
CDSAT for Predicate-Sharing Theories: Arrays,

Maps, and Vectors with Abstract Domain

Maria Paola Bonacina1*, Stéphane Graham-Lengrand2 and
Natarajan Shankar3

1*Dipartimento di Informatica, Università degli Studi di Verona,
Strada Le Grazie 15, Verona, 37134, VR, Italy.

2Computer Science Laboratory, SRI International,
333 Ravenswood Avenue, Menlo Park, 94025, CA, USA.

3Computer Science Laboratory, SRI International,
333 Ravenswood Avenue, Menlo Park, 94025, CA, USA.

*Corresponding author(s). E-mail(s): mariapaola.bonacina@univr.it;
Contributing authors: stephane.graham-lengrand@csl.sri.com;

shankar@csl.sri.com;

Abstract

The theory of arrays is a mainstay of reasoning about programs by satisfiability
modulo theories (SMT). Arrays are finite in programs, but infinite in the theory.
This discrepancy was approached by recurring to quantifiers or quitting arrays
for sequences, jeopardizing decidability. We offer a new solution that is quantifier-
free, uses arrays, and preserves decidability. We enrich the theory of arrays with
the length function and a new admissibility predicate, whose definition is the
abstract domain of the array. Thanks to the abstraction, indices and lengths do
not have to be integers. Variants of the new theory axiomatize maps and vectors,
providing the first treatment of these dynamic data structures in SMT. Since
length is a bridging function, deciding satisfiability in each of these theories is an
instance of nondisjoint theory combination. We extend the SMT method CDSAT
(Conflict-Driven Satisfiability) from disjoint to predicate-sharing theories. We
equip the new theories with theory modules that satisfy the CDSAT requirements
for termination and completeness. We show that the CDSAT framework, the con-
struction of a global basis for termination, and the CDSAT completeness theorem
generalize gracefully from disjoint to predicate-sharing theories.

Keywords: CDSAT, Satisfiability modulo theories, Satisfiability modulo assignment,
Theory combination, Bridging functions, Arrays, Maps, Vectors

1



1 Introduction

Reasoning about programs is a main application of automated reasoning. A key
ingredient is the ability to reason in theory combinations including theories of data
structures. A stalwart component is the theory of arrays. Its simplest presentation [33]
describes the interplay of two operations: selecting (or reading) the value at an index of
an array, and storing (or writing) a value at an index of an array. The theory of arrays
with extensionality [45], which also defines array equality, is the standard presentation.
Due to the fundamental nature of the read and write operations in computing, the
theory of arrays is deemed useful also to model the computer memory (e.g., the heap).

While the theory of arrays is undecidable, its quantifier-free fragment is decidable
[14, 15, 45]. Theory combinations including this fragment are handled by reasoning
methods such as combination schemes (e.g., [13, 35, 36, 47]), superposition [3, 7, 8], and
CDSAT (Conflict-Driven Satisfiability) [6, 9, 11]. These approaches to satisfiability
modulo theories assume that the theories are disjoint. Disjoint theories share only sorts
and equality predicates on shared sorts. Nondisjoint theories share also other symbols.

In most programming languages an array is finite, and its length is the number
of the values it contains. The indices are non-negative integers, and if the length is
n the indices are in the [0, n) interval. In the standard theory of arrays, all arrays
have implicitly the same length given by the cardinality of the interpretation of the
sort of indices. Thus, arrays can be infinite, and integer-indexed arrays are. Also, the
theory does not distinguish whether a store operation is within bounds or not. The
array property fragment allows one to define the bounded equality of integer-indexed
arrays, by a limited usage of quantifiers that preserves decidability [14, 15, 23]. Other
approaches use theories of finite integer-indexed sequences to model finite integer-
indexed arrays [1, 2, 43]. The array property fragment with concatenation combines
limited quantification with finite integer-indexed sequences [48].

We aim at improving the theory of arrays itself, in order to get closer to data
structures as they are in programs. By viewing the problem as theory combination, we
present a new solution with several advantages. The theory of arrays becomes more
expressive than any of its existing versions. Our approach is abstract, and hence not
limited to integer-indexed arrays, and it also models maps and vectors. The quantifier-
free fragment suffices and it is decidable. Quantifier reasoning is not needed.

The first step is to enrich the signature of the theory of arrays with a length
function. However, length is a bridging function [16, 44], as it leads to write bridging
axioms [22], that make the theories nondisjoint. For example, the extensionality axiom
saying that integer-indexed arrays a and b are equal, if they have the same length n
(also an integer) and the same value at all indices in the [0, n) interval

∀a, b. [ len(a) ≃ len(b) ∧ (∀i. 0 ≤ i < len(a)→ select(a, i) ≃ select(b, i)) ] → a ≃ b

forces the theory of arrays to share symbols ≤ and < with the theory of integers.
This problem arises also in recursive (or absolutely free) data structures (e.g., lists or
trees), when defining length, size, or depth in terms of the constructors [16].

The key step is to enrich the signature of the theory of arrays with a new admissi-
bility predicate, named Adm, which remains free in the theory of arrays and is defined

2



by another theory T . The T -axiom defining Adm says when an index is admissible with
respect to a length. The admissibility property is the abstract domain of the arrays in
the resulting theory of arrays with abstract domain, denoted ArrAD. While an array
is interpreted as a function, an array with abstract domain is interpreted as a par-
tial function, whose (concrete) domain of definition is the set of admissible indices.1

For extensionality, two arrays with abstract domains are equal, if they have the same
length and the same values at all admissible indices. Theories ArrAD and T share the
symbol Adm and the sorts of its arguments, indices and lengths.

Admissibility abstracts the concept of index within bounds, making the theory
flexible and expressive: the length of an array can be a nonnegative integer, but does
not have to be; indices can be integers, but can be interpreted differently; the theory
T defining Adm does not have to be a theory of the integers; and domains of definition
are not necessarily linearly ordered intervals. Domain and length of an array may
be finite or infinite, depending on Adm’s definition. The finiteness of arrays as in
programming languages is captured, without renouncing the generality that allows
arrays to be infinite.

In theory ArrAD, a store at an inadmissible index leaves the array unchanged:
the domain is static. We present two variants where the domain, and hence the data
structure, is dynamic. In the theory MapAD of maps with abstract domain, a store at
an inadmissible index makes it admissible. In the theory VecAD of vectors with abstract
domain, a store at an inadmissible index makes that index and all the smaller ones
admissible. Similar to ArrAD, theory MapAD shares the Adm predicate, while VecAD
shares Adm and an ordering on indices, which does not need to be linear.

In order to reason in ArrAD,MapAD, or VecAD, we generalize CDSAT from disjoint
to predicate-sharing theories, meaning theories that may share predicate symbols other
than equality. CDSAT decides the satisfiability of an input formula modulo a union
of theories and possibly an input assignment of values to Boolean or first-order terms.
Such problems arise in optimization [19], parallelization [28], interpolation [30], and
quantifier reasoning [12]. A solution is a model of the union of the theories that satisfies
the input formula and includes the initial assignment. CDSAT orchestrates theory
modules, one per theory, to perform a conflict-driven search to find a solution or report
that none exists. A theory module is an abstraction of a theory reasoning procedure.
For soundness, termination, and completeness, a theory module is an inference system.

A theory module may need to generate new (i.e., non-input) terms, in order to
explain theory conflicts. Termination requires that only finitely many new terms can
be generated. A local basis is a function that maps a given set of terms (e.g., all those
occurring in the input) to the finite set of terms that the theory module may produce.
The soundness of CDSAT requires that the theory modules are sound. Termination
requires that there exists a global basis, that must be finite and yet contain all the terms
that can be produced during a CDSAT derivation. We define sound theory modules
and a local basis for ArrAD, MapAD, and VecAD, and we generalize the construction
of a global basis from the local ones from disjoint [11] to predicate-sharing theories.

1This usage is coherent with that of “abstract domain” and “concrete domain” in the literature (e.g., [38]),
where a concrete domain is a set of values, and an abstract domain is a set of properties, that is, a set of
formulas, so that an abstract domain in our sense is a singleton abstract domain.

3



The completeness of CDSAT employs the concept of a leading theory, say T1, which
may be one of the theories in the union or a theory that only exists in principle.
T1 has the information shared by any two component theories. It suffices that each
theory agrees with T1 on the shared information to have an agreement among all
theories. Disjoint theories only need to agree on equalities between shared terms and
cardinalities of shared sorts. Thus, T1 has all the sorts in the union and aggregates all
the cardinality constraints on shared sorts [9, 11]. In the predicate-sharing case, T1 has
also all the predicate symbols (e.g., Adm) shared by any two theories. The agreement
between a component theory and T1 is guaranteed by the leading-theory completeness
of the module of the component theory. We prove that the theory modules of ArrAD,
MapAD, and VecAD are leading-theory complete. Then, we generalize the CDSAT
completeness theorem from disjoint [9] to predicate-sharing theories. It follows that
for theories ArrAD, MapAD, and VecAD, the quantifier-free fragment is decidable.

This article is organized as follows. After basic definitions and notations (Sect. 2),
we present the theories ArrAD, MapAD, and VecAD (Sect. 3). Section 4 updates the
CDSAT framework to accommodate shared predicates. In Section 5 we define theory
modules and local basis for ArrAD, MapAD, and VecAD, proving that the local basis is
finite and the theory modules are leading-theory complete. Sections 6 and 7 are devoted
to the generalized global basis construction and the generalized CDSAT completeness
theorem, respectively. Sections 8 and 9 contain comparison with related work and final
discussion, respectively. Part of this research was presented in preliminary form at a
workshop [10], where the temporary name “arrays with abstract length” was used for
arrays with abstract domain.

2 Preliminaries

A signature Σ is a triple (S, F,ShF ), where S is the set of sorts, F is the set of
symbols, and ShF ⊆ F is the subset of shared symbols. The set S of every signature
includes the sort prop of Booleans. All symbols are sorted: for f ∈ F , the notation
f : (s1 × · · · × sm)→s says that f has arity m, input sorts s1, . . . , sm (m ≥ 0) and
output sort s. A symbol is a constant if m = 0, a predicate if the output sort is
prop, and a function otherwise. Equalities are written in infix notation. The set ≃S =
{≃s : s×s→prop | s∈S} of the equality symbols for all the sorts in S is a subset of F .

Given a collection V = (Vs)s∈S of disjoint sets of variables, where Vs is the set of
variables of sort s, the symbol V also denotes the disjoint union

⊎
s∈S Vs, and Σ[V ]-

terms are defined as usual. We use t and u for Σ[V ]-terms, l for Σ[V ]-terms of sort
prop (i.e., Σ[V ]-formulæ), and top(t) for the top symbol of t. We write t : s if t has sort
s, u ⊴ t if u is a subterm of t, and u◁ t if u⊴ t and u ̸= t. A Σ[V ]-interpretationM
is defined as usual, with sM, xM, fM, and M(t), denoting the M-interpretation of
a sort s, a variable x, a symbol f , and a Σ[V ]-term t, respectively. Domain sM is not
empty for all sorts s, and propM = {true, false}. A Σ-structure is a Σ[∅]-interpretation.

A theory T is defined by a signature Σ and an axiomatization A which is a set of Σ-
sentences, the T -axioms, that define symbols in Σ. Symbols that appear in T -axioms
are defined or interpreted, those that do not are free or uninterpreted. The theory T is

4



also understood as the class of Σ-structures that satisfy A, called models of T or T -
models. A T -term is a Σ[V ]-term if Σ is the signature of theory T . A T [V ]-model is a
Σ[V ]-interpretation that is a T -model when the interpretation of variables is ignored.
When working with a single theory we may simply write term and model.

Given theories T1, . . . , Tn, with signatures Σk = (Sk, Fk,ShF k) and axiomatiza-
tions Ak, for k = 1, . . . , n, their union, named T∞, is the theory with signature
Σ∞ = (S∞, F∞,ShF∞), for S∞ =

⋃n
k=1 Sk, F∞ =

⋃n
k=1 Fk, and ShF∞ =

⋃n
k=1 ShF k,

and axiomatization A∞ =
⋃n

k=1Ak. The above notations can be specialized for any
Tk, so that we have Vk = (Vs)s∈Sk

for variables, Σk[Vk]-terms, and Tk[Vk]-models.
Similarly, for T∞ we have V∞ = (Vs)s∈S∞ for variables, Σ∞[V∞]-terms, and T∞[V∞]-
models. We use as much as possible the generic T (and hence V and Σ), specifying in
the context whether we mean any Tk, or T∞, or either one. Unless otherwise stated,
variables are variables in V∞, terms are T∞-terms, and models are T∞[V∞]-models.

If Σ is a signature with F ⊂ F∞, a symbol in F∞ \ F is a Σ-foreign symbol. A
subterm u of a term t is a Σ-foreign subterm if top(u) is Σ-foreign. The following defi-
nition regards ◁-maximal occurrences of non-variable Σ-foreign subterms as variables,
without replacing them explicitly with new variables.

Definition 1 (Free Σ-variables). Let Σ = (S, F ) be a signature such that F ⊆ F∞,
and t a Σ∞[V∞]-term. For all sorts s ∈ S, the set fvsΣ(t) of free Σ-variables of sort s
occurring in term t is given by

fvsΣ(x) = {x} if x ∈ Vs
∞,

fvsΣ(x) = ∅ if x ∈ Vr
∞ for a sort r ∈ S, r ̸= s

fvsΣ(f(t1, . . . , tm)) =
⋃m

i=1 fv
s
Σ(ti) if f ∈ F ,

fvsΣ(f(t1, . . . , tm)) = ∅ if f ̸∈ F with output sort r, r ̸= s, and
fvsΣ(f(t1, . . . , tm)) = {f(t1, . . . , tn)} if f ̸∈ F with output sort s,

where the last case adds Σ-foreign terms.

Then fvΣ(t) =
⋃

s∈S fvsΣ(t), and for a set X of terms fvsΣ(X) = {u | u ∈ fvsΣ(t), t ∈
X} and fvΣ(X) = {u | u ∈ fvΣ(t), t ∈ X}. If Σ is Σ∞, we write fv(t) and fv(X): as
there are no Σ∞-foreign symbols, fv(t) ⊆ V∞ and fv(X) ⊆ V∞.

Theories T1, . . . , Tn are disjoint if the only shared symbols are the equality symbols
of shared sorts: for all j and k, 1 ≤ j ̸= k ≤ n, ShF j ∩ ShF k = ≃Q for Q = Sj ∩ Sk.
Otherwise, T1, . . . , Tn are nondisjoint. The union T∞ is a disjoint union, if T1, . . . , Tn
are disjoint, and a nondisjoint union otherwise. A union T∞ is a predicate-sharing
union if either it is a disjoint union, or for some j and k, 1 ≤ j ̸= k ≤ n, ShF j∩ShF k =
≃Q ⊎ {p | p : (s1 × · · · × sm)→prop, ∀i, 1 ≤ i ≤ m, si ∈ Q}, where Q = Sj ∩ Sk. In a
predicate-sharing union the theories may share predicate symbols other than equality.

3 Theories of Data Structures with Abstract Domain

The simplest theory of arrays, that we denote Arr0, is the theory of arrays without
extensionality, which only has the select-over-store axioms:

∀a, v, i. select(store(a, i, v), i)≃ v, (1)

5



∀a, v, i, j. i ̸≃ j → select(store(a, i, v), j)≃ select(a, j), (2)

where a is a variable of sort array, v is a variable of sort value, and i and j are variables
of sort index. This theory does not define when two arrays are equal. The theory of
arrays with extensionality, that we denote Arr, adds to axioms (1)-(2) an extensionality
axiom saying that two arrays are equal if they have the same values at all indices:

∀a, b. (∀i. select(a, i)≃ select(b, i))→ a≃ b. (3)

In previous work, we presented the theory Arr as featuring a set of basic sorts and
an array sort constructor ⇒, meaning that s1 ⇒ s2 is the sort of arrays with indices
of sort s1 and values of sort s2 [9, 11]. The set of sorts of Arr was defined as the free
closure of the set of basic sorts with respect to ⇒. In this way, the theory may have
multiple sorts for indices, values, and arrays. Then, we used s1

s3⇒ s2 for the sort of
arrays with indices of sort s1, values of sort s2, and lengths of sort s3 [10]. Here we
adopt a simpler approach: there is one sort for indices, one for values, one for lengths,
and hence one for arrays. There is no loss of generality, because a theory of arrays
with n array sorts (n > 1), possibly including arrays of arrays, can be viewed as the
union of n theories with one array sort each.

