In either case, the problem is to decide whether T ∪ S is satisfiable. For sets of clauses S and S′,

we write S ≡s S
′ to say that S and S′ are equisatisfiable, that is, S has a model if and only if S′

has a model.

For a term t, the depth of t, denoted by depth(t), is 0 if t is a constant or variable, and

depth(f(t1, . . . , tn)) = 1 + max{depth(ti) | i = 1, . . . , n} otherwise. For literals, depth(l ⊲⊳ r) =

depth(l) + depth(r).

1That is, l ≃ r stands for l ≃ r or r ≃ l.
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Definition 2.2 A positive literal is flat if its depth is 0 or 1; a negative literal is flat if its depth

is 0; a literal is strictly flat if its depth is 0. A clause is flat, respectively, strictly flat, if all its

literals are. ✸

The operation of flattening consists of transforming a finite set of ground Σ-clauses S into a

finite set of ground clauses S1 ⊎ S2 over a signature Σ′, in such a way that:

• Σ′ is obtained by adding a finite number of constants to Σ,

• every clause in S1 is unit and flat,

• every clause in S2 is strictly flat and

• T ∪ S ≡s T ∪ S1 ∪ S2.

For example, the set S = {f(a) 6≃ f(b)∨ f(a) 6≃ f(c)} can be transformed into the sets of clauses

S1 = {f(a) ≃ a′, f(b) ≃ b′, f(c) ≃ c′} and S2 = {a′ 6≃ b′ ∨ a′ 6≃ c′} by introducing fresh constants

a′, b′ and c′. Intuitively, the clauses in S1 define functions, while those in S2 establish constraints

on individuals. This flattening operation generalizes that of [3, 1] for unit clauses: if all clauses

in S are unit, S2 is empty.

The Superposition Calculus

A simplification ordering ≻ is an ordering that is stable, monotonic and contains the subterm

ordering : if u ≻ v, then l[u]σ ≻ l[v]σ for any context l and substitution σ, and if v is a subterm

of u then u ≻ v. A complete simplification ordering, or CSO, is a simplification ordering that

is total on ground terms. We write v ≺ u if u ≻ v. More details on orderings can be found in

surveys such as [15]. We say that a CSO is good, if t ≻ c, whenever t is a compound term and c a

constant. This condition was part of the T -goodness requirement on the ordering, for all theories

considered in [1]. In this article, a theory independent requirement on the ordering suffices, and

therefore we call this property simply goodness.

A strategy, denoted by S, is given by an inference system and a search plan that controls the

application of the inference rules. The superposition calculus, or SP, is a refutationally complete
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Superposition
C ∨ l[u′] ≃ r D ∨ u ≃ t

(C ∨ D ∨ l[t] ≃ r)σ
(i), (ii), (iii), (iv)

Paramodulation
C ∨ l[u′] 6≃ r D ∨ u ≃ t

(C ∨ D ∨ l[t] 6≃ r)σ
(i), (ii), (iii), (iv)

Reflection
C ∨ u′ 6≃ u

Cσ
(v)

Equational Factoring
C ∨ u ≃ t ∨ u′ ≃ t′

(C ∨ t 6≃ t′ ∨ u ≃ t′)σ
(i), (vi)

where σ is the most general unifier (mgu) of u and u′, u′ is not a variable in

Superposition and Paramodulation, and the following abbreviations hold:

(i): uσ 6� tσ; (ii): ∀L ∈ D : (u ≃ t)σ 6� Lσ; (iii): l[u′]σ 6� rσ;

(iv): ∀L ∈ C : (l[u′] ⊲⊳ r)σ 6� Lσ; (v): ∀L ∈ C : (u′ 6≃ u)σ 6≺ Lσ;

(vi): ∀L ∈ {u′ ≃ t′} ∪ C : (u ≃ t)σ 6≺ Lσ.

In standard terminology, D ∨ u ≃ t paramodulates into C ∨ l[u′] ⊲⊳ r.

Figure 1: Expansion inference rules of SP : in expansion rules, what is below the inference line is added

to the clause set that contains what is above the inference line.

rewrite-based inference system for first-order logic with equality. It consists of expansion inference

rules (see Figure 1) and contraction inference rules (see Figure 2). Since it is based on a CSO

on terms and literals, we write SP≻ to emphasize the ordering. A strategy with inference system

SP≻ is called an SP≻-strategy, and it is said to be good if ≻ is. From now on, we consider only

good CSO’s and good SP≻-strategies.

A clause C is redundant with respect to SP in a set of clauses S, if S can be derived from

S ∪ {C} by application of contraction rules in SP. Since SP is the only inference system in this

article, we write redundant for redundant with respect to SP. An inference is redundant in S, if

either its conclusion or one of its premises is redundant in S. An SP≻-derivation is a sequence

S0 ⊢SP≻ S1 ⊢SP≻ . . . Si ⊢SP≻ . . . ,

where each Si is a set of clauses, obtained by applying an inference rule to clauses in Si−1. Let
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Strict Subsumption
C D

C

D •> C

Simplification
C[u] l ≃ r

C[rσ] l ≃ r
u = lσ, lσ ≻ rσ, C[u] ≻ (l ≃ r)σ

Deletion
C ∨ t ≃ t

where D •> C if D •≥ C and C 6•≥ D; and D •≥ C if Cσ ⊆ D (as multisets) for

some substitution σ. In practice, theorem provers apply also subsumption of

variants: if D •≥ C and C •≥ D, the oldest clause is retained.

Figure 2: Contraction inference rules of SP : in contraction rules, what is above the double inference line

is removed from the clause set and what is below the double inference line is added to the clause set.