3.1 The Theory of Arrays with Abstract Domain

The theory ArrAD of arrays with abstract domain has signature ΣArrAD =
(SArrAD, FArrAD,ShFArrAD). The set SArrAD of sorts contains prop, the sort I of indices,
the sort V of values, the sort L of lengths, and the sort A of arrays with indices of sort
I, values of sort V, and length of sort L, with the proviso that A ̸= I, A ̸= V, A ̸= L,
A ̸= prop, and L ̸= prop.

Example 1. In order to model arrays of arrays with indices of a sort I, values of a
sort V, and lengths of a sort L, take the union of two instances ArrAD1 and ArrAD2

of ArrAD. Theory ArrAD1 has sorts I1 = I, V1 = V, and L1 = L, so that A1 is the sort
of arrays with indices of sort I, values of sort V, and lengths of sort L. Theory ArrAD2

has sorts I2 = I, V2 = A1, and L2 = L, so that A2 is the desired sort of arrays of arrays.

The set FArrAD contains function symbols select : A × I → V for select or read,
store : A× I× V→ A for store or write, len : A→ L that maps an array a to its length
len(a), and a new predicate symbol Adm : I×L→ prop which is in the ShFArrAD subset
of shared symbols. If i is a term of sort I and a is a term of sort A, then Adm(i, len(a))
is true iff index i is admissible with respect to len(a).

Example 2. The theories ArrAD1 and ArrAD2 of Ex. 1 share the sorts {prop, I, L,A1}
and the symbol Adm, so that their union is a predicate-sharing union.

Whenever a union of theories includes ArrAD, it also includes another theory,
say T , with signature Σ = (S, F,ShF ), such that I ∈ S, L ∈ S, and Adm ∈ ShF .
Theory T shares with ArrAD the symbol Adm and the sorts I and L (sharing sort V is
unnecessary), and it defines admissibility.

6



Example 3. Let T be linear integer arithmetic, or LIA for short, interpreting both
sorts I of indices and L of lengths as the set Z of the integers, and defining Adm with
the axiom ∀i, n. Adm(i, n)↔ 0 ≤ i < n. If n ≤ 0, no index is admissible. If n > 0, the
set of admissible indices is the [0, n) interval. The set of admissible indices is finite.

The interpretation in Example 3 is a popular choice, but the abstraction provided
by the notion of admissibility makes other choices possible.

Example 4. Suppose that theory T interprets sort I as a set D, sort L as the powerset
P(D) of D, and defines Adm with the axiom ∀i, C. Adm(i, C) ↔ i ∈ C. Here C ∈
P(D) is the subset C ⊆ D of admissible indices, indices are not necessarily numbers,
and C does not have to be an interval nor even an ordered set. If D is finite, P(D)
and all its elements are finite, so that all sets of admissible indices are finite. If D is
infinite, so is P(D), and P(D) has both finite and infinite elements, so that there are
both finite and infinite sets of admissible indices.

Let a and b be variables of sort A, v and w be variables of sort V, i and j be
variables of sort I, and n and m be variables of sort L. The axiomatization AArrAD of
ArrAD features the congruence axioms for the symbols in ΣArrAD:

∀a, b, i, j. (a≃ b ∧ i≃ j)→ select(a, i)≃ select(b, j), (4)

∀a, b, i, j, w, v. (a≃ b ∧ i≃ j ∧ w≃ v)→ store(a, i, w)≃ store(b, j, v), (5)

∀a, b. a≃ b→ len(a)≃ len(b), (6)

∀n,m, i, j. (n≃m ∧ i≃ j ∧ Adm(i, n))→ Adm(j,m). (7)

Then AArrAD contains axiom (2) and a new select-over-store axiom:

∀a, v, i. Adm(i, len(a))→ select(store(a, i, v), i)≃ v. (8)

Axiom (8) differs from axiom (1): if an index is admissible, storing a value at that
index and then retrieving it yields the same value; otherwise, axiom (8) provides no
guarantee. Then AArrAD has an axiom to say that the length is unaffected by a store:

∀a, i, v. len(store(a, i, v))≃ len(a). (9)

The last axiom of AArrAD is the extensionality axiom:

∀a, b. [len(a)≃ len(b) ∧ (∀i.Adm(i, len(a))→ select(a, i)≃ select(b, i))]→ a≃ b, (10)

whose other direction is omitted as it follows from the congruence axioms. In summary,
AArrAD = {(4), (5), (6), (7)} ∪ {(2), (8)} ∪ {(9), (10)}.

In theory Arr, axiom (3) says that arrays a and b are equal if they have the same
values at all indices. By the contrapositive, if a and b are different, they differ at
an arbitrary index. In theory ArrAD, axiom (10) says that arrays a and b are equal
if they have the same length and the same values at all admissible indices. By the
contrapositive, if a and b are different, they differ either in length or at an admissible
index. Neither theory entails the extensionality axiom of the other.

7



Example 5. Picture a model of Arr, extended with an interpretation of len and Adm,
where arrays a and b have the same length, agree at all admissible indices, but disagree
at an inadmissible index: a≃ b is false in this model and hence axiom (10) also is false.

Example 6. Picture a model of ArrAD where arrays a and b agree at all indices but
have different lengths: a≃ b is false in this model and hence axiom (3) also is false.

The situation of Example 6 can happen even if arrays a and b have the same set
of admissible indices.

Example 7. Consider another theory T that interprets I as Z and L as the set
of pairs of the form (addr, n), where addr is a binary number representing the
starting address of the array in memory, and n is a non-negative integer repre-
senting the number of admissible indices. The T -axiom defining admissibility is
∀i, addr, n. Adm(i, (addr, n)) ↔ 0 ≤ i < n, where the starting address plays no role.
With this axiom for admissibility, we can have two distinct arrays a and b with the
same interval of admissible indices, say [0, 5), but len(a) = (000100, 5) ̸= (010100, 5) =
len(b) because a and b start at distinct addresses and hence have different lengths.

Example 7 shows how theory ArrAD models an interpretation of array equality that
is common in programming languages: arrays starting at distinct addresses in memory
are different. The next example shows how theory ArrAD captures the bounded equality
of the array property fragment (APF) [14, 15].

Example 8. APF allows one to define a bounded equality predicate beq(a, b, l, u), for
a and b integer-indexed arrays, and l and u integers, by the array property formula
∀i. l ≤ i ≤ u → select(a, i) ≃ select(b, i). Suppose that theory T is LIA, sort I is
interpreted as Z, sort L is interpreted as the Cartesian product Z × Z, and Adm is
defined with the axiom ∀i, l, u. Adm(i, (l, u)) ↔ l ≤ i ≤ u. Then the extensionality
axiom (10) of theory ArrAD covers the notion of bounded equality of APF.

Theory ArrAD is designed having in mind the intuition that a store at an inadmissi-
ble index leaves the array unchanged. Therefore, the length is unchanged (axiom (9)),
and the value argument of the store is lost, so that axiom (8) requires index i to be
admissible. Alternatively, one can have a theory where a store at an inadmissible index
changes the set of admissible indices. This choice leads to two other theories, namely
those of maps and vectors.

3.2 Theories of Maps and Vectors with Abstract Domain

We begin by replacing axiom (9) (a store does not change the length) with an axiom
saying that a store at an admissible index does not change the length:

∀a, i, v. Adm(i, len(a))→ len(store(a, i, v))≃ len(a). (11)

Then, we restore the select-over-store axioms (1)-(2). In the resulting theory (like in
Arr), if a≃ store(a, i, v), then by congruence select(a, i)≃ select(store(a, i, v), i), and by
axiom (8) it follows that select(a, i)≃ v. By the contrapositive, select(a, i) ̸≃ v implies
a ̸≃ store(a, i, v). Suppose that a ̸≃ store(a, i, v) and index i is not admissible (i.e.,

8



¬Adm(i, len(a)) holds). By the contrapositive of axiom (10) with variable b instanti-
ated to store(a, i, v), it must be that len(a) ̸≃ len(store(a, i, v)). In other words, a store
at an inadmissible index changes the length of the structure. A way of specifying the
change of length is to impose that index i be admissible in the structure represented
by the term store(a, i, v). This is obtained by adding the axiom

∀a, j, i, v. (Adm(j, len(a)) ∨ j≃ i)→ Adm(j, len(store(a, i, v))). (12)

Models of the resulting theory include data structures such as maps and vectors,
meaning dynamic arrays, which satisfy stronger versions of axiom (12).

The theory MapAD of maps with abstract domain has the same signature as theory
ArrAD (i.e., ΣMapAD = ΣArrAD), with the sorts reinterpreted so that A is the sort of
maps with indices of sort I, values of sort V, and lengths of sort L. The provision that
A ̸= I, A ̸= V, A ̸= L, A ̸= prop, and L ̸= prop is maintained. The key axiom is the
double implication version of axiom (12):

∀a, j, i, v. (Adm(j, len(a)) ∨ j≃ i)↔ Adm(j, len(store(a, i, v))). (13)

This axiom means that a store at an inadmissible index causes a map to grow exactly
by one index: the index argument of the store becomes admissible and it is the only
index that becomes admissible as an effect of the store. Therefore, a store operation
causes a map to grow by at most one index. In summary, AMapAD = {(4), (5), (6), (7)}∪
{(1), (2)} ∪ {(10), (11), (13)}.

The theory VecAD of vectors with abstract domain has signature ΣVecAD =
(SVecAD, FVecAD,ShFVecAD) with SVecAD = SArrAD, FVecAD = FArrAD ∪ {<}, and
ShFVecAD = ShFArrAD ∪ {<}. Sort A is interpreted as the sort of vectors with indices
of sort I, values of sort V, and length of sort L, with A ̸= I, A ̸= V, A ̸= L, A ̸= prop,
and L ̸= prop as above. The symbol < : I × I → prop is an ordering on indices. The
axiomatization AVecAD adds a congruence axiom for the ordering on indices:

∀i1, j1, i2, j2. (i1≃ i2 ∧ j1≃ j2 ∧ i1 < j1)→ i2 < j2. (14)

The key axiom replaces ≃ with ≤ (meaning < or ≃ as usual) in (13)

∀a, j, i, v. (Adm(j, len(a)) ∨ j ≤ i)↔ Adm(j, len(store(a, i, v))). (15)

Axiom (15) captures the growth of the vector as an effect of a store at an inad-
missible index. Unlike a map, a vector can grow by a whole bunch of indices: all
those smaller than or equal to the one made admissible by the store operation. The-
ory VecAD does not impose that the ordering < is linear. In summary, AVecAD =
{(4), (5), (6), (7), (14)} ∪ {(1), (2)} ∪ {(10), (11), (15)}.

4 CDSAT for Predicate-Sharing Theories

In this section we modify the CDSAT framework [9, 11] to accommodate shared
predicates other than equality. We use T for either any Tk, 1 ≤ k ≤ n, or T∞.

9



4.1 Assignment, Theory View, and Endorsement

CDSAT works with assignments of values to terms, including assignments of Boolean
values to formulæ. Boolean and first-order assignments, initial and generated assign-
ments, are treated as uniformly as possible. The values for a theory T with signature
Σ = (S, F,ShF ) are provided by a conservative theory extension T + with signature
Σ+ = (S+, F+,ShF+), such that S+ = S, F ⊂ F+ and ShF+ = ShF . Set F+ extends
F with as many constant symbols as needed to name individuals in the domains used
to interpret the sorts of T . The added constants are called T -values. Terms and values
are kept separate, as T -values cannot appear in Σ-terms.

Conservativity means that if a Σ-formula is T -satisfiable then it is also T +-
satisfiable. All extensions add values true and false, that are T -values for all theories T .
An extension is trivial if it adds only true and false. An extension is countably infinite
if it adds a countably infinite set of T -values for each sort in S \ {prop}. The com-
ponents of the signature of T +

∞ are given by the unions of the respective components
of the signatures of T +

1 , . . . , T +
n , including ShF∞

+ =
⋃n

k=1 ShFk
+ =

⋃n
k=1 ShFk.

F+
∞ =

⋃n
k=1 Fk

+ implies that all values are T∞-values. We use b for true or false and
c for generic values of arbitrary sort.

Definition 2 (Assignment (Def. 3 [9])). A set J = {u1←c1, . . . , um←cm} is a T -
assignment if ∀i, 1≤ i≤ m, ui is a T∞-term and ci is a T -value of the same sort.

The set of terms that occur in J is denoted G(J), so that G(J) = {t | t⊴ui, 1≤ i≤
m}, and Gs(J) is the subset of the terms of sort s in G(J). The set of free Σ-variables
of J is fvΣ(J) = {u | u ∈ fvΣ(t), (t←c) ∈ J}, written fv(J) when Σ is Σ∞. If all values
in J are Boolean, J is a Boolean assignment. If no value in J is Boolean, J is a first-
order assignment. The flip of a Boolean singleton assignment L, written L, assigns the
opposite Boolean value to the same formula. Standard abbreviations are l for l←true, l
for l←false, t ̸≃ u for (t≃ u)←false, ⊤ for (x≃prop x)←true, and ⊥ for x ̸≃prop x, where
x is an arbitrary variable of sort prop. We use J for generic assignments, A for generic
singletons, L for Boolean singletons, and H or E for T∞-assignments. An unqualified
assignment is a T∞-assignment.

A T -assignment is plausible if it does not contain both l←true and l←false. Input
assignments are assumed to be plausible and CDSAT preserves plausibility. A plausible
T -assignment may contain first-order assignments u←c1 and u←c2, with c1 ̸= c2,
for a term u of sort s other than prop. From such an assignment CDSAT deduces
u ̸≃s u and hence ⊥. Plausibility bars having l←true and l←false, because CDSAT
is not allowed to deduce l ̸≃ l, and hence ⊥, from l←true and l←false. The reason is
that CDSAT is allowed to generate equalities u1≃s u2 or u1 ̸≃s u2 from assignment to
terms u1 and u2 of a sort s, s ̸= prop, but not arbitrary equalities with Boolean sides,
for the sake of termination. Indeed, the possibility of generating arbitrary equalities
with Boolean sides allows the construction of an infinite series such as l1 = (l≃prop l),
l2 = (l1≃prop l1), l3 = (l2≃prop l2), etc. Such a series can be written because ≃prop is
a predicate with Boolean arguments.

Different theories may have different views of a T∞-assignment.

10



t1←c, t2←c ⊢ t1≃s t2 if c is a T -value of sort s
t1←c1, t2←c2 ⊢ t1 ̸≃s t2 if c1 and c2 are distinct T -values of sort s

⊢ t1≃s t1 (reflexivity)
t1≃s t2 ⊢ t2≃s t1 (symmetry)

t1≃s t2, t2≃s t3 ⊢ t1≃s t3 (transitivity)

Fig. 1 The set I≃ of the equality inference rules, where t1, t2, and t3 are terms of sort s

Definition 3 (Theory view (Def. 4 [9])). The T -view of a T∞-assignment H is the
T -assignment HT given by the union of the following sets:

• { u←c | u←c is a T -assignment in H}
•

⋃n
k=1{ u1≃s u2 | u1←c, u2←c are Tk-assignments in H of sort s}

•
⋃n

k=1{ u1 ̸≃s u2 | u1←c1, u2←c2 are Tk-assignments in H of sort s, c1 ̸=c2}

for all s ∈ S \ {prop}, where S is the set of sorts of T .

In addition to the T -assignments in H, the T -view HT contains all equalities and
disequalities that can be gleaned from pairs of first-order Tk-assignments in H, for
any Tk (including T itself if T is not T∞) sharing sort s with T . Since true and false
are T -values for all T , a Boolean assignment is a T -assignment for all T , and hence
a Boolean assignment is in HT for all T .

Example 9. Consider theories ArrAD and LIA as in Example 3 and assignment H =
{i←3, i≃ j, len(a)≃ n, n←5, select(store(a, i, v), j) ̸≃ v}. Then HLIA = H ∪ {i ̸≃ n}
and HArrAD = {i≃ j, len(a)≃ n, select(store(a, i, v), j) ̸≃ v, i ̸≃ n}. Also HArrAD con-
tains i ̸≃ n, because ArrAD shares with LIA the sorts of i and n, namely I and L,
respectively, and LIA interprets them as the same sort (the integers).

For J a T -assignment, andM a T +[V ]-model such that fvΣ(J) ⊆ V , we say that
M endorses J , writtenM |= J , ifM satisfies u≃ c for all pairs (u←c)∈J . It follows
that if {u←c, t←c}⊆J , thenM also satisfies u≃ t. Endorsing the T -view JT of J is
generally stronger than endorsing J : if M |= JT , then M also satisfies u ̸≃ t, for all
pairs u←c1 and t←c2 in J such that c1 ̸= c2 and the sort of u and t is a sort of T . A
T -assignment J is satisfiable if there exists a T +[V ]-modelM, with fvΣ(J) ⊆ V , such
that M |= JT . Otherwise, J is unsatisfiable. For a T∞-assignment H, if M |= HT∞

we writeM |=G H and we say thatM globally endorses H. The relation J |= L holds
ifM |= L for all T +-modelsM such thatM |= JT .