S∗ =
⋃

i Si be all clauses appearing anywhere in {Si}i. The limit of a derivation is the set of

persistent clauses: S∞ =
⋃

j≥0

⋂

i≥j Si. If a derivation is finite and of length n, we may write

S0 ⊢
n
SP≻

Sn. A derivation {Si}i is sound, if S∞ ⊆ Th(Si), for all i, and it is adequate, if, for all i,

Si ⊆ Th(S∞).

Since the subset of strictly flat persistent clauses will be relevant in the following, we give:

Definition 2.3 The core limit of a derivation S0 ⊢SP≻ S1 ⊢SP≻ . . . Si ⊢SP≻ . . . is the subset

F∞ ⊆ S∞ defined by F∞ = {C | C ∈ S∞ ∧ C is strictly flat}. ✸

Rewrite-based inference systems such as SP enjoy the property that once something becomes

redundant during a derivation, it will remain such forever, or “once redundant, always redundant”

[29, 6]. Thus, if C is redundant in Si, it is redundant in Sj for all j > i and in S∞.

Let S be an SP≻-strategy with search plan P. The sequence S0 ⊢S S1 ⊢S . . . Si ⊢S . . . is the

unique derivation generated by S from input S0. For S to be complete, P must be fair :

Definition 2.4 A derivation S0 ⊢SP≻ . . . Sn ⊢SP≻ . . . is fair with respect to SP≻ if all expansion

inferences in SP≻ with premises in S∞ are redundant in some Sj for j ≥ 0. ✸
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A search plan is fair if all the derivations it controls are fair, and an SP≻-strategy is fair if its

search plan is. We consider only fair and therefore complete SP≻-strategies.

If SP≻ is guaranteed to terminate on T -satisfiability problems, generating a finite limit, a

fair SP≻-strategy is a rewrite-based T -satisfiability procedure: adapting a terminology of [10], in

such a case T is said to be ∃-SP≻-decidable. The complexity of a T -satisfiability procedure is

expressed as a function of the size of S, measured by the number of subterms occurring in S. For

a rewrite-based T -satisfiability procedure, the pre-processing phase, where S is flattened, can be

performed in linear time in the size of S. Each SP≻-inference step takes polynomial time in the

size of the set of clauses during the derivation. Since, by fairness, only inferences from persistent

clauses need to be considered, the complexity of the application of the SP≻-strategy depends on

the size of S∞: if S∞ has, in the worst case, exponential or polynomial cardinality in terms of the

size of S, the procedure will be exponential or polynomial, respectively.

3 Variable-inactivity

In this section, we analyze the syntactic properties of SP≻-derivable clauses, that follow from

variable-inactivity and goodness. Then, we use them to construct a rewrite-based T -decision

procedures for all theories admitting a rewrite-based T -satisfiability procedure.

Definition 3.1 Given a CSO ≻, a clause C is variable-inactive for ≻, if no maximal literal2 in

C is an equation t ≃ x, where x /∈ Var(t). A set of clauses is variable-inactive for ≻, if all its

clauses are variable-inactive for ≻. A presentation T is variable-inactive for ≻, if the limit S∞ of

any fair SP≻-derivation from a satisfiability problem S0 = T ∪ S is variable-inactive. ✸

When no confusion is possible, we say that a clause (a set of clauses or a presentation, respec-

tively) is variable-inactive, without mentioning ≻.

2Literal L is maximal in C if for all substitutions σ and literals L
′ 6= L in C, Lσ 6� L

′
σ.
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Example 3.2 Consider the following three clauses:

C1 = car(cons(x, y)) ≃ x,

C2 = z ≃ w ∨ select(store(x, z, v), w) ≃ select(x,w),

C3 =
∨

1≤j<k≤n

(xj ≃ xk).

Clause C1 is the axiom of the theory of lists that states that the car function returns the first

element of a list. This clause is variable-inactive, since the variable x appears in car(cons(x, y)).

Clause C2 is the axiom of the theory of arrays that says that if array x is updated at position z with

element v, all its other elements remain unchanged. This clause is also variable-inactive, although

it contains a literal z ≃ w where z /∈ Var(w), because both z and w occur in select(store(x, z, v), w),

so that z ≃ w cannot be maximal by the subterm property of CSO’s. Clause C3 is a finite

cardinality axiom: the domain of any model of this clause has cardinality at most n. C3 is

obviously not variable-inactive.

3.1 Analysis of inferences

Given a variable-inactive clause C, the following lemma provides a syntactic characterization of

a maximal term in a maximal literal of C. In Lemmata 3.3 and 3.4 we assume that the clauses

under consideration contain no literals of the form x ⊲⊳ x. There is no loss of generality under

this assumption: any clause of the form x ≃ x∨C can be deleted by the deletion rule; any clause

of the form x 6≃ x ∨ C can be replaced by the clause C, generated by reflection from x 6≃ x ∨ C,

and applied to subsume x 6≃ x ∨ C.

Lemma 3.3 Let C be a variable-inactive clause and L = l ⊲⊳ r be a maximal literal in C, where

l is maximal in L:

1. If C is strictly flat then l and r are both constants;

2. If C is not strictly flat then l is a compound term.

Proof. As a preliminary, we prove that l is either a compound term or a constant. By way of

contradiction, suppose l is a variable. Then, since L is maximal, by variable-inactivity, l must be
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in Var(r). By assumption, L is not of the form l ⊲⊳ l, thus l is a strict subterm of r. Since ≻ has

the subterm property we must have r ≻ l, which contradicts the assumption that l is maximal.

We prove next the two claims.

1. Assume that C is strictly flat. By the preceding argument l must be a constant. As for r,

if it were a variable, by variable-inactivity it should be r ∈ Var(l), which is impossible since

l is a constant. Thus, r is a constant as well.