4.2 Theory Modules and Local Bases

Every component theory Tk (1≤ k≤n) is equipped with a theory module Ik, which
is an inference system, whose inferences have the form J ⊢Ik

L, abbreviated J ⊢k L,
for J a Tk-assignment and L a Boolean assignment. Every theory module includes the
equality inference rules in Fig. 1: every module knows that equality is an equivalence
and can deduce equalities and disequalities from first-order assignments. Only the
module for the theory of equality (see Sect. 4.2 in [11]) knows that equality is a
congruence. A theory module is sound if J ⊢k L implies J |= L.

11



Theory module inferences can generate new (i.e., non-input) terms. In order to
avoid generating infinitely many, a theory module is restricted to pick new terms from
a finite basis. A basis is defined as a function over sets of terms, so that the basis for
an Ik-derivation depends on the set of terms occurring in the input. Preliminarly, a
set of terms is closed, if it is ⊴-closed (if t is a member so is every u such that u⊴ t)
and equality-closed (if non-Boolean terms u and t are members so is u≃ t). The closure
⇓X of a set X of terms is the smallest closed set containing X. The closure operation
is idempotent (⇓(⇓X) = ⇓X) and monotone (if X ⊆ Y then ⇓X ⊆ ⇓Y ).

Definition 4 (Basis (Def. 9 [9], Def. 2 [11])). A basis for theory T with signature Σ
is a function basis from sets of terms to sets of terms, such that for all sets X and Y
of terms:

• X ⊆ basis(X) (extensiveness),
• If X is finite then basis(X) is finite (finiteness),
• basis(X) = basis(⇓X) = ⇓basis(X) (closure),
• If X ⊆ Y then basis(X) ⊆ basis(Y ) (monotonicity),
• basis(basis(X)) = basis(X) (idempotence), and
• fvΣ(basis(X)) ⊆ fvΣ(X) ∪ V∞ (no additional free Σ-variables),

where the last requirement excludes the introduction of foreign terms.

A basis for a component theory Tk is called local basis and denoted basisk. Given
assignment J , module Ik can pick new terms from basisk(G(J)), abbreviated basisk(J),
where G(J) is the set of terms occurring in J .

4.3 The CDSAT Framework for Predicate-Sharing Theories

CDSAT works with a trail Γ which is a sequence of distinct singleton assignments that
are either decisions, written ?A to convey guessing, or justified assignments, written

H⊢A. Decisions can be either Boolean or first-order assignments. The justification
H in H⊢A is a set of singleton assignments that appear before A in the trail. Input
assignments are seen as justified assignments with empty justification. All justified
assignments are Boolean except for input first-order assignments (whose justification
is however empty). Given a trail Γ = A0, . . . , Am, the level of assignment Ai is defined
as follows: levelΓ(Ai) = 1+max{levelΓ(Aj) | j < i} if Ai is a decision, and levelΓ(Ai) =
max{levelΓ(A) | A ∈ H} if Ai is a justified assignment H⊢Ai (where levelΓ(Ai) = 0 if
H = ∅). A decision ?A can be made if it is acceptable for a T -module I in the T -view
ΓT of the current trail Γ. Acceptability involves the relevance of the term whose value
is being decided. The definition of relevance (cf. Def. 6 [9])) needs to be extended to
accommodate shared predicates other than equality.

Definition 5 (Predicate-sharing relevance). Given a theory T with signature Σ =
(S, F,ShF ) and a T -assignment J , where G(J) is the set of terms that occur in J , a
term u is relevant to T in J , if either (i) u ∈ G(J) and T has values for the sort of u;
or (ii) u is an equality u1≃s u2 such that u1, u2 ∈ G(J), s ∈ S, but T does not have
values for sort s; or (iii) u is a Boolean term p(u1, . . . , um) such that p ∈ ShF is a

12



shared predicate symbol p : (s1 × · · · × sm)→prop, and for all i, 1 ≤ i ≤ m, ui ∈ G(J)
and si ∈ S.

For Condition (i), it makes sense that a T -module I may decide a value for a term
u if u occurs in the T -view ΓT of the trail and T has values for the sort of u. For
Condition (ii), it also makes sense that I may decide u≃ t if u and t occur in ΓT , even
if u≃ t does not, provided that T does not have values for the sort of u and t. If T
has values for the sort of u and t, I can decide values for u and t, and glean the value
of u≃ t by an equality inference. Condition (iii) extends the treatment of equality to
other shared predicates, to which however the previous point does not apply.

Example 10. Continuing with the theories and the assignment H of Example 9, term
Adm(i, n) occurs neither in HArrAD nor in HLIA, but its arguments do. Thus, Adm(i, n)
is relevant to both LIA and ArrAD by Condition (iii) in Definition 5. Knowing the
definition of Adm, LIA can decide wisely Adm(i, n)←true. If ArrAD were to venture
Adm(i, n)←false, then LIA would detect a conflict.

Definition 6 (Acceptability (Def. 7 [9])). A singleton T -assignment u←c is accept-
able for a T -module I in a T -assignment J , if (i) term u is relevant to T in J , (ii)
J does not assign a T -value to term u, and (iii) if u←c is a first-order assignment,
for no J ′ ⊆ J and L ∈ J there exists an I-inference J ′ ∪ {u←c} ⊢I L.

For Boolean terms and Boolean values, Condition (ii) preserves plausibility,
because Boolean values are T -values for all T . Condition (iii) blocks a first-order
assignment that triggers an inference contradicting the contents of the trail.

The transition system of CDSAT (see Fig. 2) comprises trail rules and conflict state
rules, and it is parametrized with respect to a global basis B. A conflict is an unsatis-
fiable assignment, and a conflict state is made of a trail and a conflict. An assignment
H is in B, if (t←c) ∈ H implies t ∈ B. For the trail rules, Decide expands the trail
with an acceptable decision ?A. Deduce expands the trail with a justified assignment

J⊢L, supported by a theory inference J ⊢k L for some k, 1≤ k≤n, provided L is in
B and L is not on the trail. If L is on the trail, J ∪ {L} is a conflict. If the conflict’s
level is 0, rule Fail reports unsatisfiability. Otherwise, rule ConflictSolve returns the
trail produced by the conflict state rules and the search resumes.

In the conflict state rules, Γ≤m is the restriction of trail Γ to its elements of level
at most m. Rule UndoClear solves the conflict by removing a first-order decision whose
level is maximum in the conflict. Rule Resolve unfolds the conflict by replacing a
justified assignment A in the conflict with its justification H. Typically Resolve applies
until the conflict can be solved by either UndoClear, UndoDecide, or LearnBackjump.
However Resolve is blocked if replacing A by H would put in the conflict a first-order
decision A′ whose level is maximum in the conflict. This provision prevents a loop
where UndoClear removes A′, Decide puts it back, and Deduce derives A again, yielding
the same conflict. Rule UndoDecide solves the conflict by flipping a Boolean justified
assignment L that cannot be unfolded by Resolve for the above reason: since a first-
order assignment A′ does not have a flip, UndoDecide flips a Boolean consequence
L of A′. Rule LearnBackjump2 solves the conflict by learning the clausal form of a

2Rule LearnBackjump [11] subsumes the Backjump rule of the transition system in [9].

13



Trail rules (assume 1≤ k≤n)
Decide Γ −→ Γ, ?A if A is an acceptable Tk-assignment for Ik

in ΓTk

The next three rules share the conditions: J ⊆ Γ, (J ⊢k L), L ̸∈ Γ, and L is in B.
Deduce Γ −→ Γ, J⊢L if L ̸∈ Γ
Fail Γ −→ unsat if L ∈ Γ and levelΓ(J ∪ {L}) = 0
ConflictSolve Γ −→ Γ′ if L ∈ Γ, levelΓ(J ∪ {L}) > 0, and

⟨Γ; J ∪ {L}⟩ =⇒∗ Γ′

Conflict state rules (recall that ⊎ is disjoint union)
UndoClear

⟨Γ;E ⊎ {A}⟩ =⇒ Γ≤m−1 if A is a first-order decision of level
m > levelΓ(E)

Resolve
⟨Γ;E ⊎ {A}⟩ =⇒ ⟨Γ;E ∪H⟩ if (H⊢A) ∈ Γ and for no first-order decision

A′ ∈ H, levelΓ(A
′) = levelΓ(E ⊎ {A})

UndoDecide
⟨Γ;E ⊎ {L}⟩ =⇒ Γ≤m−1, ?L if (H⊢L) ∈ Γ and for a first-order decision

A′ ∈ H, m = levelΓ(A
′), and

m = levelΓ(E) = levelΓ(L)
LearnBackjump

⟨Γ;E ⊎H⟩ =⇒ Γ≤m,E⊢L if L is a clausal form of H, L is in B,
L /∈ Γ, L /∈ Γ, and levelΓ(E) ≤ m < levelΓ(H)

Fig. 2 The CDSAT transition system

Boolean subset H of the conflict and backjumping to a level m. The clausal form of
H = {l1, . . . , lr} is the clause L = (¬l1 ∨ . . .∨¬lr). Indeed, if E ⊎H is a conflict, then

E⊢L can be asserted. The destination level m is strictly smaller than the level of H,
but large enough to keep on the trail the assignments in E, since E is the justification
of E⊢L. Comments and examples about these rules are available [6, 9, 11].

The requirements for the global basis B are that the input assignment is in B,
and B is finite, closed (see Sect. 4.2), and stable: for all k, 1 ≤ k ≤ n, basisk(B) ⊆ B.
Stability ensures that for all sets X of terms, if X ⊆ B then for all k, 1≤ k≤n,
basisk(X) ⊆ B. Indeed, from X ⊆ B we have basisk(X) ⊆ basisk(B) by monotonicity
of basisk (cf. Def. 4), and then basisk(X) ⊆ B by stability. Thus, for an assignment H,
if G(H) ⊆ B, then basisk(G(H)) ⊆ B. Stability also implies closure (cf. Def. 4): for all
k, 1≤ k≤n, by extensiveness of basisk, we have B ⊆ basisk(B), which, together with
stability, implies basisk(B) = B, so that B is closed by the closure property of basisk.
In turn, if B is closed, if H is in B then G(H) ⊆ B, and since G(H) ⊆ B trivially
implies that H is in B, the closure of B means that H is in B iff G(H) ⊆ B.

14



Definition 7 (Assignment expansion (cf. Def. 10 [9], Def. 3 [11])). A T -module I
with local basis basis can expand a T -assignment J if there exists either (1) a T -
assignment A that is acceptable for I in J , or (2) a Boolean assignment l←b derived
by an I-inference J ′ ⊢I (l←b) such that (l←b) /∈ J , l ∈ basis(J), and J ′ ⊆ J .

In a Decide transition, a T -module expands the T -view of the trail by Case (1) of
Definition 7. In Deduce, Fail, and ConflictSolve transitions, a T -module expands the
T -view of the trail by Case (2).

Definition 8 (One-theory-completeness (cf. Def. 12 [9], Def. 4 [11])). Given theory
T with signature Σ, a T -module I is complete for T if whenever I cannot expand a
plausible T -assignment J , there exists a T +[V ]-modelM such thatM |= J assuming
fvΣ(J) ⊆ V .

Assume that there exists a leading theory, say T1, whose signature has all the sorts
in the union (i.e., S1 = S∞) and all the shared symbols: if there exists a predicate
symbol p such that p ∈ ShF j ∩ShF k for some j and k, 2 ≤ j ̸= k ≤ n, then p ∈ ShF 1.

Definition 9 (Predicate-sharing leading-theory-compatibility). Let T1 be the lead-
ing theory, T with signature Σ = (S, F,ShF ) stand for Tk with signature Σk =
(Sk, Fk,ShF k), 2≤ k≤n, and N be a set of terms. A T -assignment J is leading-
theory-compatible with T sharingN , if for all T +

1 [V1]-modelsM1 such thatM1 |= JT1

with fvΣ1
(J ∪N) ⊆ V1, there exists a T +[V ]-modelM with fvΣ(J ∪N) ⊆ V , such that

(i) M |= J ;
(ii) For all shared predicate symbols p ∈ ShF∩ShF 1, p : (s1×· · ·×sm)→prop, and for all

terms u1, . . . , um ∈ N of sorts s1, . . . , sm,M(p(u1, . . . , um)) =M1(p(u1, . . . , um));
and

(iii) For all sorts s ∈ S, there exists a bijection fs : sM → sM1 (so that |sM| =
|sM1 |), such that fprop is identity, and for all p ∈ ShF ∩ ShF 1, p : (s1 × · · · ×
sm)→prop, and for all inhabitants v1, . . . , vm of sM1 , . . . , sMm , pM(v1, . . . , vm) =
pM1(fs1(v1), . . . , f

sm(vm)).

If equality is the only shared predicate, Properties (ii) and (iii) reduce to their
counterparts in the definition for the disjoint case (cf. [9, Def. 13] and [11, Def. 5]).
Property (ii) reduces to M(u1) = M(u2) iff M1(u1) = M1(u2) for all sorts s ∈
S and terms u1, u2 ∈ N of sort s (agreement on equalities between shared terms).
Property (iii) reduces to |sM| = |sM1 | for all s ∈ S (agreement on cardinalities of
shared sorts). The rest of Property (iii) is trivial for equality, because all models
interpret equality as identity: for all inhabitants v1, v2 of sM, v1 = v2 iff fs(v1) =
fs(v2) is trivial in one direction, because fs is a function, and it is trivial in the other
direction, because fs is injective.

If equality is not the only shared predicate, Properties (ii) and (iii) extend the
treatment of equality to all shared predicates. For example, for predicate Adm that
each of ArrAD, MapAD, and VecAD share with some other T and hence with T1, Prop-
erty (ii) says that for all shared terms u1 of sort I and u2 of sort L,M(Adm(u1, u2)) =
M1(Adm(u1, u2)), that is,M(u1) is admissible forM(u2) iffM1(u1) is admissible for
M1(u2) (agreement on shared predicates applied to shared terms). Property (iii) says

15



that for all inhabitants v1 of I
M and v2 of L

M, AdmM(v1, v2) = AdmM1(f I(v1), f
L(v2)),

that is, an index v1 is admissible for a length v2 in M iff index f I(v1) is admissi-
ble for length fL(v2) inM1. In other words, the collection of bijections preserves the
interpretation of shared predicates.

Definition 10 (Leading-theory-completeness (cf. Def. 14 [9], Def. 6 [11])). For a
nonleading theory T , a T -module I is leading-theory-complete, if whenever I cannot
expand a plausible T -assignment J , then J is leading-theory-compatible with T sharing
G(J).

Definition 9 has J and not the T -view JT in Property (i), because Definition 10
applies leading-theory-compatibility to an assignment J that I cannot expand, which
implies J = JT . Indeed, if J ̸= JT , by Definition 3, assignment J lacks an equality
or disequality that can be gleaned from first-order assignments in J , and then I can
expand J by an equality inference.

5 Three New Theory Modules for CDSAT

In previous work we gave a module IArr for the theory Arr of arrays with extension-
ality [9, Sect. 4.3] and proved its leading-theory-completeness [11, Thm. 4]. In this
section we present modules for the theories of arrays, maps, and vectors with abstract
domain, and we show that they are leading-theory-complete.