2. Assume that C is not strictly flat. By way of contradiction, suppose l is a constant. If

r were a compound term, then, by goodness, r ≻ l, which contradicts the fact that l is

maximal in L. Thus, r is either a variable or a constant. If r were a variable, since L is

maximal, it should be r ∈ Var(l) by variable-inactivity, which is impossible because l is a

constant by assumption. Therefore, r is necessarily a constant and L is strictly flat. Since

C is not strictly flat by hypothesis, it must contain another literal L′ = l′ ⊲⊳ r′, where one

side, say l′, is a compound term. By goodness, it must be l′ ≻ l and l′ ≻ r, contradicting

the maximality of L in C.

Using Lemma 3.3, we determine which binary SP≻-inferences that generate clauses apply

when one of the premises is strictly flat. Such inferences can be superpositions, paramodulations

or simplifications (see Figures 1 and 2); for simplicity we write paramodulation in all cases.

Lemma 3.4 Let C be a variable-inactive clause and C ′ a strictly flat ground clause.

1. If C ′ paramodulates into C, then C = l[a] ⊲⊳ r ∨ D, C ′ = a ≃ a′′ ∨ D′ and the generated

clause is l[a′′] ⊲⊳ r ∨D ∨D′.

2. If C paramodulates into C ′, then C = a ≃ a′ ∨D, C ′ = a ⊲⊳ a′′ ∨D′, C is also strictly flat,

and the generated clause is a′ ⊲⊳ a′′ ∨D ∨D′, which is strictly flat as well.

Thus, the mgu of a binary SP≻-inference on C and C ′ is necessarily the empty substitution.

Proof. If C ′ paramodulates into C, since we do not paramodulate into variables, it must be

C ′ = a ≃ a′′ ∨ D′ and C = l[a] ⊲⊳ r ∨ D. Hence, the corresponding mgu is empty and the

generated clause is l[a′′] ⊲⊳ r ∨D ∨ D′. If C paramodulates into C ′, since C ′ is strictly flat and
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T ∪ S

Flatten

T ∪ S1 S2

SP≻-strategy

S∞

S∞ ∪ S2

SP≻-strategy

Sat/Unsat

Figure 3: Solving T -decision problems by the rewrite-based approach.

ground, its maximal literal has the form a ⊲⊳ a′′ and C ′ = a ⊲⊳ a′′∨D′ for D′ also strictly flat. Let

L = u ≃ v be the considered maximal literal in C, and u be maximal in L. To paramodulate into

a constant, u cannot be a compound term, and by Lemma 3.3(2), C must be strictly flat. Then,

by Lemma 3.3(1), u and v must be constants. Hence, C is of the form a ≃ a′ ∨ D, where D is

strictly flat. The mgu of the paramodulation of C into C ′ is therefore empty, and the generated

clause is a′ ⊲⊳ a′′ ∨D ∨D′ which is strictly flat.

In order to apply these lemmata, from now on we assume that all considered presentations T

do not contain literals in the form x ⊲⊳ x. Clearly, this is not a significant restriction.

3.2 Rewrite-based T -decision procedures

In this section, we use the previous analysis of possible inferences to prove that variable-inactivity

guarantees termination of a strategy on T -decision problems, provided it terminates on T -

satisfiability problems. Figure 3 shows how the strategy is applied (recall that S1 is unit and

flat and S2 is strictly flat).

Theorem 3.5 If T is variable-inactive and ∃-SP≻-decidable, any fair SP≻-strategy S is a T -
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decision procedure.

Proof. We prove the claim by showing that S terminates on a T -decision problem T ∪ S,

following the scheme of Figure 3. S is flattened into S1 ⊎ S2 as described in Section 2. Since T is

∃-SP≻-decidable, when S is applied to T ∪ S1, it generates a finite limit S∞ (first application of

the SP≻-strategy in Figure 3). Consider next the union S∞∪S2 and the second application of the

SP≻-strategy in Figure 3. To prove termination, we only need to consider expansion inferences

and simplifications. Let C ∈ S∞ and C ′ ∈ S2. As far as unary inferences are concerned, no non-

redundant unary inference applies to C, since C comes from S∞ and all inferences are redundant

in S∞. If a unary inference applies to C ′, the corresponding mgu is empty and a strictly flat clause

is generated. For binary inferences, C and C ′ satisfy the requirements of Lemma 3.4. If a binary

inference applies to C and C ′, the generated clause is one of those described in Lemma 3.4 with

empty mgu. Thus, every possible inference involves a constant paramodulated into and from.

Since there are finitely many constants in S∞ ∪ S2, only finitely many inferences may apply, and

the second application of the SP≻-strategy in Figure 3 also terminates. If it generates the empty

clause, the procedure returns Unsat, and Sat otherwise.

Based on this result, it is possible to solve T -decision problems by applying the scheme of

Figure 3. This scheme works for all the theories considered in [3, 1, 8, 7], including those of

records and integer offsets, that we study in greater detail in the second part of the article.

4 A polynomial procedure for records with extensionality

In this section, we use the above analysis to devise a polynomial T -satisfiability procedure for

the theory of records with extensionality. We start from the following observation: consider Fig-

ure 3 and assume that the set S2 of strictly flat ground clauses contains only negative clauses.