5.1 Inference Rules for Arrays, Maps, and Vectors

The extensionality axiom (10) can be reduced to the clauses

len(a) ̸≃ len(b) ∨ select(a, diff(a, b)) ̸≃ select(b, diff(a, b)) ∨ a≃ b
len(a) ̸≃ len(b) ∨ Adm(diff(a, b), len(a)) ∨ a≃ b,

where diff : A×A→ I is the Skolem function symbol that maps two arrays to an index,
called a witness, where they differ. Besides the equality rules of Fig. 1, module IArrAD
has inference rules corresponding to the axioms in AArrAD (see Sect. 3.1). The rules
for congruence axioms (4)-(7) are:

a≃ b, i≃ j, select(a, i) ̸≃ select(b, j) ⊢ ⊥ (16)

a≃ b, i≃ j, w≃ v, store(a, i, w) ̸≃ store(b, j, v) ⊢ ⊥ (17)

a≃ b ⊢ len(a)≃ len(b) (18)

n≃m, i≃ j, Adm(i, n), ¬Adm(j,m) ⊢ ⊥ (19)

a≃ c, b≃ d, diff(a, b) ̸≃ diff(c, d) ⊢ ⊥, (20)

plus rule (20) for the congruence axiom for diff (c and d are additional variables
of sort A), which gets added to AArrAD once diff is added to ΣArrAD. The rules for
select-over-store axioms (2)-(8) are:

i ̸≃ j, k≃ j, b≃ store(a, i, v), a≃ c, select(b, k) ̸≃ select(c, j) ⊢ ⊥ (21)

16



i≃ j, len(a)≃ n, Adm(i, n), b≃ store(a, i, v), select(b, j) ̸≃ v ⊢ ⊥, (22)

where the premises have been flattened and linearized (in the sense of avoiding
repeated occurrences of variables), by introducing new variables, such as k of sort I.
Consider rule (22). If the trail contains Adm(i, len(a)) and select(store(a, i, v), j) ̸≃ v,
rule (22) can fire, because flattening and linearizing do not require inferences. On the
other hand, a rule with Adm(i, len(a)) and select(store(a, i, v), j) ̸≃ v as premises could
not fire when the trail contains terms as in the premise of rule (22), because the equal-
ity rules of Fig. 1 do not include a rule for replacement of equals by equals,3 and hence
could not deduce Adm(i, len(a)) and select(store(a, i, v), j) ̸≃ v from the terms on the
trail. Then there are a rule for axiom (9) (store does not change length)

b≃ store(a, i, v), len(b) ̸≃ len(a) ⊢ ⊥ (23)

and two rules for the clauses from extensionality axiom (10)

a ̸≃ b, len(a)≃ len(b) ⊢ select(a, diff(a, b)) ̸≃ select(b, diff(a, b)) (24)

a ̸≃ b, len(a)≃ len(b) ⊢ Adm(diff(a, b), len(a)). (25)

In summary, IArrAD = I≃∪{(16), (17), (18), (19), (20)}∪{(21), (22)}∪{(23), (24), (25)}.
Module IMapAD for the theory of maps with abstract domain includes the equal-

ity rules of Fig. 1 and the same congruence rules of IArrAD (cf. rules (16)-(20)).
As axiom (1) differs from axiom (8), IMapAD differs from IArrAD in the second
select-over-store rule:

i≃ j, b≃ store(a, i, v), select(b, j) ̸≃ v ⊢ ⊥, (26)

whereas the first select-over-store rule remains rule (21). Since axiom (11) about store
and len differs from axiom (9), IMapAD differs from IArrAD also in the rule for axiom (11):

len(a)≃ n, Adm(i, n), b≃ store(a, i, v), len(b) ̸≃ len(a) ⊢ ⊥, (27)

whereas the rules for extensionality remain rules (24)-(25). By transforming axiom (13)
into clauses, we get two clauses for the → direction:

¬Adm(j, len(a)) ∨ Adm(j, len(store(a, i, v)))

j ̸≃ i ∨ Adm(j, len(store(a, i, v))).

These clauses yield the rules(
m≃ len(a), b≃ store(a, i, v), n≃ len(b)
k≃ j, Adm(k,m), ¬Adm(j, n)

)
⊢ ⊥ (28)

b≃ store(a, i, v), n≃ len(b), j≃ i, ¬Adm(j, n) ⊢ ⊥. (29)

3Replacement of equals by equals is reasoning about congruence, which belongs to the module for the
theory of equality, as already mentioned in Sect. 4.2.

17



Rule (28) ensures that every admissible index k of map a remains admissible in map
store(a, i, v). Rule (29) ensures that the index i where the store occurs is admissible
in map store(a, i, v). The one clause for the ← direction of axiom (13)

¬Adm(j, len(store(a, i, v))) ∨ Adm(j, len(a)) ∨ j≃ i

yields one more rule:(
m≃ len(a), b≃ store(a, i, v), n≃ len(b)
k≃ j, ¬Adm(k,m), Adm(j, n), j ̸≃ i

)
⊢ ⊥ (30)

which ensures that every admissible index j of map store(a, i, v) such that j ̸≃ i
is admissible in map a. In summary, IMapAD = I≃ ∪ {(16), (17), (18), (19), (20)} ∪
{(21), (26)} ∪ {(24), (25), (27), (28), (29), (30)}.

Besides the equality rules of Fig. 1, module IVecAD adds to congruence rules (16)-
(20) a rule for congruence axiom (14):

i1≃ i2, j1≃ j2, i1 < j1, i2 ̸<j2 ⊢ ⊥. (31)

The rules for the select-over-store axioms, for axiom (11), and for extensionality are
the same as in IMapAD. Axiom (15) differs from axiom (13) in that it has atom j ≤ i
where axiom (13) has atom j≃ i. Thus, the rules for axiom (15) about vectors follow
those for axiom (13) about maps (i.e., rules (28)-(30)), with the difference that while
rule (28) remains unchanged, j ≤ i replaces j≃ i in the other two rules:

b≃ store(a, i, v), n≃ len(b), j ≤ i, ¬Adm(j, n) ⊢ ⊥ (32)(
m≃ len(a), b≃ store(a, i, v), n≃ len(b)
k≃ j, ¬Adm(k,m), Adm(j, n), j ̸≤ i

)
⊢ ⊥. (33)

In summary, IVecAD = I≃ ∪ {(16), (17), (18), (19), (20), (31)} ∪ {(21), (26)} ∪
{(24), (25), (27), (28), (32), (33)}. The inference rules of IArrAD, IMapAD, and IVecAD are
sound.

5.2 Local Basis for Arrays, Maps, and Vectors

For T ∈ {ArrAD,MapAD,VecAD}, most of the inference rules in IT are lazy: they
fire when the trail violates an axiom, generating ⊥ to signal a conflict. Lazy rules are
trivial for the definition of the local basis, since it suffices that it contains ⊤ whose
flip is ⊥. However, for completeness, the inference rules of a module must be powerful
enough to ensure that when they cannot expand the assignment on the trail, there
exists a model. In turn, this means that the inference rules must be able to put on the
trail useful terms for specifying a model. This is why IT contains also rules that are
not lazy, namely rules (18), (24) and (25). The design of a CDSAT module demands to
balance completeness, which may require the generation of new terms, with finiteness
of the local basis, which suggests to minimize the generation of new terms.

18



Definition 11. For T ∈ {ArrAD,MapAD,VecAD}, given a set X of terms, basisT (X)
is the smallest closed set Y such that X ⊆ Y , ⊤ ∈ Y , and:

1. (l1≃prop l2) ∈ Y for all terms l1, l2 ∈ L(Y ) for L(Y ) = {l | l : prop, l ⊴ u, u ∈
Y, top(u) = select ∨ top(u) = diff} ∪ {l | l : prop, l ◁ u, u ∈ Y, top(u) = store ∨
top(u) = len};

2. len(t) ∈ Y , for all terms t ∈ Y of sort A; and
3. select(t, diff(t, u)) ∈ Y , select(u, diff(t, u)) ∈ Y , Adm(diff(t, u), len(t)) ∈ Y , and

Adm(diff(t, u), len(u)) ∈ Y , for all pairs of terms t, u ∈ Y of sort A.

Clause (1) adds equalities between Boolean terms that may be needed and whose
presence is not guaranteed by equality-closure that applies only to non-Boolean terms.
As indices or values may be Boolean, equalities between Boolean terms that represent
values or indices may be needed. Thus, Clause (1) considers non-strict subterms of
terms whose top symbol is select or diff, because select returns a value and diff returns
an index. Since A ̸= prop and L ̸= prop (see Section 3), Clause (1) considers only strict
subterms of terms whose top symbol is store or len. It does not consider subterms of
terms whose top symbol is Adm. Indeed, first there is no need of equalities involving
Adm-terms. Second, a shared symbol should not contribute to make a local basis larger
precisely because a local basis is local to a theory and its module. Clause (2) adds
the terms that may be generated by rule (18). Clause (3) adds the terms that may be
generated by rules (24)-(25). We prove finiteness next, while it is plain to see that the
other requirements in Definition 4 are met.

Lemma 1. For T ∈ {ArrAD,MapAD,VecAD}, for all finite sets X of terms, basisT (X)
is a finite set of terms.

Proof. For Clause (1), let Sat1(X) = X ∪ {l1≃prop l2 | l1, l2 ∈ L(X)}. For Clause (2),
let Sat2(X) = X ∪ {len(t) | t ∈ X, t : A}. For Clause (3), let Sat3(X) be the union
of X and the set containing all and only the terms of the form select(t, diff(t, u)),
select(u, diff(t, u)), Adm(diff(t, u), len(t)), and Adm(diff(t, u), len(u)) for all pairs of
terms t, u ∈ X of sort A. Then by Definition 11, basisT (X) can be obtained either
as {⊤} ∪ Sat1(⇓ Sat3(⇓ Sat2(⇓X))) or as {⊤} ∪ Sat1(⇓ Sat2(⇓ Sat3(⇓X))). Indeed,
saturation by Clause (2) and saturation by Clause (3) are independent of each other,
whereas saturation by Clause (1) must be applied last, because Clauses (2) and (3)
may add new terms with top symbol len or select, to which Clause (1) may apply. Con-
sider {⊤} ∪ Sat1(⇓Sat2(⇓Sat3(⇓X))). This set is finite, because each saturation step
is finite and none can reignite a previous one. Indeed, in inside-out order, ◁-closure
is finite because the proper subterm ordering is well-founded, and equality-closure is
finite because it produces equalities but it does not apply to Boolean terms. Sat3 adds
terms of sorts V and prop from terms of sort A: its application is finite as A ̸= V and
A ̸= prop. The closure on top of Sat3 adds equalities and proper subterms of new
terms added by Sat3; it cannot reignite Sat3, because it does not add new terms of
sort A. Sat2 adds terms of sort L from terms of sort A: its application is finite as
A ̸= L and it cannot reignite Sat3 for the same reason. The closure on top of Sat2 adds
only equalities (the proper subterms of the terms of sort L added by Sat2 are already
present), and hence it can reignite neither Sat3 nor Sat2. The application of Sat1 is

19



finite, because it adds equalities from non-equational terms, and Sat1 cannot reignite
either Sat3 or Sat2 because A ̸= prop.

5.3 Suitable Leading Theories for Arrays, Maps, and Vectors

A model of Arr interprets an array as a function from indices to values. Let U and V
be generic sets, and VU denote the set of the functions from U to V. A subsetW ⊆ VU

is an updatable function set from U to V, if every function that differs from a function
in W on finitely many elements of U is also in W. The intuition is that if an array is
interpreted as a function inW, the array resulting from a finite number of updates by
store operations is interpreted as a function which is also in W. Therefore, a model
M of Arr interprets the array sort A as an updatable function set from IM to VM.

A modelM of ArrAD interprets an array with abstract domain as a function from
admissible indices to values. Since the admissibility of an index depends on the length
of the array, model M interprets an array of length n as a function from the set of
admissible indices for length n to VM. For modelM, the set of admissible indices for
length n is given by In = {i | i ∈ IM∧AdmM(i, n)}. Let Xn be the updatable function
set from In to VM, whose elements are used to interpret the arrays of length n. Then
sort A is interpreted as the disjoint union of the sets Xn for all n ∈ LM.

What is most important in the interpretation of a sort is its cardinality, because the
theories need to agree on the cardinality of a shared sort. In CDSAT, it is the leading
theory T1 that aggregates the requirements on cardinalities coming from the theories
in the union, and global agreement is ensured by having each theory agree with T1.
Therefore, T1 has all the sorts of ArrAD, and it is up to every T1-modelM1 to ensure
that the cardinality of sort A can be determined, based on the interpretation of Adm
and of the other sorts (L, I, and V). The next definition collects these requirements.

Definition 12 (ArrAD-suitability). A leading theory T1 with signature Σ1 =
(S1, F1,ShF 1) is suitable for ArrAD, or ArrAD-suitable, if SArrAD ⊆ S1, ShFArrAD ∩
ShF 1 = ≃SArrAD

∪ {Adm}, and for all T1-models M1 there exists a length-indexed
collection (Xn)n∈LM1 of nonempty updatable function sets from In = {i | i ∈
IM1 ∧ AdmM1(i, n)} to VM1 such that |AM1 | = |

⊎
n∈LM1 Xn|.

Since ArrAD-suitability only formalizes sensible requirements on the cardinality of
sort A, it does not restrict the realm of theories with which ArrAD can be combined.

Example 11. Resuming Example 3, suppose that ArrAD interprets also V as Z. A
leading theory that interprets L, I, and Adm as dictated by LIA, and V as dictated by
ArrAD is ArrAD-suitable. For all n ∈ Z, the set In of admissible indices is {i | i ∈
Z∧0 ≤ i < n} and it is finite. For all n ∈ Z, n > 0, the set Xn is the updatable function
set of all functions from In to Z, and hence it is countably infinite. Therefore, the
cardinality of the interpretation of A is countably infinite. A leading theory interpreting
A as being finite would not be ArrAD-suitable.

Example 12. For a different continuation of Example 3, suppose that ArrAD inter-
prets V as a finite set D of cardinality m (m > 0). A leading theory that interprets
L, I, and Adm as stipulated by LIA, and V as stipulated by ArrAD is ArrAD-suitable.
For all n ∈ Z, n > 0, the set Xn is the updatable function set of all functions from In

20



to D, and hence its cardinality is mn. Therefore, the cardinality of the interpretation
of A is countably infinite. Again, a leading theory interpreting A as being finite would
not be ArrAD-suitable.

Example 13. Consider the union of ArrAD and the theory BV of bitvectors, where
BV[n] is the set of bitvectors of length n. Assume that BV interprets I as BV[1], L as
BV[2], and Adm as true everywhere except for the pairs (0, 00), (1, 00), and (1, 01).
Suppose that the two theories share also V and that BV interprets it as BV[1]. A leading
theory that interprets I, L, Adm, and V as stipulated by BV is ArrAD-suitable. The sets
of admissible indices are I00 = ∅, I01 = {0}, and I10 = I11 = {0, 1}. For all n ∈ BV[2],
Xn is the updatable function set of the functions from In to BV[1]. The cardinalities
of the Xn’s are |X00| = 20 = 1, |X01| = 21 = 2, and |X10| = |X11| = 22 = 4. The
cardinality of the interpretation of A is their sum, that is, 1+2+4+4 = 11. A leading
theory interpreting A as being countably infinite would not be ArrAD-suitable.

Also a model M of MapAD interprets a map with abstract domain as a function
from admissible indices to values, but for a map an update can change the domain.
Therefore, the notion of updatable function set does not suffice. The appropriate
closure property must be defined for the entire collection of function sets. A collection
(Xn)n is an updatable collection if a function that differs from a function in some Xn

on finitely many indices belongs to some Xm, wherem and n may be equal or different.
The following definition strenghtens this closure property to capture the fact that a
store operation causes a map to grow by at most one index.

Definition 13 (Incrementally updatable collection). Let U , V, and L be nonempty
sets, and R ⊆ U × L a binary relation. An L-indexed collection (Xn)n∈L is
incrementally updatable with respect to U , V, and R if:

• For all n ∈ L, Xn is a nonempty set of functions f : In → V for In = {i | i ∈
U ∧ R(i, n)}, and

• For all i ∈ U , v ∈ V, n ∈ L, and f ∈ Xn, if f
i
v is the function that maps i to v and

is identical to f otherwise, there exists an m ∈ L such that f iv ∈ Xm, and

– m = n if i ∈ In, and
– Im = In ∪ {i} otherwise.

This kind of collection is used to interpret the sort A of maps in theory MapAD,
and to define the MapAD-suitability of a leading theory, by replacing the generic U ,
V, L, and R of Definition 13 with the interpretations of I, V, L, and Adm in a model
of the leading theory.

Definition 14 (MapAD-suitability). A leading theory T1 with signature Σ1 =
(S1, F1,ShF 1) is suitable for MapAD, or MapAD-suitable, if SMapAD ⊆ S1, ShFMapAD∩
ShF 1 = ≃SMapAD

∪{Adm}, and for all T1-modelsM1 there exists a length-indexed col-
lection (Xn)n∈LM1 such that |AM1 | = |

⊎
n∈LM1 Xn| and (Xn)n∈LM1 is incrementally

updatable with respect to IM1 , VM1 , and AdmM1 .

21



For vectors, a store at an inadmissible index makes also all smaller indices admissi-
ble. Therefore, Definition 13 is modified by adding an ordering and replacing equality
with the smaller than or equal to relation.

Definition 15 (Extensibly updatable collection). Let U , V, and L be nonempty sets,
R ⊆ U × V a binary relation, and <u an ordering on U . An L-indexed collection
(Xn)n∈L is extensibly updatable with respect to U , V, R, and <u if:

• For all n ∈ L, Xn is a nonempty set of functions f : In → V for In = {i | i ∈
U ∧ R(i, n)}, and

• For all i ∈ U , v ∈ V, n ∈ L, and f ∈ Xn, if f
i
v is the function that maps i to v and

is identical to f otherwise, there exists an m ∈ L such that f iv ∈ Xm, where

– m = n if i ∈ In, and
– Im = In ∪ {j | j ≤u i} otherwise.

This kind of collection is used to interpret the sort A of vectors in theory VecAD,
and to define the VecAD-suitability of a leading theory, by replacing the generic U , V,
L, R, and <u of Definition 15 with the interpretations of I, V, L, Adm, and <∈ FVecAD

in a model of the leading theory.

Definition 16 (VecAD-suitability). A leading theory T1 with signature Σ1 =
(S1, F1,ShF 1) is suitable for VecAD, or VecAD-suitable, if SVecAD ⊆ S1, ShFVecAD ∩
ShF 1 = ≃SVecAD

∪ {Adm, <}, and for all T1-models M1 there exists a length-indexed
collection (Xn)n∈LM1 such that |AM1 | = |

⊎
n∈LM1 Xn| and (Xn)n∈LM1 is extensibly

updatable with respect to IM1 , VM1 , AdmM1 , and <M1 .

A model interprets function symbols as total functions. Therefore, while the func-
tions in a set Xn, member of a collection, are defined on In and not on IM1 , the
interpretation of select in an T -model M, for T ∈ {ArrAD,MapAD,VecAD}, will be
defined on the entire IM, so that every term select(a, i) gets interpreted.

5.4 Leading-Theory Completeness

For T ∈ {ArrAD,MapAD,VecAD}, the extension T + may be either trivial or countably
infinite (see Sect. 4.1). In this section we prove that IT is leading-theory-complete
in the second case. The other case will follow as a simple variant. We begin with
three auxiliary lemmas. Given a T -assignment J , with Gs(J) the set of terms of sort
s occurring in J , the binary relation ≃J

s ⊆ Gs(J) × Gs(J) is defined by t1≃J
s t2 iff

(t1≃s t2) ∈ J .

Lemma 2 (Lemma 1 [11]). If T -module I cannot expand a plausible T -assignment
J , then:

1. For all sorts s ∈ S \ {prop}, the relation ≃J
s is an equivalence relation, and if

{t1←c1, t2←c2} ⊆ J , then c1 and c2 are identical if and only if t1≃J
s t2;

2. Assignment J gives a value to every formula that is relevant to T in J ;
3. Assignment J gives a value to every term t of sort s ∈ S \{prop} that is relevant to
T in J , provided that (i) there exists a T -value of sort s that J does not use, and

22



(ii) the only I-inferences involving first-order assignments of sort s are equality
inferences.

Hypothesis (i) in Claim (3) ensures that a value for a decision is available. Hypoth-
esis (ii) makes the analysis of acceptability of decisions module-independent. For
T ∈ {ArrAD,MapAD,VecAD}, if T + is countably infinite, Hypothesis (i) is satisfied a
priori. If T + is trivial, Claim (3) is vacuously true, as by Definition 5 no term t of a
sort s ∈ S \ {prop} is relevant to T .

Lemma 3. For all theories T with signature Σ, if T -module I cannot expand a
plausible T -assignment J , extension T + is countably infinite, and the only I-inferences
involving first-order assignments are equality inferences, then (1) J assigns values to
all terms in G(J), and hence (2) fvΣ(J ∪G(J)) = fvΣ(G(J)) = fvΣ(J).

Proof. For all l ∈ Gprop(J), formula l is relevant to T by Condition (i) of Definition 5,
and hence J assigns a value to l by Claim (2) of Lemma 2. For all sorts s ∈ S \ {prop}
and all terms u ∈ Gs(J), we reason as follows: first, u is relevant to T because
Condition (i) of Definition 5 is satisfied by the hypotheses; second, J assigns a value
to u because the conditions of Claim (3) of Lemma 2 are satisfied by the hypotheses.
For Claim (2), the first equality is trivial, and the second one follows from Claim (1).
Note that the second equality in Claim (2) is not trivial, because there could be two
Σ-foreign terms u, t ∈ G(J) such that u◁t, so that u ∈ fvΣ(G(J)), but u ̸∈ fvΣ(J).

Lemma 4. For T ∈ {ArrAD,MapAD,VecAD}, if J is a plausible T -assignment that
IT cannot expand, for all terms t ∈ GA(J), len(t) ∈ GL(J).

Proof. Since IT cannot expand J , for all terms t ∈ GA(J), we have (t≃ t) ∈ J by the
equality rule for reflexivity (see Fig. 1), and hence (len(t)≃ len(t)) ∈ J by rule (18),
so that len(t) ∈ GL(J).

Lemma 4 and the form of rule (18) contradict the notion that module IT only
needs to be concerned with the lengths of arrays (maps, or vectors) that differ. In
theories ArrAD, MapAD, and VecAD, the length is an essential feature of an array,
a map, and a vector, respectively. The model construction in the proof of leading-
theory-completeness of IT will define a length function as a step towards the functional
interpretation of arrays (maps, and vectors).

Theorem 5. For T ∈ {ArrAD, MapAD, VecAD}, module IT is leading-theory-
complete for all T -suitable leading theories.

Proof. Let J be a plausible T -assignment that IT cannot expand. We show that J is
leading-theory-compatible with T sharing G(J). By Lemma 3, J assigns values to all
terms in G(J) (†) and fvΣ(J ∪G(J)) = fvΣ(G(J)) = fvΣ(J), where Σ = (S, F, ShF ) is
the signature of T . Let T1 be a T -suitable leading theory, Σ1 its signature, and T +

1 its
extension. LetM1 be a T +

1 [V1]-model such that fvΣ1
(J ∪ G(J)) = fvΣ1

(G(J)) ⊆ V1,
M1 |= JT1

, and |AM1 | = |
⊎

n∈LM1 Xn|, where (Xn)n∈LM1 is

23



• The collection of updatable function sets for M1 according to Definition 12 for
T = ArrAD;

• The incrementally updatable collection of function sets for M1 according to
Definition 14 for T = MapAD;

• The extensibly updatable collection of function sets for M1 according to Defini-
tion 16 for T = VecAD.

We construct a T +[V ]-modelM with fvΣ(J) ⊆ V . We start with:

1. sM = sM1 for all sorts s ∈ S (towards (iii) in Def. 9),
2. M(t) =M1(t) for all variables t ∈ fvΣ(J),
3. AdmM = AdmM1 and, for T = VecAD,<M =<M1 (towards (ii) and (iii) in Def. 9),
4. For all T -values c, M(c) = M1(t) if (t←c) ∈ J and M(c) is chosen arbitrarily

otherwise.

The bulk of the construction is for the definition of theM-interpretation of len, store,
select, and diff. To this end, we will define functions

• len : AM → LM mapping arrays (maps, or vectors) to lengths;
• ψ : AM →

⊎
n∈LM Xn such that ψ(a) ∈ Xn for n = len(a) and ψ(a) : In → VM is a

function from admissible indices to values;
• ϕ from AM to a function set from IM to VM, so that ϕ(a) : IM → VM is a function
from indices to values that agrees with ψ(a) on admissible indices;

• diff : AM × AM → IM mapping pairs of arrays (maps, or vectors) to indices.

The functions len, ψ, ϕ, and diff will be used to define theM-interpretation of symbols
len, store, select, and diff, respectively, in such a way that:

• M |= AT so thatM is a T +-model,
• M |= J in order to satisfy Part (i) of Definition 9, and
• The sort cardinality constraint |AM| = |

⊎
n∈LM Xn| conveyed from M1 to M by

Point (1) above is respected, so that ψ : AM →
⊎

n∈LM Xn will be a bijection.

The essence of the following construction is that for all inhabitants a of AM, we give a
functional interpretation mapping indices in IM to values in VM. To this end, for all
n in LM we pick from Xn a function fn : In → VM and we complete it into a function
gn : I

M → VM. These functions will be used as defaults in the construction, which is
subdivided in four steps. In the first step we consider those inhabitants of AM that are
used byM1 to interpret terms in GA(J). Let Y be the finite subset of AM consisting
of those elements a such that M1(t) = a for some term t ∈ GA(J). We define lenY ,
ψY , and ϕY as the cores of len, ψ, and ϕ, respectively, that are defined only on Y .

I. Definition of lenY , ϕY , and ψY :
Let a be an element of Y with a =M1(t) for term t ∈ GA(J). By Lemma 4, len(t) ∈
GL(J). Model M1 sees len(t) as a variable in fvΣ1

(J), because len is a Σ1-foreign
symbol. We define lenY : Y → LM by lenY (a) =M1(len(t)). Let Ra ⊆ IM × VM

be the set of index-value pairs dictated by J . Formally, Ra = R1
a ∪ R2

a ∪ R3
a for

T = ArrAD, and Ra = R1
a ∪R2

a ∪R3
a ∪R4

a for T = MapAD or T = VecAD, where:

• R1
a = {(M1(i),M1(select(t, i))) | select(t, i) ∈ GV(J), M1(t) = a},

24



• R2
a = {(M1(i),M1(select(t, i))) | select(t, i) ∈ GV(J), store(t, j, v) ∈ GA(J),
M1(store(t, j, v)) = a, M1(i) ̸=M1(j)},

• R3
a = {(M1(i),M1(v)) | store(t, i, v) ∈ GA(J), M1(store(t, i, v)) = a,
M1(t) = b, lenY (b) = n, M1(i) ∈ In}, and

• R4
a = {(M1(i),M1(v)) | store(t, i, v) ∈ GA(J), M1(store(t, i, v)) = a,
M1(t) = b, lenY (b) = n, M1(i) ̸∈ In}.

Set R1
a contains the index-value pairs dictated by select-terms where select is applied

to a term t that M1 interprets as a, so that lenY (a) =M1(len(t)). Sets R
2
a, R

3
a,

and R4
a contain the index-value pairs dictated by a store-term thatM1 interprets

as a, so that lenY (a) =M1(len(store(t, i, v))) and lenY (b) =M1(len(t)) = n.
Set R2

a follows select-over-store axiom (2), which is common to all three theories.
Set R3

a covers store-terms where the index is admissible, following select-over-store
axiom (8) if T = ArrAD and select-over-store axiom (1) if T = MapAD or T =
VecAD. Set R4

a covers store-terms where the index is inadmissible, following select-
over-store axiom (1) for T = MapAD or T = VecAD.
For each pair in R3

a (store at an admissible index), lenY (a) = lenY (b) = n, because
otherwise IT could expand J by rule (23) if T = ArrAD, and by rule (27) if
T = MapAD or T = VecAD. For each pair in R4

a (store at an inadmissible index)
and T = MapAD, M1(i) ∈ Im and Im = In ∪ {M1(i)} for lenY (a) = m, because
otherwise IMapAD could expand J by rule (29). For each pair in R4

a (store at an
inadmissible index) and T = VecAD, M1(j) ∈ Im for all indices M1(j) such
that M1(j) ≤M1 M1(i), where lenY (a) = m, because otherwise IVecAD could
expand J by rule (32). Since G(J) is finite, Ra is finite. Also, Ra is a functional
relation, because otherwise IT could expand J by select-over-store rules (21)-(22) if
T = ArrAD, and by select-over-store rules (21)-(26) if T = MapAD or T = VecAD.
The completion of this step is distinct for each of the three theories.

• If T = ArrAD: let ϕY (a) : I
M → VM be the function that is identical to Ra =

R1
a ∪ R2

a ∪ R3
a where Ra is defined and to gn for n = lenY (a) elsewhere. Let

ψY (a) : In → VM be the restriction of ϕY (a) to In. Since Ra is finite, ϕY (a)
differs from gn at finitely many indices. Hence ψY (a) differs from fn at finitely
many indices, so that ψY (a) ∈ Xn.

• If T = MapAD: since Ra = R1
a ∪ R2

a ∪ R3
a ∪ R4

a is finite, the incrementally
updatable collection for M1 contains an Xh such that Ih contains all indices
M1(i) that appear as first element of a pair in Ra. Let ϕY (a) : I

M → VM be
the function that is identical to Ra where Ra is defined and to gh elsewhere. Let
ψY (a) : Ih → VM be the restriction of ϕY (a) to Ih. By the finiteness of Ra and
Definition 13 of incrementally updatable collection, ψY (a) ∈ Xh.

• If T = VecAD: since Ra = R1
a ∪R2

a ∪R3
a ∪R4

a is finite, the extensibly updatable
collection for M1 contains an Xh such that Ih contains (1) all indices M1(i)
that appear as first element of a pair in Ra, and (2) all indicesM1(j) such that
M1(j) ≤M1 M1(i) for some M1(i) that appears as first element of a pair in
R4

a. Let ϕY (a) : I
M → VM be the function that is identical to Ra where Ra is

defined and to gh elsewhere. Let ψY (a) : Ih → VM be the restriction of ϕY (a) to
Ih. By Definition 15 of extensibly updatable collection, ψY (a) ∈ Xh.

25



II. Injectivity of ψY : Y →
⊎

n∈LM Xn and definition of diff Y : Y × Y → IM:
By way of contradiction, suppose that there are elements a, b ∈ Y such that a ̸= b
and ψY (a) = ψY (b). Since ψY (a) is a function in Xn for n = lenY (a) and ψY (b)
is a function in Xm for m = lenY (b), the equality ψY (a) = ψY (b) means that
Xn∩Xm ̸= ∅. If n ̸= m, then In ̸= Im and hence Xn∩Xm = ∅. Thus, Xn∩Xm ̸= ∅
implies n = m. By definition of Y , the assumption that a, b ∈ Y means that there
exist terms t, u ∈ GA(J) such that a =M1(t) and b =M1(u), and the assumption
that a ̸= b means thatM1 |= t ̸≃ u. By (†) J assigns values to t and u, and there-
fore it also assigns a truth value b to t≃ u, because otherwise IT could expand J
by an equality inference rule. Also, ((t≃ u)←b) ∈ JT1 because a Boolean assign-
ment belongs to the theory view of every theory (see Def. 3). Since M1 |= t ̸≃ u
andM1 |= JT1 , the value b must be false, that is, (t ̸≃ u) ∈ J .
By Lemma 4, len(t) and len(u) are in GL(J), and J assigns them values by
(†). Thus, J assigns a truth value b′ to len(t)≃ len(u) and so does JT1 . Since
lenY (a) = lenY (b), by definition of lenY we have M1(len(t)) = M1(len(u)).
Since M1 |= JT1 , the truth value b′ must be true (i.e., (len(t)≃ len(u)) ∈
J). Also, select(t, diff(t, u)) ̸≃ select(u, diff(t, u)) is in J (*) and hence in JT1 ,
because otherwise IT could expand J by rule (24). From M1 |= JT1 we have
M1(select(t, diff(t, u))) ̸=M1(select(u, diff(t, u))).
Now we define diff Y . By (*) diff(t, u) ∈ GI(J). Model M1 sees diff(t, u) as a
variable in fvΣ1

(J) because diff is a Σ1-foreign symbol. For all a, b ∈ Y , let
diff Y (a, b) =M1(diff(t, u)), if a ̸= b and lenY (a) = lenY (b), and let diff Y (a, b) be
arbitrary otherwise.
We resume the proof of the injectivity of ψY . Also Adm(diff(t, u), len(t)) is in J and
hence in JT1 , because otherwise IT could expand J by rule (25). SinceM1 |= JT1 ,
it follows thatM1 |= Adm(diff(t, u), len(t)). Thus,M1((diff(t, u))) is an admissible
index (i.e., it is in In for n =M1(len(t))). By definition of ψY (a) : In → VM (based
on Ra) for a generic a, we have:

ψY (a)(M1(diff(t, u))) =M1(select(t, diff(t, u)))
ψY (b)(M1(diff(t, u))) =M1(select(u, diff(t, u))).

Since the two right hand sides are different, the two left hand sides are also different,
so that ψY (a) ̸= ψY (b), which contradicts the assumption that ψY (a) = ψY (b).
Therefore, ψY is injective. The injectivity of ψY allows us to define ψ, len, ϕ, and
diff as extensions of ψY , lenY , ϕY , and diff Y .

III. Definition of ψ : AM →
⊎

n∈LM Xn, len : A
M → LM, ϕ, and diff : AM×AM → IM:

• Since ψY : Y →
⊎

n∈LM Xn is injective, we can extend it to a bijection ψ from
AM to

⊎
n∈LM Xn by taking as pre-images of the elements of

⊎
n∈LM Xn that are

not images of elements of Y other elements of AM and there are enough distinct
such elements as |AM| = |

⊎
n∈LM Xn|.