Since negative clauses can be only paramodulated into, S2 plays a merely passive role with re-

spect to expansion, when the SP≻-strategy is applied to S∞ ∪ S2 in Figure 3. Furthermore, by

Lemma 3.4(2), we know that a clause C ∈ S∞ that paramodulates into a clause C ′ ∈ S2 must be

strictly flat and therefore in F∞, which represents the “active core”, sort of speak, of the limit. If

F∞ is made of ground unit clauses, none of them can be strictly subsumed by a clause in S2, so
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that S2 plays a passive role also with respect to contraction. Furthermore, the union F∞ ∪S2 is a

set of Horn clauses, whose satisfiability can be tested in polynomial time (cf., e.g., [19, Theorem

4]). Thus, if the T -satisfiability of the set S1 of flat unit clauses is decided in polynomial time,

the T -satisfiability of S1∪S2 also will be decided in polynomial time, because the only additional

work is given by F∞ ∪ S2.

As this may look like a strong collection of requirements, we begin by seeing how satisfiability

problems in the theory of records with extensionality offer precisely this kind of situation. In

order to make this article self-contained and fully readable, we reproduce in the following two

lemmata and one theorem from [1].

Let t1, . . . ,tn be sorts, and let rec be the sort of records with n fields of sort t1, . . . ,tn,

respectively. Signature Σ is the sorted signature that contains, for all i, 1 ≤ i ≤ n, the function

symbols rstorei : rec × ti → rec, which stores a value of sort ti in the ith-field of the given

record, and rselecti : rec → ti, which extracts a value of sort ti from the ith-field of the given

record. The theory of records is defined by the following presentation, denoted by R:

∀x, v. rselecti(rstorei(x, v)) ≃ v for all 1 ≤ i ≤ n,

∀x, v. rselectj(rstorei(x, v)) ≃ rselectj(x) for all 1 ≤ i 6= j ≤ n.

The theory of records with extensionality is axiomatized by the presentation Re, which consists

of the previous axioms together with:

∀x, y.

(

∧n
i=1

rselecti(x) ≃ rselecti(y)

)

⇒ x ≃ y.

In this section we are concerned with satisfiability problems, and therefore the given problem

is a set of ground unit clauses, or, equivalently, ground literals, which is reduced by flattening to a

set S of ground flat literals. It is known that SP≻ is guaranteed to terminate on problems in the

form S0 = R ∪ S, generating a finite, variable-inactive limit S∞ with a core F∞ made of ground

unit clauses:

Lemma 4.1 (Lemma 2 of [1]) If S0 = R ∪ S, where S is a set of ground flat literals, all

clauses in S∞ are unit and are of the following kinds, where r, r′ are constants of sort rec,

and e, e′ are constants of sort ti for some i, 1 ≤ i ≤ n: the empty clause; the clauses in R;
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rselecti(rstorei(x, v)) ≃ v, ∀i, 1 ≤ i ≤ n; rselectj(rstorei(x, v)) ≃ rselectj(x), ∀i, j, 1 ≤ i 6= j ≤ n;

ground flat unit clauses of the form: r ≃ r′, e ≃ e′, e 6≃ e′, rstorei(r, e) ≃ r′, for some i, 1 ≤ i ≤ n,

rselecti(r) ≃ e, for some i, 1 ≤ i ≤ n; rselecti(r) ≃ rselecti(r
′), for some i, 1 ≤ i ≤ n.

Since S∞ has cardinality at most quadratic in the number of subterms in S, an SP≻-strategy

is a polynomial R-satisfiability procedure (cf. [1, Theorem 2]). The following reduction of Re to

R was preliminarily established:

Lemma 4.2 (Lemma 1 of [1]) Let S = S′ ⊎ SN be a set of ground flat literals, where SN

contains all the literals of the form l 6≃ r, with l and r of sort rec. For all L = l 6≃ r ∈ SN let

CL =
∨n

i=1
rselecti(l) 6≃ rselecti(r) be its associated clause. Then Re∪S ≡s R∪S′∪{CL |L ∈ SN}.

TheR-decision problem S′∪{CL |L ∈ SN} can be converted into disjunctive normal form, thereby

reducing Re-satisfiability to R-satisfiability. However, the Re-satisfiability procedure including

this reduction is exponential:

Theorem 4.3 (Theorem 2 of [1]) A fair SP≻-strategy is a polynomial satisfiability procedure

for R and an exponential satisfiability procedure for Re.

As suggested at the beginning of this section, the crucial observation is that the clauses in

{CL | L ∈ SN} are negative. The flattening of {CL | L ∈ SN} yields S′′ ∪ N , where S′′ is a set

of ground flat unit clauses and N is a set of ground, strictly flat and negative clauses. Thus,

R∪S′∪{CL |L ∈ SN} is transformed into R∪ (S′∪S′′)∪N . Let S∞ be the finite limit generated

fromR∪(S′∪S′′) and F∞ be its core. The central step is to prove that R∪(S′∪S′′)∪N ≡s F∞∪N .

Then, since F∞ ∪N is ground and Horn, its satisfiability, and, by Lemma 4.2, that of Re∪S, can

be decided in polynomial time.

Definition 4.4 A presentation T has ground unit core limit, if for all fair SP≻-derivation from

a satisfiability problem S0 = T ∪ S, the set F∞ is made of ground unit clauses. ✸

In the following, we develop formally the above reasoning, not only for R, but for any T that

is (1) variable-inactive, (2) ∃-SP≻-decidable, so that for any satisfiability problem S0 = T ∪ S,

the limit S∞ is finite, and (3) with ground unit core limit F∞.
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Lemma 4.5 For all sets N of ground, strictly flat and negative clauses, all persistent clauses

generated from S∞ ∪N are generated from F∞ ∪N and are ground, strictly flat and negative.