• For all a ∈ AM let len(a) be the unique n in LM such that ψ(a) is in Xn. Note
that for a ∈ Y we have len(a) = lenY (a).

• For all a ∈ AM, if a ∈ Y let ϕ(a) = ϕY (a); otherwise, let ϕ(a) be the function
that agrees with ψ(a) on In for n = len(a) and with gn everywhere else.

26



• For all a, b ∈ AM, if a, b ∈ Y let diff (a, b) = diff Y (a, b); otherwise, if a = b
or a ̸= b and len(a) ̸= len(b), let diff (a, b) be arbitrary; otherwise (i.e., a ̸= b
and len(a) = len(b)), let diff (a, b) = j for any index j ∈ In, where n = len(a),
such that ψ(a)(j) ̸= ψ(b)(j). At least one such j exists, because a ̸= b implies
ψ(a) ̸= ψ(b) by injectivity of ψ.

IV. TheM-interpretation of symbols len, diff, select, and store:

• For all a ∈ AM let lenM(a) = len(a) ∈ LM;
• For all a, b ∈ AM let diffM(a, b) = diff (a, b) ∈ IM;
• For all pairs (a, e)∈AM × IM let selectM(a, e) = ϕ(a)(e) ∈ VM;
• For all triples (a, e, v) ∈ AM × IM × VM let storeM(a, e, v) be defined assuming
len(a) = n and distinguishing the following cases:

– If e ∈ In, then let f : In → VM be the function such that f(e) = v and for all
j ∈ In, j ̸= e, f(j) = ψ(a)(j) ∈ VM. If T = ArrAD, function f is in Xn as it
differs from ψ(a) ∈ Xn at one index. If T = MapAD or T = VecAD, function f
is inXn by Definition 13 or by Definition 15, respectively. Since ψ is a bijection,
we take ψ−1(f) which is in AM and define storeM(a, e, v) = ψ−1(f).

– If e ̸∈ In and T = ArrAD, then let storeM(a, e, v) = a.
– If e ̸∈ In and T = MapAD or T = VecAD, then by Definition 13 for MapAD,
there exists an m ∈ LM such that Im = In ∪ {e}, and by Definition 15 for
VecAD, there exists an m ∈ LM such that Im = In ∪ {j | j ∈ IM, j ≤M e}.
Let f : Im → VM be the function such that f(e) = v and for all j ∈ Im, j ̸= e,
f(j) = ψ(a)(j) ∈ VM. Function f is in Xm by Definition 13 for MapAD, and
by Definition 15 for VecAD. Since ψ is a bijection, we take ψ−1(f) which is in
AM and define storeM(a, e, v) = ψ−1(f).

By construction, M |= AT and M fulfills Parts (i), (ii), and (iii) of Def. 9 (the
instance of (ii) for equality follows by induction on the term structure).

For T ∈ {ArrAD,MapAD,VecAD}, if T + is trivial, Theorem 5 still holds with a similar
proof, except that non-Boolean terms are not relevant to T and hence they are not
assigned T -values.

6 Global Basis for Predicate-Sharing Unions

In prior work [11, Sect. 5], we showed how to construct a finite and stable (hence closed,
see Sect. 4.3) global basis B from local bases basis1, . . . , basisn for disjoint theories
T1, . . . , Tn. In this section we generalize the construction to predicate-sharing theories.

The availability of basis1, . . . , basisn does not necessarily imply the existence of a
finite B, because a circular behavior may occur. Let H be the input assignment and
let X0 be equal to the set G(H) of the terms occurring in H. Suppose that module Ik
introduces a new term u0 in Y0 = basisk(X0), which causes another module Ij (j ̸= k)
to generate a new term t1 in X1 = basisj(Y0), which in turn leads Ik to create a new

27



term u1 in Y1 = basisk(X1), and so on. For Ym = basisk(Xm) and Xm+1 = basisj(Ym),
the set

⋃
m≥0Xm will be infinite, even if for all m the sets Ym and Xm are finite.

In order to avoid this kind of behavior, we define a well-founded ordering on the
theories (and hence on their theory modules and local bases). A well-founded ordering
is acyclic. Since there are finitely many theories in the union, being cyclic is the only
way a theory ordering may be non-well-founded.

The aim of the theory ordering is to capture the dependencies between theories in
the following sense. Intuitively, a theory Tj depends on a theory Tk if there exists a
sort s such that s is shared by Tj and Tk, module Ik produces new terms of sort s,
and module Ij consumes terms of sort s, according to the notions of production and
consumption of a sort defined below. These notions are defined for local bases, because
the new terms produced by a theory module must be in its local basis. In words, a
basis produces a sort s if its application to a closed set X generates some new term
of sort s. A basis consumes a sort s if its application to a set X ⊎ {t}, where X is
closed and t is a term of sort s, generates some new term u that would not arise if the
basis were applied to X only. In the disjoint case the term t can be either a variable
or an equality (cf. [11, Def. 7]). In the predicate-sharing case the term t can be either
a variable or a Boolean term whose top symbol is a shared predicate.

Definition 17 (Predicate-sharing production/consumption of a sort). Let basis be
a basis for theory T with signature Σ = (S, F,ShF ). For all sorts s ∈ S, (i) basis
produces sort s if for some term t : s and some closed set X of terms, t ∈ basis(X)\X;
and (ii) basis consumes sort s if there exist a closed set X of terms and a term t : s,
which is either a free Σ-variable or a Boolean term p(u1, . . . , um) with p ∈ ShF and
ui ∈ X for all i, 1 ≤ i ≤ m, such that basis(X ⊎ {t}) ̸⊆ ⇓(basis(X) ⊎ {t}).

What term t can be depends on what suffices for the forthcoming Lemma 6.

Example 14. For T ∈ {ArrAD,MapAD,VecAD} and Σ the signature of T , the basis
basisT (cf. Def. 11) produces sort prop by adding ⊤ and the equalities in Clause (1).
Furthermore, Clause (1) does not consume any sort, because the terms it applies to
have either select or diff or store or len as top symbol, and hence they are neither free
Σ-variables nor Boolean terms with a shared predicate symbol. Clause (2) in Def. 11
produces sort L and consumes sort A, because given any variable t of sort A, it yields
term len(t) of sort L. Clause (3) in Def. 11 produces sorts I, V, L, and prop, and
consumes sort A, because given any variables t and u of sort A, it introduces terms
diff(t, u) of sort I, terms select(t, diff(t, u)) and select(u, diff(t, u)) of sort V, terms
len(t) and len(u) of sort L, and terms Adm(diff(t, u), len(t)) and Adm(diff(t, u), len(u))
of sort prop. In summary, basisT consumes sort A and produces sorts prop, L, I, and V.

Definition 18 (Dependency ordering). Given theories T1, . . . , Tn, with sets of sorts
S1, . . . , Sn, and local bases basis1, . . . , basisn, the dependency ordering ≺ on T1, . . . , Tn
is defined as follows: for all k and all j, 1≤ k ̸= j ≤ n, Tk ≺ Tj if there exists a sort
s ∈ Sk ∩ Sj that basisk produces and basisj consumes.

Example 15. Consider theories ArrAD1 and ArrAD2 as in Ex. 1 and 2. Let basis1
and basis2 be their respective local bases. As seen in Ex. 14 above, basis1 consumes

sort A1 = (I
L⇒ V) and produces sorts prop, I, L, and V1 = V; basis2 consumes sort

28



A2 = (I
L⇒ (I

L⇒ V)) and produces sorts prop, L, I, and V2 = A1. The two theories
share sorts {prop, I, L,A1}. The relation ArrAD2 ≺ ArrAD1 holds, because there exists
a shared sort, namely A1, such that basis2 produces A1 (as V2) and basis1 consumes
A1. On the other hand, ArrAD1 ≺ ArrAD2 does not hold, because for no sort s ∈
{prop, I, L,A1} it is the case that basis1 produces s and basis2 consumes s. Indeed, for
s ∈ {prop, I, L}, basis1 produces s, but basis2 does not consume it. For s = A1, basis1
does not produce s. In general, consider a predicate-sharing union with m (m ≥ 2)
instances ArrAD1, . . . ,ArrADm of ArrAD, where for all j, 1 ≤ j ≤ m, there are j
occurrences of the array sort constructor ⇒ in sort Aj. We have ArrADj+1 ≺ ArrADj

for all j, 1 ≤ j ≤ m, as basisj+1 produces as values arrays that basisj consumes. By
transitivity, we have ArrADk ≺ ArrADj for all j and k, 1 ≤ j < k ≤ m. In other
words, the inverse of the ordering on the number of occurrences of⇒ in the array sorts
yields an ordering on the array sorts, and hence on the theories, since each instance
of ArrAD has one array sort.

If the dependency ordering ≺ is acyclic, the theories in the union can be numbered
according to the ordering: if Tk ≺ Tj then k < j. Also, the numbering can be used
to convey the ordering by stipulating that for all k and all j, 1 ≤ k ̸= j ≤ n, k < j
iff Tk ≺ Tj . For the rest of this section, we assume that the theories are numbered
according to this convention.4

Definition 19 (Dependency-induced global basis). Let T1, . . . , Tn be theories ordered
by an acyclic dependency ordering ≺ and numbered accordingly. Let basis1, . . . , basisn
be their local bases. Then the dependency-induced global basis is defined by
basis∞(X) = basisn(. . . basis1(X)) for all sets X of terms.

We show that basis∞(X) is stable and finite for all sets X of terms. We begin with
a lemma that establishes the needed permutability property.

Lemma 6. If T1, . . . , Tn are predicate-sharing theories ordered by an acyclic depen-
dency ordering ≺ and numbered accordingly, then ∀k, ∀j, 1 ≤ k < j ≤ n, and for all
finite closed sets X of terms, the following claims hold:

1. For all ⊴-closed sets Y of terms such that X ⊆ Y ⊆ basisj(X), it holds that
basisk(Y ) ⊆ ⇓(basisk(X) ∪ Y ); and

2. basisk(basisj(X)) ⊆ basisj(basisk(X)).

Proof. By acyclicity of the ordering, k < j (i.e., Tk ≺ Tj) implies Tj ̸≺ Tk, so that no
sort s ∈ Sk ∩ Sj is produced by basisj and consumed by basisk (∗).

1. The proof of Claim (1) is by induction on the cardinality |Y \X| of Y \X, which is
finite, because X is finite by hypothesis, basisj(X) is finite by finiteness of basisj ,
and Y ⊆ basisj(X) by hypothesis.
Base case: if |Y \X| = 0, Y = X, basisk(X) ∪X = basisk(X) by extensiveness of
basisk, and basisk(X) ⊆ ⇓(basisk(X)) by definition of closure.
Induction hypothesis: Claim (1) holds for all sets Y such that |Y \X| = q ≥ 0.
Induction step: suppose |Y \X| = q+1. Let t be a term of largest size (symbol count)

4This convention clashes with what we observed for the theories in Ex. 15, but in general it goes well
with the intuition that Tk ≺ Tj means that Tj depends on Tk.

29



in Y \X (∗∗) and such that the sort s of t is in Sk∩Sj . By hypothesis, t ∈ basisj(X),
and hence t ∈ (basisj(X)\X). Thus, basisj produces sort s by (i) in Def. 17. By (∗),
basisk does not consume sort s. By the contrapositive of (ii) in Def. 17, basisk does
not consume sort s implies that for all closed sets X of terms and for all terms t : s,
that are either free Σk-variables or Boolean terms p(u1, . . . , um) with p ∈ ShF k and
ui ∈ X for all i, 1 ≤ i ≤ m, we have basis(X ⊎ {t}) ⊆ ⇓ (basis(X) ⊎ {t}) (c-ii). We
want to apply (c-ii) to basisk and the closed set ⇓ (Y \ {t}). In order to do it, we
need to show that t is either a free Σk-variable or a Boolean term as described in
(c-ii). Since the theories are predicate-sharing, symbol top(t) is either (a) unknown
to Tk (i.e., top(t) is Σk-foreign), or (b) unknown to Tj (i.e., top(t) is Σj-foreign),
or (c) known to both (i.e., top(t) ∈ ShF j ∩ ShF k).

(a) If top(t) is Σk-foreign, t is a free Σk-variable.
(b) If top(t) is Σj-foreign, t is a Σj-foreign term, and since t ∈ basisj(X), we have

t ∈ fvΣj
(basisj(X)). By the “no introduction of foreign terms” property of a

local basis (cf. Def. 4), fvΣj
(basisj(X)) ⊆ fvΣj

(X) ∪ V∞. Term t cannot be in
fvΣj

(X), because if it were, since X is closed, and hence ⊴-closed, t would also
be in X, which is not the case by (∗∗). Thus, t must be in V∞, which implies
that t is a free Σk-variable.

(c) If top(t) ∈ ShF j ∩ShF k, term t is a Boolean term p(u1, . . . , um) with p ∈ ShF k.
Furthermore, by ⊴-closure of Y , all strict subterms of t are in Y \{t}, and hence
in ⇓(Y \ {t}).

Therefore, we can apply (c-ii) to basisk and the closed set ⇓(Y \ {t}), getting

basisk(⇓(Y \ {t}) ∪ {t}) ⊆ ⇓(basisk(⇓(Y \ {t})) ∪ {t}) (†).

Also, we have X ⊆ (Y \ {t}), because X ⊆ Y and t ∈ Y \X. Next, we show that
Y \ {t} is ⊴-closed. By way of contradiction, suppose that Y \ {t} is not ⊴-closed.
Since Y is ⊴-closed, by the hypothesis that Y \{t} is not, we have that there exists
a term u ∈ Y such that t◁ u. But then, either u ∈ X or u ∈ Y \X. If u ∈ X, then
t ∈ X, because X is closed, and t ∈ X contradicts (∗∗). If u ∈ Y \X, then t is not
a term of largest size in Y \X which contradicts (∗∗). Therefore, we can apply the
induction hypothesis to Y \ {t} and get

basisk(Y \ {t}) ⊆ ⇓(basisk(X) ∪ (Y \ {t})) (‡).

Then Claim (1) is established as follows:

basisk(Y ) = basisk((Y \ {t}) ∪ {t})
⊆ basisk(⇓(Y \ {t}) ∪ {t}) by monotonicity of basisk
⊆ ⇓(basisk(⇓(Y \ {t})) ∪ {t}) by (†)
= ⇓(basisk(Y \ {t}) ∪ {t}) by closure of basisk
⊆ ⇓(⇓(basisk(X) ∪ (Y \ {t})) ∪ {t}) by (‡)
⊆ ⇓⇓(basisk(X) ∪ (Y \ {t}) ∪ {t})
= ⇓(basisk(X) ∪ Y ) by idempotence of ⇓.

30



2. Claim (2) is derived as follows:

basisk(basisj(X)) ⊆ ⇓(basisk(X) ∪ basisj(X)) by Claim (1)
⊆ ⇓(basisj(basisk(X)) ∪ basisj(X)) by extensiveness
= ⇓(basisj(basisk(X))) by X ⊆ basisk(X)

and the monotonicity of basisj
= basisj(basisk(X)) by closure of bases.

Now we can use the premutability property (Claim (2) in Lemma 6) to show that
basis∞(X) is stable.

Lemma 7. Let T1, . . . , Tn be predicate-sharing theories ordered by an acyclic depen-
dency ordering ≺ and numbered accordingly. Let basis1, . . . , basisn be their local bases
and basis∞ be the dependency-induced global basis. Then for all finite sets X of terms,
∀k, 1≤ k≤n, basisk(basis∞(X)) = basis∞(X).

Proof. We prove a more general claim, namely that for all k, for all j, 1≤ k≤ j≤n,
basisk(basisj(. . . basis1(X))) = basisj(. . . basis1(X)). The ⊇-direction holds by exten-
siveness of basisk. The proof of the ⊆-direction is by induction on j.
Base case: if j = k, the claim holds by idempotence of basisj .
Induction hypothesis: the claim is true for j.
Induction step: we prove the claim for j + 1. Let Z stand for the expression
basisj(. . . basis1(X)). Since k ≤ j it is k < j + 1. Since Z is finite and closed by finite-
ness and closure of the bases, by Claim (2) in Lemma 6 we get basisk(basisj+1(Z)) ⊆
basisj+1(basisk(Z)) (∗). Then, basisk(Z) ⊆ Z holds by the induction hypothesis,
and basisj+1(basisk(Z)) ⊆ basisj+1(Z) (∗∗) follows by monotonicity of basisj+1. By
chaining (∗) and (∗∗) we get basisk(basisj+1(Z)) ⊆ basisj+1(Z) as desired.