Proof. Since all inferences within S∞ are redundant and all unary inferences within N (i.e.,

reflections) generate ground, strictly flat and negative clauses, we only need to consider binary

inferences between C ∈ S∞ and C ′ ∈ N . Since C ′ is negative, a binary inference is necessarily

a paramodulation of C into C ′ or a simplification of C ′ by C. Since C is variable-inactive, by

assumption (1) on the presentation, and C ′ is strictly flat by hypothesis, Lemma 3.4 applies. By

Lemma 3.4(2), C is also strictly flat, so that C ∈ F∞, and all clauses generated from S∞ ∪N are

generated from F∞ ∪ N . Again by Lemma 3.4(2), C = a ≃ a′ ∨ D, C ′ = a 6≃ a′′ ∨ D′ and the

generated clause E = a′ 6≃ a′′ ∨D ∨D′ is strictly flat. By assumption (3) on the core limit, C is

unit, so that D = ∅, and E is also ground and negative.

Lemma 4.6 For all presentations T , satisfying the preceding conditions (1), (2), (3), sets of

ground flat literals S, and sets N of ground, strictly flat and negative clauses, T ∪S∪N ≡s F∞∪N .

Proof. If F∞ ∪ N is unsatisfiable, then such are S∞ ∪ N , because F∞ ⊆ S∞, and T ∪ S ∪ N ,

by soundness of SP. If T ∪ S ∪ N is unsatisfiable, then such is S∞ ∪ N by adequacy of SP.

We have to prove that F∞ ∪N is unsatisfiable. If the unsatisfiability of T ∪ S ∪N were due to

T ∪ S, then S∞ = F∞ = {✷} by the refutational completeness of SP, and the result is trivial.

The non-trivial situation is the one where T ∪ S ∪N is unsatisfiable, but T ∪ S is satisfiable, so

that ✷ 6∈ S∞. We consider a fair SP≻-derivation from S∞ ∪ N . Since S∞ ∪ N is unsatisfiable

and SP refutationally complete, this derivation is bound to terminate generating ✷. We prove

that F∞ ∪N is unsatisfiable, by showing that ✷ must be generated from F∞ ∪N . Let N0 = N ,

S1
0 = S∞ ∪N0 and S1

0 ⊢SP≻ . . . ⊢SP≻ S1
k be the fair derivation with ✷ ∈ S1

k . Let S2
0 = F∞ ∪N0

and S2
0 ⊢SP≻ . . . ⊢SP≻ S2

i ⊢SP≻ . . . be also a fair derivation. Furthermore, let S2
∗ =

⋃

i S
2
i and

N∗ = {C ∈ S2
∗ | C is ground, strictly flat and negative}. We prove by induction on i that ∀i ≥ 0,

1. S1
i = S∞ ∪Ni, where Ni = {C ∈ S1

i | C is ground, strictly flat and negative} and

2. all persistent clauses in Ni are in N∗.

Since ✷ 6∈ S∞ and ✷ ∈ S1
k , it will follow that ✷ ∈ Nk, and since ✷ is persistent, it will follow that
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✷ ∈ N∗ ⊆ S2
∗ , so that F∞∪N is unsatisfiable. For the base case i = 0, we have S1

0 = S∞∪N0 and

N0 = N ⊆ N∗ and the result is obvious. For the induction step, we assume that the preceding

Claims 1 and 2 hold for i, and we show that they hold for i+1, where S1
i ⊢SP≻ S1

i+1. By Lemma 4.5,

all persistent clauses generated from S∞∪Ni are generated from F∞∪Ni and are ground, strictly

flat and negative. It follows that S1
i+1

also has the form S∞ ∪Ni+1 and all persistent clauses in

Ni+1 are in N∗. Contraction inferences do not interfere, because: (1) simplification is included

in Lemma 4.5; (2) deletion applies neither to a clause in S∞ (if it could, it would have in the

derivation that generated S∞) nor to a clause in Ni (it does not apply to negative clauses); (3)

subsumption of a clause in Ni by a clause in S∞ is harmless, and if a clause in Ni subsumes

strictly a clause C ∈ S∞, then C 6∈ F∞, because F∞ is made of ground unit clauses, and therefore

such a subsumption step is also harmless with respect to the generation of persistent clauses by

Lemma 4.5.

By assumption (3) on the core limit, F∞∪N is a set of ground Horn clauses, whose satisfiability

can be tested in polynomial time:

Theorem 4.7 For all presentations T satisfying the preceding conditions (1), (2), (3), sets S of

ground, flat unit clauses and sets N of ground, strictly flat and negative clauses, if a fair SP≻-

strategy S is a polynomial T -satisfiability procedure, then the satisfiability of T ∪ S ∪ N can be

decided in polynomial time.

Proof. For all T -satisfiability problem T ∪ S, by hypothesis, S generates a limit set S∞ in

polynomial time. F∞ can be extracted from S∞ in polynomial time and the satisfiability of

F∞ ∪N can be decided also in polynomial time.

Since R satisfies conditions (1), (2) and (3) (cf. Lemma 4.1 and Theorem 4.3), Theorem 4.7

applies to the theory of records with extensionality:

Corollary 4.8 A fair SP≻-strategy yields a polynomial Re-satisfiability procedure.

This result is an instance of a framework where an SP≻-strategy is applied first to pre-process

part of the problem (e.g., T ∪ S), and then to the output of pre-processing (e.g., F∞) and the
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remaining part (e.g., N) of the original problem. Such an incremental scheme may find application

in other contexts as well.

5 A polynomial procedure for integer offsets

The theory of integer offsets is a fragment of the theory of integers. Its signature Σ contains

two unary function symbols s and p, that represent the successor and predecessor functions,

respectively. This theory is presented by the following (infinite) set of axioms I:

∀x. s(p(x)) ≃ x,

∀x. p(s(x)) ≃ x,

∀x. si(x) 6≃ x for i > 0,

where s0(x) = x and si+1(x) = s(si(x)) for i ≥ 0. For convenience, we define the following sets of

clauses:

AI = {s(p(x)) ≃ x, p(s(x)) ≃ x},

Ac(n) = {si(x) 6≃ x | 0 < i ≤ n},

Ac =
⋃

n≥0
Ac(n).