Theorem 8. Let T∞ be the predicate-sharing union of theories T1, . . . , Tn ordered
by an acyclic dependency ordering ≺ and numbered accordingly. Let basis∞ be the
dependency-induced global basis. Then for all input assignments H the set B =
basis∞(G(H)) is a finite stable global basis.

Proof. Function basis∞ is a basis for T∞ according to Def. 4, as it inherits the
properties of local bases. Thus, B is finite, as G(H) is finite. Also, B is stable by
Lemma 7.

7 CDSAT is Complete in the Predicate-Sharing Case

CDSAT is sound if the theory modules are [9, Thm. 1]. CDSAT is terminating if there
exists a finite and closed global basis B, such that the input assignment is in B [9,
Thm. 2]. Recall that an assignment H is in B if G(H) ⊆ B, where G(H) is the set of
all terms occurring in H (cf. Sect. 4.1, 4.3). The extension from disjoint to predicate-
sharing unions does not affect soundness and termination, whereas the completeness
result needs to be generalized. In this section we show that CDSAT is complete for a

31



predicate-sharing union T∞ of theories T1, . . . , Tn, where T1 is the leading theory. We
begin with two preliminary definitions.

Definition 20 (Shared terms (Def. 18 [9])). The set of shared terms for an assignment
H, denoted Vsh(H), is the smallest set N closed under the following rules

(t←c)∈H
t ∈ N

u, u′ ∈ N, t ∈ fvΣi
(u)∩ fvΣj

(u′), i ̸=j
t ∈ N

u ∈ N, t ∈ fvΣk
(u) \ V∞

t ∈ N

where 1 ≤ i, j, k ≤ n; also, Vs
sh(H) is the set of shared terms of sort s, s ∈ S∞.

The inductive rules add shared free variables and foreign terms, with shared foreign
terms added by both rules.

Example 16. Assume that theories LIA and ArrAD share sorts I, V,
and L, all three interpreted as the set Z of the integers. For H =
{i←3, i≃ j, len(a)≃ n, n←5, select(store(a, i, v), j) ̸≃ v, Adm(i, n)}, the
base of the inductive construction of Vsh(H) is that i, i≃ j, len(a)≃ n,
n, select(store(a, i, v), j) ̸≃ v and Adm(i, n) are shared. The third rule adds
select(store(a, i, v), j) and len(a) as they are ΣLIA-foreign terms. The second rule adds
i, j, n, and v as they are shared free variables. In contrast, store(a, i, v) and a are not
shared: they are seen only by ArrAD. If sort V is not shared and it is interpreted by
ArrAD as something else (e.g., colors), the construction of Vsh(H) is the same, except
that v is no longer shared and it is seen only by ArrAD.

The following definition instantiates the generic T -assignment J and the generic
term set N of Definition 9 (leading-theory-compatibility) with the Tk-view HTk

of a
T∞-assignment H and the set Vsh(H) of shared terms.

Definition 21 (Model-describing assignment (Def. 19 [9])). An assignment H is
model-describing if there exists a T +

1 [V ]-model M1 such that M1 |= HT1
(assuming

fvΣ1
(HT1

) ⊆ V ), and for all k, 2≤ k≤n, HTk
is leading-theory-compatible with Tk

sharing Vsh(H).

A collection of theory modules I1, . . . , In for T1, . . . , Tn is complete for their
union T∞, if module I1 is complete for T1, and modules Ik’s, 2≤ k≤n, are leading-
theory-complete. This assumption is used in the next theorem, which generalizes
Theorem 3 [9] from disjoint to predicate-sharing unions.

Theorem 9. In a predicate-sharing union of theories equipped with a complete col-
lection of theory modules and a stable global basis B, for all input assignments H in
B, whenever a CDSAT derivation from H halts in a state Γ other than unsat, Γ is
model-describing.

Proof. The proof is the same as that of [9, Thm. 3], because the CDSAT transition
system is unchanged, except for replacing Backjump [9] with LearnBackjump [11], and
it was already shown in [11, Sect. 3.3] that this change does not affect completeness
(as well as soundness and termination) of CDSAT.

32



The next lemma will be used in the following theorem.

Lemma 10 (Lemma 7 [9]). For all assignments H, fv(H) ⊆
⋃n

k=1 fvΣk
(Vsh(H)).

Furthermore, for all k, 1≤ k≤n, fvΣk
(HTk

) = fvΣk
(H) ⊆ fvΣk

(Vsh(H)) (∗), so that
fvΣk

(HTk
∪ Vsh(H)) = fvΣk

(Vsh(H)) (∗∗).
The core of the completeness proof is to show that a model-describing assignment

is globally endorsed, meaning that its global view (i.e., T∞-view) is satisfied by a T +
∞ -

model (cf. Sect. 4.1). The next theorem generalizes this result from disjoint [9, Thm.
4] to predicate-sharing unions.

Theorem 11. In a predicate-sharing union of theories, if an assignment H is model-
describing, there exists a T +

∞ [fv(H)]-modelM such thatM |=G H.

Proof. Similar to that of [9, Thm. 4], the proof is structured in eight steps.

1. Existence of a leading-theory model M1: by the hypothesis that H is model-
describing, there exists a T +

1 [V1]-model M′
1, with fvΣ1

(HT1) ⊆ V1, such that
M′

1 |= HT1 . Since fvΣ1
(HT1) ⊆ fvΣ1

(Vsh(H)) by (∗), we pick arbitrary elements in
the domains ofM′

1 to interpret terms in fvΣ1
(Vsh(H)) \ V1, if any, and we extend

M′
1 into a T +

1 [fvΣ1
(Vsh(H))]-modelM1 such thatM1 |= HT1

.
2. Existence of the other Tk-modelsMk: by the hypothesis thatH is model-describing,

for all k, 2≤ k≤n, there exists a T +
k [Vk]-modelMk with fvΣk

(HTk
∪Vsh(H)) ⊆ Vk,

and hence fvΣk
(Vsh(H)) ⊆ Vk by (∗∗), such that: (i)Mk |= HTk

; (ii) for all shared
predicate symbols p ∈ ShF k ∩ ShF 1, p : (s1 × · · · × sm)→prop, and for all terms
u1, . . . , um ∈ Vsh(H) of sorts s1, . . . , sm,Mk(p(u1, . . . , um)) =M1(p(u1, . . . , um));
and (iii) for all sorts s ∈ Sk, there exists a bijection fsk : s

Mk → sM1 , such that fpropk

is identity, and for all p ∈ ShF k ∩ShF 1, p : (s1×· · ·× sm)→prop, and for all inhab-
itants v1, . . . , vm of sMk

1 , . . . , sMk
m , pMk(v1, . . . , vm) = pM1(fs1k (v1), . . . , f

sm
k (vm)).

3. Bijection between anyMk andM1: for all k, 1≤ k≤n, we construct a sort-indexed
collection (ϕsk)s∈Sk

of bijections ϕsk : s
Mk → sM1 , such that ϕs1 is identity for all

sorts, and for all k, 2≤ k≤n, the (ϕsk)s∈Sk
collection satisfies the same properties

as the (fsk)s∈Sk
collection in Step (2), but also satisfies the additional property

ϕsk(Mk(t)) =M1(t) for all shared terms t ∈ Vs
sh(H) and all sorts s ∈ Sk.

For a collection (fsk)s∈Sk
of bijections as in (iii) in Step (2), let Ψ(fsk)s∈Sk

be
the (finite) number of terms t in Vsh(H) such that fsk(Mk(t)) ̸=M1(t) where s is
the sort of t. We aim at producing a collection (ϕsk)s∈Sk

such that Ψ(ϕsk)s∈Sk
= 0.

We give a transformer Φ such that Ψ(fsk)s∈Sk
> 0 implies Ψ(Φ(fsk)s∈Sk

) <
Ψ(fsk)s∈Sk

. Assume fsk(Mk(t)) ̸= M1(t). Let v1 = fsk(Mk(t)), where v1 ∈ sM1 ,
and let vk = (fsk)

−1(M1(t)), where vk ∈ sMk . Let Φ(fsk)s∈Sk
be the collec-

tion that differs from (fsk)s∈Sk
in that fsk is replaced by gsk defined as follows:

gsk(vk) = v1, g
s
k(Mk(t)) =M1(t), and for all other v ∈ sMk , gsk(v) = fsk(v). Hence,

Ψ(Φ(fsk)s∈Sk
) < Ψ(fsk)s∈Sk

. Also note that Φ(fks )s∈Sk
satisfies (iii) in Step (2) as

(fsk)s∈Sk
does.

We keep applying Φ to the collection (fsk)s∈Sk
from (iii) in Step (2), until we

obtain a collection (ϕsk)s∈Sk
that also satisfies the additional property ϕsk(Mk(t)) =

M1(t) for all shared terms t ∈ Vs
sh(H) of sort s.

33



4. Construction of a T +
∞ [fv(H)]-model M: first, M adopts the domains of M1 and

interprets all sorts, shared variables, and shared predicate symbols asM1 does:
(a) For all sorts s ∈ S∞: sM = sM1 ;
(b) For all variables x ∈ fv(H) such that x ∈ Vsh(H): xM = xM1 .
(c) For all shared predicate symbols p ∈ ShF 1: p

M = pM1 .
Second,M interprets everything else as in the appropriateMk, using the bijection
ϕsk or its inverse (ϕsk)

−1 to reach elements in its domains:
(d) For a T +

k -value c of sort s: cM = ϕsk(c
Mk);

(e) For all variables x ∈ fvs(H) such that x ̸∈ Vsh(H): xM = ϕsk(x
Mk), for the

unique k, 1≤ k≤n, for which x ∈ fvΣk
(Vsh(H)); such a k exists by Lemma 10,

and it is unique, otherwise x ∈ Vsh(H) by Definition 20;
(f) For all non-shared symbols f : (s1×· · ·×sm)→s (m ≥ 0), f ∈ (Fk\ShFk), where

k is unique as f is not shared: for all inhabitants v1, . . . , vm of sM1 , . . . , sMm ,

fM(v1, . . . , vm) = ϕsk(f
Mk((ϕs1k )

−1
(v1), . . . , (ϕ

sm
k )

−1
(vm))).

5. M and Mk agree on terms, if they agree on their shared free Σk-variables: ∀k,
1≤ k≤n, if t is a term of sort s ∈ Sk such that:

(h1) Its free Σk-variables occur in shared terms: fvΣk
(t) ⊆ fvΣk

(Vsh(H)), and
(h2) M and Mk agree on the shared free Σk-variables of t: for all sorts r ∈ Sk and

all terms u ∈ fvrΣk
(t) ∩ Vr

sh(H) it holds thatM(u) = ϕrk(Mk(u)),

thenM(t) = ϕsk(Mk(t)). The proof is by structural induction.

• If t ∈ fvΣk
(t) ∩ Vsh(H) (t is a shared free Σk-variable), the claim holds by (h2).

• If t ∈ fvΣk
(t)\Vsh(H) (t is a non-shared free Σk-variable), then by (h1) we get t ∈

fvΣk
(Vsh(H)), and t ∈ V∞ must hold, otherwise from t ∈ fvΣk

(Vsh(H)), the third
rule of Definition 20 would conclude t ∈ Vsh(H). Then from t ∈ fvΣk

(Vsh(H)))
and t ∈ V∞, we have t ∈ fv(Vsh(H)) = fv(H), and by Item (e) in the construction
ofM we haveM(t) = ϕsk(Mk(t)).

• If t is a term f(t1, . . . , tm) with f : (s1×· · ·×sm)→s (m ≥ 0) and f ∈ (Fk\ShFk),
for some k, 1≤ k≤n, thenM(f(t1, . . . , tm)) = fM(M(t1), . . . ,M(tm)), and by
Item (f) in the construction ofM we get

M(f(t1, . . . , tm)) = ϕsk(f
Mk((ϕs1k )

−1
(M(t1)), . . . , (ϕ

sm
k )

−1
(M(tm)))).

The induction hypothesis is that ∀i, 1 ≤ i ≤m, M(ti) = ϕsik (Mk(ti)), so that
(ϕsik )−1(M(ti)) =Mk(ti). It follows that

M(f(t1, . . . , tm)) = ϕsk(f
Mk(Mk(t1), . . . ,Mk(tm))) = ϕsk(Mk(t)).

• If t is a term p(t1, . . . , tm) with p : (s1 × · · · × sm)→prop (m ≥ 0) and p ∈ ShFk,
for some k, 1≤ k≤n, then p ∈ ShF1, and Item (c) in the construction ofM gives

M(p(t1, . . . , tm)) = pM1(M(t1), . . . ,M(tm)).

34



By the induction hypothesis whereby ∀i, 1≤ i≤m,M(ti) = ϕsik (Mk(ti)), we get

M(p(t1, . . . , tm)) = pM1(ϕs1k (Mk(t1)), . . . , ϕ
sm
k (Mk(tm))).

Then, since Mk(t1), . . . ,Mk(tm) are inhabitants of sMk
1 , . . . , sMk

m , and the
(ϕsk)s∈Sk

collection of Step (3) satisfies (iii) in Step (2) we get the first equality in

M(p(t1, . . . , tm)) = pMk(Mk(t1), . . . ,Mk(tm)) =Mk(t) = ϕpropk (Mk(t))

where the last equality holds because ϕpropk is identity for all k, 1≤ k≤n.

6. M andM1 agree on shared terms: for all t ∈ Vsh(H) it holds thatM(t) =M1(t).
The proof is by structural induction. If t ∈ V∞ then by Item (b) in the construction
ofM we haveM(t) =M1(t). For the induction step, assume t is a term such that
top(t) ∈ Fk, for some k, 1≤ k≤n, with arity m (m ≥ 0) and output sort s. We
prove that t satisfies (h1) and (h2). (h1) follows from t ∈ Vsh(H). For (h2), consider
a u ∈ fvrΣk

(t) ∩ Vr
sh(H) for any r ∈ Sk. Since f ∈ Fk, it is u ◁ t. Since u ◁ t, by

induction hypothesisM(u) =M1(u). From u∈Vr
sh(H) it follows by the additional

property of the (ϕsk)s∈Sk
collection of Step (3) that M1(u) = ϕrk(Mk(u)). By

transitivity,M(u) = ϕrk(Mk(u)), so that also (h2) is satisfied. Then, by Step (5) of
this proof,M(t) = ϕsk(Mk(t)). Since t ∈ Vs

sh(H), by the additional property of the
(ϕsk)s∈Sk

collection in Step (3) we haveM1(t) = ϕsk(Mk(t)), henceM(t) =M1(t)
by transitivity.

7. M and Mk agree on terms in extended signatures: ∀k, 1≤ k≤n, for all
Σ+

k [fvΣk
(Vsh(H))]-terms t of sort s ∈ Sk, it holds that M(t) = ϕsk(Mk(t)). As

before, the proof is by structural induction.

• If t is a free Σ+
k -variable in fvΣk

(Vsh(H)), the result follows from Step (5)
of this proof provided (h1) and (h2) hold for t. (h1) follows from fvΣk

(t) =
{t} ⊆ fvΣk

(Vsh(H)). For (h2), by applying Step (6) of this proof to any term
u ∈ fvrΣk

(t) ∩ Vr
sh(H) with r ∈ Sk, we get M(u) = M1(u). Then, by applying

the additional property of the (ϕsk)s∈Sk
collection in Step (3), we get M1(u) =

ϕrk(Mk(u)), so that by transitivityM(u) = ϕrk(Mk(u)).
• If t is a T +

k -value, then by Item (d) in the construction ofM, we haveM(t) =
ϕsk(Mk(t)).

• If t is a term f(t1, . . . , tm) with f : (s1×· · ·×sm)→s (m ≥ 0) and f ∈ (Fk\ShFk),
for some k, 1≤ k≤n, the proof is identical to that of this case in Step (5).

• If t is a term p(t1, . . . , tm) with p : (s1 × · · · × sm)→prop (m ≥ 0) and p ∈ ShFk,
for some k, 1≤ k≤n, the proof is identical to that of this case in Step (5).

8. Global endorsement: we show thatM|=GH by showing that for all (u←c)∈HT∞

it holds that M(u) = cM. For all (u←c) ∈ HT∞ , either (u←c) ∈ H, or u is a
gleaned equality t1≃s t2 and c is a Boolean value b. If (u←c)∈H, then c is a T +

k -
value for some k, 1≤ k≤n, and (u←c) ∈ HTk

: the assigned value determines to
which Tk-view u←c belongs. If u is an equality t1≃s t2, the sort s of the equality
determines to which Tk-view u←b belongs. Sort s must belong to at least one of
the signatures: say that s ∈ Sk for some k, 1≤ k≤n; then (u←b) ∈ HTk

. Either

35



way, by Step (1) of this proof, if k = 1, or by Step (2) of this proof, if 2≤ k≤n,
we have Mk |= HTk

, that is, (i) Mk(u) = cMk . Let r be the sort of term u. By
Step (7) of this proof, we have (ii) M(u) = ϕrk(Mk(u)). By Item (d) of Step (4)
of this proof, it is (iii) ϕrk(c

Mk) = cM. Thus, by chaining (ii), (i), and (iii), one
gets M(u) = ϕrk(Mk(u)) = ϕrk(c

Mk) = cM, which means that M endorses the
assignment.