An I-satisfiability problem is given by a union AI ∪ Ac ∪ S, where S consists of ground flat

literals. Since Ac is infinite, such a set cannot be fed to a theorem prover. The goal of this section

is to determine a finite set that is equisatisfiable with AI ∪Ac ∪S and such that an SP≻-strategy

is guaranteed to terminate and produce a limit of polynomial size. More specifically, we will show

that Ac can be safely replaced by a finite subset Ac(n), where n depends on S.

5.1 M-paths and cyclic M-paths

We introduce the notion of M -path in a Σ-algebra M . Intuitively, an M -path is a sequence of

elements that are linked by the successor function; if M satisfies the acyclicity axioms, none of

these M -paths will be cyclic.

Definition 5.1 Let M = (D, I) be a Σ-algebra. For all m ≥ 2, a tuple p = 〈d1, d2, . . . , dm〉 ∈ Dm

is an M -path if, for all i, j, 1 ≤ i < j ≤ m, di 6= dj and di+1 = [s]I(di) for i ≤ m − 1. The set
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of elements in p, denoted by El(p), is El(p) = {d1, . . . , dm}. The length of p is |El(p)|, and p is

cyclic if [s]I(dm) = d1. ✸

There is an M -path of length m from d to d′ if [sm]I(d) = d′, and for all j < m, [sj]I(d) 6≃ d′.

Since d = d′ implies that M violates axiom sm(x) 6≃ x, the following property holds trivially:

Proposition 5.2 M is a model of Ac(l) if and only if for all cyclic M -path p, |El(p)| > l. M

has no cyclic M -paths if and only if M is a model of Ac.

If M = (D, I) is a model of AI , then the functions [s]I and [p]I are bijections, and for all cyclic

M -path p, El(p) is closed under [s]I and [p]I :

Lemma 5.3 If M = (D, I) |= AI and p is a cyclic M -path, then for all d ∈ El(p), we have

[s]I(d) ∈ El(p) and [p]I(d) ∈ El(p).

Proof. SinceM |= AI , the functions [s]
I and [p]I are one the inverse of the other and are therefore

bijections. It follows that for all d ∈ D, there exist a unique d′ ∈ D, such that [s]I(d′) = d (and

[p]I(d) = d′) and a unique d′′ ∈ D, such that [p]I(d′′) = d (and [s]I(d) = d′′). If d ∈ El(p), then d′

and d′′ also must be in El(p).

Under the same hypothesis, the interpretations of the successor and predecessor functions

induce a partition of D:

Lemma 5.4 Let M = (D, I) be a model of AI and let P be the set of all cyclic M -paths. Then

for all p, q ∈ P , we have El(p) ∩El(q) = ∅. Furthermore, let D′ = D \ (
⊎

p∈P El(p)). Then for all

d ∈ D,

(d ∈ D′) ⇔ (∀m ≥ 1, [sm]I(d) 6≃ d) ⇔ (∀m ≥ 1, [sm]I(d) ∈ D′).

Proof. These claims are immediate consequences of Lemma 5.3.

5.2 Breaking cyclic M-paths

We will show how to construct a model for AI∪Ac∪S starting from a model M for AI∪Ac(n)∪S,

by safely breaking all cyclic M -paths. This will be possible provided n is at least the cardinality

of the set defined as follows:
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Definition 5.5 For every set S of ground flat Σ-literals, let CS denote the set

CS = {c ∈ Σ | s(c) ≃ c′ ∈ S ∨ p(c′) ≃ c ∈ S}.

Let M = (D, I) be a model of S. An element d ∈ D is M -constrained by S if there is a c ∈ CS

such that I(c) = d. ✸

The cardinality of CS is thus equal to the number of constants whose successor is defined by

the constraints in S. If an element d ∈ D is not M -constrained by S, then its image by [s]I is

not constrained to be the interpretation of a constant in S. We will use this property in Theorem

5.7 to break cyclic M -paths and retain satisfiability. The following proposition states a condition

guaranteeing the existence of such an element in an M -path:

Proposition 5.6 Let M = (D, I) be a model of a set of ground literals S. If p is an M -path of

length n ≥ |CS |+ 1, then one of the elements appearing in p is not M -constrained by S.

Proof. Let p = 〈d1, . . . , dn〉 and suppose that every element appearing in p is M -constrained by

S. Then, by Definition 5.5, for all j, 1 ≤ j ≤ n, if I(cj) = dj, then one of s(cj) ≃ c′j or p(c′j) ≃ cj

appears in S. By hypothesis, since p is an M -path, the dj’s are all distinct, hence there must be at

least n distinct constants cj in CS, or |CS | ≥ n. This contradicts the hypothesis that |CS| < n.

We now prove the main theorem:

Theorem 5.7 Let S be a set of ground flat literals. For all n, n ≥ |CS |, if AI ∪ Ac(n) ∪ S is

satisfiable, then AI ∪ Ac ∪ S is satisfiable.

Proof. Let M = (D, I) be a model of AI ∪ Ac(n) ∪ S and let P denote the set of cyclic M -

paths. To every p ∈ P we associate two infinite, denumerable and disjoint sets Ep and E′
p. We

further assume that these sets are disjoint from D, and that for every p, q ∈ P , if p 6= q then

(Ep ⊎ E′
p) ∩ (Eq ⊎ E′

q) = ∅.

Let p be a cyclic M -path. By Proposition 5.2, p is of length at least n+1 and by Proposition

5.6, there exists an element d ∈ El(p) that is not M -constrained by S. Let d′ ∈ D be the element

such that [s]I(d) = d′ (see Figure 4). Furthermore, let Ep = {ej | j ≥ 0}, E′
p = {e′j | j ≥ 0} and
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Figure 4: Breaking a cyclic M -path: an arrow from, e.g., d1 to d2, indicates that [s]I(d1) = d2, and the

circled element d is assumed not to be M -constrained by S.

Dp = El(p) ⊎ Ep ⊎ E′
p. We consider the algebra Mp = (Dp, Ip) such that Ip interprets constants

in the same way as I does, and:

• ∀d′′ ∈ El(p) \ {d}, [s]Ip(d′′) = [s]I(d′′),

• ∀d′′ ∈ El(p) \ {d′}, [p]Ip(d′′) = [p]I(d′′),

• [s]Ip(d) = e0 and [s]Ip(e′0) = d′,

• [p]Ip(e0) = d and [p]Ip(d′) = e′0,

• ∀j ≥ 0, [s]Ip(ej) = ej+1 and [s]Ip(e′j+1) = e′j ;

• ∀j ≥ 0, [p]Ip(ej+1) = ej and [p]Ip(e′j) = e′j+1
.

Note that if e ∈ El(p) is M -constrained by S, then [s]Ip(e) = [s]I(e). Also, by construction, we

have Mp |= AI ∪ Ac.

Consider the two sets

D′ = D \ (
⊎

p∈P

El(p)) and E = D′ ⊎ (
⊎

p∈P

Dp),

and let J be the following interpretation function: for every constant c, J(c) = I(c), and the

function [s]J (resp. [p]J) is defined for every d ∈ E by:

• if d ∈ D′ then [s]J (d) = [s]I(d) and [p]J (d) = [p]I(d),
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• if d ∈ Dp for some p ∈ P , then [s]J(d) = [s]Ip(d) and [p]J(d) = [p]Ip(d).

The Σ-algebra M ′ = (E, J) is well defined and it is a model of AI ∪Ac ∪ S:

M ′ |= AI: This is obvious: for example, let d ∈ Dp. Then by construction, [s]J ([p]J(d)) =

[s]J ([p]Ip(d)) = [s]Ip([p]Ip(d)) = d.

M ′ |= Ac: Suppose there exists a d ∈ E and an m ≥ 1 such that [sm]J(d) = d. If d ∈ D′ then by

applying Lemma 5.4 to the modelM , we deduce that [sm]I(d) 6= d. Since [sm]J (d) = [sm]I(d),

we obtain a contradiction. Thus, d cannot be in D′. It cannot be in any Dp either, since for

every p, every Mp-path is acyclic. Therefore, there can be no d ∈ E and m ≥ 1 such that

[sm]J(d) = d, which proves the result.

M ′ |= S: Since J(c) = I(c) for every constant, it is clear that M ′ satisfies all literals c ⊲⊳ c′ ∈ S.

Assume S contains a literal s(c) ≃ c′; the case where the literal is of the form p(c) ≃ c′ is

similar. Let d = J(c) and assume first that d ∈ D′. Then we have [s]J(d) = [s]I(d) = I(c′) =

J(c′). Now suppose that d is in some Dp. Then d is M -constrained by S, and by definition

of Ip we have [s]J(d) = [s]Ip(d) = [s]I(d) = I(c′) = J(c′).

In the worst case, each occurrence of s or p in S introduces a distinct constant in CS , and in

such case |CS |, and therefore the number of acyclicity axioms to be added, is given by the number

of occurrences of s and p.

5.3 Finite saturated sets

We show that a polynomial number of clauses is generated by the superposition calculus from a

set AI ∪ Ac(n) ∪ S, by analyzing the possible inferences in an SP≻-derivation. The proof that

the number of persistent clauses is polynomial might also be obtained by applying the results of

[24] on meta-saturation, but the following detailed analysis allows us to get an additional result

on the tightness of the resulting upper-bound with little additional effort.

Lemma 5.8 If S0 = AI ∪ Ac(n) ∪ S, where S is a set of ground flat literals and n = |CS |, then

all clauses in S∞ are unit and belong to one of the following categories:
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i) the empty clause,

ii) the clauses in AI, i.e.,

a) p(s(x)) ≃ x,

b) s(p(x)) ≃ x,

iii) clauses of the form si(x) 6≃ pj(x), where i ≥ 0, j ≥ 0 and 1 ≤ i+ j ≤ n,

iv) ground unit clauses of the form

a) c ≃ c′,

b) s(c) ≃ c′,

c) p(c) ≃ c′,

v) clauses of the form si(c) 6≃ pj(c′), where i ≥ 0, j ≥ 0 and 0 ≤ i+ j ≤ n− 1.

Proof. The proof is by induction on the sequence {Si}i. For the base case, the result is obvious:

all clauses in S0 belong to categories (ii), (iii) with j = 0, (iv) and (v) with i = j = 0. For

the induction case, we assume the claim is true for i and we prove it for i + 1. If the inference

performed at stage i is a subsumption or a deletion, the result is obvious. A reflection can apply

only to a clause in category (v), with i = j = 0, and it generates the empty clause. Since

equational factoring does not apply to unit clauses, we are left with simplification, superposition

or paramodulation, that we term collectively paramodulation as done earlier:

Paramodulations from (ii): consider clause (ii.a). A paramodulation into clause (ii.b) gener-

ates the trivial clause s(x) ≃ s(x), which is removed by the deletion rule, and a paramodu-

lation into a clause in (iii) generates a clause in (iii).

Consider clause (ii.b). A paramodulation into clause (ii.a) generates the trivial clause

p(x) ≃ p(x), which is removed by the deletion rule, and a paramodulation into a clause

in (iii) generates a clause in (iii).

Paramodulations from (iv): consider a clause in (iv.a). A paramodulation into a clause in

(iv) or (v) generates a clause in (iv) or (v).
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Consider a clause in (iv.b). A paramodulation into clause (ii.a) generates a clause in (iv.c); a

paramodulation into a clause in (iii) or in (v) generates a clause in (v) and a paramodulation

into a clause in (iv.b) generates a clause in (iv.a).

Consider a clause in (iv.c). A paramodulation into clause (ii.b) generates a clause in (iv.b); a

paramodulation into a clause in (iii) or in (v) generates a clause in (v) and a paramodulation

into a clause in (iv.c) generates a clause in (iv.a).

Thus, for the theory of integer offsets, we have:

Theorem 5.9 A fair SP≻-strategy is a polynomial satisfiability procedure for I.

Proof. Consider the input set of ground literals S and let m be the number of subterms occurring

in S. This set can be flattened into a set S′ in linear time in m. The cardinality of CS′ , and

therefore the number n of acyclicity axioms needed to form S0 = AI∪Ac(n)∪S
′, can be determined

also in linear time in m, and the cardinality of S0 is O(m). Since all terms are constructed over a

finite signature, by Lemma 5.8, the number of clauses that can be generated is bound by O(m2).

Testing whether an inference rule can be applied requires a syntactic unification operation and

verifying that the considered literals are indeed maximal. Such tests are polynomial in the sizes

of the premises of the inference rule. Since the number of clauses is bound by O(m2), at most

O(m4) such tests may be performed before applying an inference rule. Application of an inference

rule is also polynomial in the sizes of its premises. Thus, the strategy is guaranteed to terminate

in polynomial time, regardless of whether S is satisfiable.

We conclude our treatment of integer offsets with an example that shows that the number of

clauses in a limit set S∞ can be quadratic in the size of S.

Example 5.10 Let S = {s(ci) ≃ c′i | i = 1, . . . ,m}, where the constants ci and c′i are all distinct;

we therefore have CS = m. Let S0 = AI ∪ Ac(m) ∪ S and consider the limit S∞ generated by a

fair SP≻-derivation from S0. For i, j ∈ {1, . . . ,m}, the superposition of s(ci) ≃ c′i into sj(x) 6≃ x

generates the persistent clause sj−1(c′i) 6≃ ci (recall that s
0(c) = c by convention); therefore, S∞

contains at least O(m2) clauses.
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This example shows that although the rewrite-based I-satisfiability procedure is polynomial,

it is not as efficient as the procedure of [28], which has complexity O(m log(m)).

6 Discussion

In the first part of this article we presented a uniform approach to reduce the problem of deciding

T -satisfiability of ground clauses to that of deciding T -satisfiability of ground literals, without

reduction to disjunctive normal form. This approach is general in at least two ways: first, because

we use generic theorem proving for first-order logic with equality; second, because the sufficient

condition that presentation T needs to satisfy, termed variable-inactivity, is fulfilled by many

theories of practical interest, including theories of data structures (e.g., arrays and records with

or without extensionality, lists, whether cyclic or acyclic, possibly empty or non-empty) and

fragments of arithmetic, such as the so-called theory of integer offsets.

The central result is a proof of termination: if T is variable-inactive, and the inference engine

SP is guaranteed to terminate on T -satisfiability problems, then SP is guaranteed to terminate

also on T -decision problems. Thus, the reduction gives a practical procedure: first, the input

set of clauses is flattened, separating the unit part from the non-unit part; second, the theory

axioms and the unit part are submitted to an SP-based theorem prover, which generates a finite,

saturated set; third, the application of the prover to the non-unit part of the original problem and

the saturated set gives the answer. At least in principle, this is a recipe to use state-of-the-art

theorem provers “off the shelf,” as decision procedures for ground problems in several theories of

interest for verification and their combinations, since the same variable-inactivity condition was

already known to guarantee termination on combinations of theories, given termination on each.

In the second part of this article, we show how uniformity and generality of the rewrite-based

approach can be combined with polynomial complexity of the resulting decision procedure. We

gave polynomial rewrite-based T -satisfiability procedures for the theory of records with extension-

ality and the theory of integer offsets. This shows that generic theorem provers can be efficient

on problems made of ground literals.

A main direction for future work is to explore how to combine uniformity and generality with

26



efficiency also on problems made of ground clauses. Indeed, most problems of practical interest in

verification consist of huge non-unit clauses, and since generic theorem provers are not designed

to deal with the boolean part of a formula as efficiently as possible, we would not expect them to

perform well on such problems.

On one hand, techniques such as the one applied to design a polynomial T -satisfiability pro-

cedure for records with extensionality may be promising. That technique shows that a theorem

prover can be used to pre-process the problem, by generating enough information to decide a

richer problem, with additional negative clauses. We intend to investigate generalizing this ap-

proach to problems that add different kinds of non-unit clauses, with the goal of decomposing

problems in ways that allow one to design more efficient T -decision procedures.

On the other hand, we may trade in some uniformity and generality for efficiency, by study-

ing ways to interface theorem provers with SAT-solvers or SMT-solvers, where SMT stands for

satisfiability modulo a theory [9]. First-order provers are strong at reasoning with equalities and

with the universally quantified variables of the theory axioms. SAT-solvers and SMT-solvers are

strong at reasoning with propositional logic and arithmetic. The reasoning environments of the

future will have to harness the best of both kinds of engines.
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