Theorems 9 and 11 directly entail the completeness of CDSAT for predicate-sharing
unions, which subsumes the completeness property for disjoint unions [9, Thm. 5].

Theorem 12 (Completeness). In a predicate-sharing union of theories equipped with
a complete collection of theory modules and a stable global basis B, for all input assign-
ments H in B, whenever a CDSAT derivation from H halts in a state Γ other than
unsat, there exists a T +

∞ [fv(Γ)]-model M such that M |=G Γ and hence M |=G H
(input assignments never quit the trail).

8 Comparison with Related Work

Given the breadth of topics, this section is organized in subsections.

8.1 Array Property Fragments and Theories of Sequences

The problem of modeling finite integer-indexed arrays was approached in three ways:
(1) using quantifiers [14, 15, 23], (2) using sequences [1, 2, 43], and (3) using quantifiers
and sequences [48].

The array property fragment (APF) [14, 15, 23] allows one to write array property
formulas with guarded universal quantification of index variables. An example is the
bounded equality covered in Ex. 8. APF is decidable, because it suffices to instantiate
the universally quantified variables with terms from a finite set to get a quantifier-free
problem in the disjoint union of the theories of arrays, values, and indices (e.g., LIA for
integer indices). APF does not add a length function and does not allow index shifting
(i.e., formulas with terms of the form a[i] and a[i+n], for a an integer-indexed array,
i a universally quantified index variable, and n a constant), so that the definition
of concatenation is not included in the fragment. Dropping this restriction causes
undecidability [15, 48], except in some cases [23], identified as tangle-free formulas [48].

Subsequently, theories of finite integer-indexed sequences were proposed for mod-
eling finite integer-indexed arrays [1, 2, 43]. A theory of sequences developed on top
of prior work on strings of characters pre-existed [5]. Sequences are a generalization of
strings: strings are sequences of elements from a finite alphabet, whereas the sort of the
elements of sequences is generic and can be countably infinite [29]. Thus, arrays and
sequences are more flexible than strings especially in theory combination, where the
sort of elements may be shared and interpreted as countably infinite. The basic sym-
bols for the theory of sequences [5] are a constant symbol for the empty sequence and
a binary concatenation operation. Since concatenation is associative and the empty
sequence is its identity, sequences form a monoid. The signature also includes a unary

36



constructor that wraps any element into a singleton sequence, an extract or slice func-
tion that extracts from a given sequence the contiguous subsequence between two
integer positions, an access function that corresponds to select, and a length function
from sequences to integers, whose application is denoted |x| for x a sequence.

The theory of sequences was revisited in order to model finite integer-index arrays
in [43], where finite integer-index arrays are called vectors, and in [1, 2]. Positions
are renamed indices, and the indices of a sequence x form the [0, |x|) [43] or the
[n, n+ |x|) [1, 2] interval. For this reason, the sequences of [1, 2] are called n-sequences.
The sort of elements remains generic, provided it is countably infinite [43]. A function
update corresponding to store is added. The binary concatenation operator is made
varyadic [43]. The choice of not imposing that the first index is 0 leads to adding a relo-
cate function [1, 2]. The axiomatization of sequences is extended with two axioms [43].
The first one is the instance of extensionality axiom (10) (see Sect. 3.1) in the special
case where the admissible indices for x are those in the [0, |x|) interval. The second one
characterizes the effects of an update: the length does not change (cf. axiom (9)), and
only an update at an index in the [0, |x|) interval modifies the element (cf. axiom (8)).

Two sound inference systems for sequences, one based on string reasoning [4, 31],
and one based on array reasoning, were defined [43], extended to n-sequences that
can be relocated [1, 2], and applied to array benchmarks [1, 2, 43]. Termination and
completeness are not guaranteed, as the decidability of the quantifier-free fragment of
these theories of sequences is not known. However, if the derivation terminates with a
“satisfiable” answer, a model can be extracted from the produced saturated set [43].

A hybrid approach [48] defines the APF with Concatenation (APFC) of a theory
of integer-indexed arrays interpreted as finite integer-indexed sequences. The result
resembles more sequences than arrays. For example, there is neither store nor update.
The signature features a repeat function that produces the sequence en for element e
and length n, and the effect of an update is obtained by concatenating a slice, e1, and
another slice. APFC is more expressive than APF, because APFC allows index shifting,
so that concatenation can be defined. It follows that APFC is undecidable, but a deci-
sion procedure detects whether the input is tangle-free, and if yes, decides its validity,
by finite instantiation and reduction to a base theory [48]. Tangle-freeness guarantees
that finitely many instances suffice for the universally quantified variables [23, 48].

Sequences are interesting in their own right, but the notion that sequences would
be naturally finite, whereas arrays would be necessarily infinite, is counterintuitive.
Our approach uses neither quantifiers nor sequences, and it preserves decidability.
We extended the theory of arrays with extensionality to the theory ArrAD of arrays
with abstract domain, where arrays can be finite, regardless of the interpretation of
the sort of indices. For us, vectors are dynamic arrays: the theory VecAD of vectors
with abstract domain is obtained by modifying ArrAD so as to axiomatize precisely
the dynamic nature of vectors. The quantifier-free fragments of the theories ArrAD,
MapAD, and VecAD introduced in this article are decidable, as a consequence of our
results: we equipped these theories with CDSAT theory modules, we proved that they
are leading-theory complete, and we generalized the termination and completeness of
CDSAT to predicate-sharing unions.

37



8.2 Other Theories of Arrays

Two enrichments of the theory of arrays with extensionality were considered for the
purpose of quantifier-free interpolation [25, 27]. The theory of arrays with MaxDiff [25],
denoted ARD(TI), is parametrized with respect to a theory TI of indices, which is
required to extend the theory of linear orderings with a 0 element. LIA, LRA (linear
rational arithmetic), and the theory IDL of integer difference logic (i.e., the theory with
0, successor, predecessor, and the ordering), satisfy this requirement. The signature of
ARD(TI) features a symbol ⊥ for the undefined value and a symbol ϵ for the array
whose value is ⊥ at all indices. The axioms impose that an array has value ⊥ at all
indices smaller than 0, and that diff(a, b) is the largest index where a and b differ and
0 otherwise. The signature does not include a length function, and the length of an
array a is captured indirectly as diff(a, ϵ).

The theory CARD(TI) of contiguous arrays with length and MaxDiff [27] drops
the ϵ symbol and adds a length function, denoted |y| for array y. Arrays are required
to be contiguous, meaning that array y has a value other than ⊥ at all indices in the
interval [0, |y|] and has value ⊥ everywhere else. Similar to ARD(TI), the length of
an array is the largest index where the value is not ⊥. Thus, array y has |y|+1 values
other than ⊥, whereas in programming languages (cf. Ex. 3) array y has |y| values.

A similarity between ARD(TI) and CARD(TI) on one hand and ArrAD on the
other is that in all three theories an out-of-bounds store leaves the array unchanged.
While both ARD(TI) and CARD(TI) share 0 and the linear ordering with the theory
TI of indices, nondisjointness is not an issue in [25, 27], because the objective is
quantifier-free interpolation and the problem is not viewed as theory combination.

Our approach is general, because it abandons the assumption that the indices of
an array form an interval in a linearly ordered set. We make no special assumptions
on the interpretation of the sorts of indices, values, and lengths. The flexibility and
expressivity of our data structure theories are made possible by the abstract notion of
admissibility of indices, and the choice of viewing the problem as a nondisjoint theory
combination, where the admissibility predicate is defined by another theory. While
ArrAD only needs to share the admissibility predicate with another theory, theory
VecAD also shares an ordering on indices, but this ordering does not have to be linear,
as in ARD(TI), CARD(TI), and all theories of integer-indexed data structures.

8.3 Theories of Maps

In [15] the theory of maps is the same as the theory of arrays without the assumption
that indices are integers. However, as a consequence, bounded equality is not defined
for maps. Also, the maps of [15] are renamed arrays in [14, Sect. 11.1].

A theory of finite maps was presented towards building a library in the HOL
theorem prover [17]. The signature comprises apply and update symbols, correspond-
ing to select and store, a constant symbol empty for the empty map, and a Domain
predicate, which corresponds to our Adm in the sense that for all maps f and indices
x, Domain(f, x) iff Adm(x, len(f)). A length function is not included. The axiomatiza-
tion has the select-over-store axioms (1-2), an axiom corresponding to axiom (13), an
axiom saying that two consecutive stores at distinct indices commute, and an axiom

38



saying that the effect of two consecutive stores at the same index is the effect of the
second (i.e., outermost) store. The latter two axioms are theorems of the Arr theory
as shown in [3]. The axiomatization in [17] does not contain an extensionality axiom,
but it includes a second-order induction principle, which allows one to derive an exten-
sionality theorem corresponding to axiom (10). The second-order induction principle
characterizes these HOL maps as finite, because every map is the result of a finite
number of updates to the empty map.

Theories ArrAD, MapAD, and VecAD do not impose finiteness: the data structure
can be infinite, but with a finite set of admissible indices, and hence a finite length.
The length of a structure is not restricted to be finite either: since the length is viewed
as what defines the set of admissible indices, an infinite structure can have infinite set
of admissible indices and infinite length. The axiomatizations of ArrAD, MapAD, and
VecAD are first-order and suitable for SMT approaches such as CDSAT.

8.4 Nondisjoint Theories and Bridging Functions

The archetype of combination schemes is the equality-sharing or Nelson-Oppen
scheme [35, 36] (see [14, Ch. 10], [13, Sect. 3], and [6, Sect. 3] for recent presentations),
which requires the component theories Tk (1 ≤ k ≤ n) to be disjoint and stably infi-
nite (every Tk-satisfiable quantifier-free formula has a Tk-model where all sorts except
prop are interpreted as countably infinite sets). The combination framework [24, 26]
identifies two properties, named noetherianity and compatibility, that are more general
than disjointness and stable infiniteness, respectively, and are sufficient for termina-
tion and completeness. Noetherianity says that given a finite set of variables there is
no infinite ascending chain of atoms (Boolean terms) made of shared symbols, mod-
ulo logical consequence in the theory. Thus, only finitely many atoms made of shared
symbols can be exchanged among the theories in the union.

In the context of the superposition-based approach [3], ideas from the combination
framework were used to allow convex theories (whenever a set of T -literals T -entails a
disjunction of equalities, one of the equalities is also T -entailed) to share a subtheory
of counter arithmetic with 0 and successor [37, 42]. This approach was applied to non-
empty lists with length, records with an increment operator to increase integer values
of record’s attributes, and binary trees with a size function [37]. In a theory of non-
empty lists without length and in a theory of records without increment, the theory of
counter arithmetic can be used to count the elements in a list or the number of store
operations over a record, that are alternative ways to compute the length [42].

The disjointness requirement was lifted for combination schemes in the case of lists
and trees with bridging functions, or, in general, recursive (or absolutely free) data
structures (AFDS) with bridging functions [16]. These theories are also convex [16].
Arrays are not AFDS, and no theory of arrays is convex, not even Arr0 (cf. Sect. 3).

To the best of our knowledge none of the previous work on lifting disjointness
applies to arrays. We lifted the disjointness requirement for CDSAT by generalizing
relevance (cf. Def. 5), leading theory compatibility (cf. Def. 9), global basis construc-
tion (see Sect. 6), and completeness (see Sect. 6) to predicate-sharing theories. This
generalization applies to theories ArrAD, MapAD, and VecAD.

39



9 Discussion

The theory of arrays is of fundamental importance for reasoning about programs, and
hence in satisfiability modulo theories (SMT). In most approaches array indices are
interpreted as the (non-negative) integers. This choice, together with the absence of
a length function in the theory signature, means that arrays are regarded as being
infinite. Another reason for the view of arrays as infinite structures in SMT is that
combination schemes require the component theories to be stably infinite. A third dif-
ficulty is that length is a bridging function, as the extensionality axiom for arrays with
length mixes symbols from the theory of arrays and the theory of indices (e.g., integer
arithmetic). The resulting combination of theories is not disjoint, whereas most SMT
methods require the component theories to be disjoint. In summary, there is a hyatus
between the typical treatment of arrays in SMT and the desiderata from program ver-
ification, because in programming languages arrays are finite data structures whose
length is defined. In this article we solved all these intertwined issues by providing:

1. A new theory ArrAD of arrays with abstract domain, equipped with an abstract
notion of admissibility, that allows ArrAD to model arrays as they are in program-
ming languages, while sharing only the admissibility predicate with another theory
that provides its definition;

2. Variants of ArrAD that present maps with abstract domain (MapAD) and vectors
with abstract domain (VecAD), modeling for the first time vectors as dynamic
arrays, which is how they are conceived in programming languages;

3. An extension of the CDSAT combination method from disjoint to predicate-sharing
theories;

4. CDSAT modules for arrays, maps, and vectors with abstract domain that meet the
requirements for termination and completeness of CDSAT;

5. Generalizations of the global basis construction for termination and of the CDSAT
completeness theorem from the disjoint to the predicate-sharing case.

There are many avenues for future work. The data structures of this article may
be implemented in the Yices 2 state-of-the-art SMT solver.5 Other theories and bridg-
ing functions may be considered, defining appropriate shared predicates and CDSAT
modules. We may investigate the integration of CDSAT within the QSMA algorithm
for quantified satisfiability modulo a complete theory and an assignment [12], by hav-
ing CDSAT as the quantifier-free solver underlying QSMA. Such an integration would
simultaneously endow CDSAT with quantifier reasoning and extend the applicability
of QSMA beyond a single complete theory.

In order to further augment expressivity, we may seek to add a concatenation oper-
ator to the theories considered in this article, so as to subsume the theory of sequences.
In general, concatenation may jeopardize decidability. A source of difficulty is that
concatenation is associative, but not commutative. For example, the uniform word
problem for semigroups, namely the problem of deciding {si≃ ti}ni=1 |= sn+1≃ tn+1,
where ∀i, 1 ≤ i ≤ n+1, si and ti are terms made of constants and a binary associative
concatenation operator, is undecidable [20] (which refers to [46] and [18, Page 292]).

5See https://yices.csl.sri.com/ for Yices 2.

40

https://yices.csl.sri.com/


The theory of string (or word) equations (i.e., sentences made of string equations
and logical connectives) is undecidable [21] (which refers to [41]). On the other hand,
there exist decision procedures for the solvability of quantifier-free equations in a free
monoid, that is, word equations [32, 39, 40]. The decidability of the theory of strings
with concatenation and length is open [21]. The decidability of the theory of sequences
with concatenation and length is Turing-equivalent to that of strings [29].

If the sort of elements is interpreted as triples of integers, it is possible to write
in APFC a quantified formula that encodes the halting problem of a two-register
machine [48, Remark 1], which is undecidable [34, Thm. 14.1-1]. The choice of the
two-register machine is not essential, as it would be possible to encode the halting
problem of a more complex machine by using longer tuples of integers. Concatenation
does not appear in the formula that encodes the halting problem, but both the formula
defining concatenation and the formula capturing the halting problem are entangled,
that is, they are not tangle-free [48].

To the best of our knowledge, the decidability of the quantifier-free fragment of
a theory of arrays with both length and concatenation is open. In future work, we
may study what happens if theories ArrAD, MapAD, and VecAD are enriched with
concatenation, and investigate what CDSAT may offer in this case.

Acknowledgements. This work was started while the first author was visiting the
Computer Science Laboratory of SRI International, whose support is greatly appreci-
ated. This research was supported in part by an Amazon Research Award (Fall 2022
Call) to the first author and by NSF grants 1816936, 1817204, and 2016597 to the
second and third authors. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not reflect the views of
Amazon or NSF. The first author thanks EU COST Action CA20111 for support in
disseminating some of the results in this article.

References

[1] Ait-El-Hara, H.: Theory of sequences tailored for program verification. PhD
thesis, Université Paris-Saclay (October 2025)

[2] Ait-El-Hara, H., Bobot, F., Bury, G.: Reasoning over n-indexed the-
ories of sequences in SMT. Acta Informatica 62.3, 1–33 (2025)
https://doi.org/10.1007/s00236-025-00496-w

[3] Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-
based satisfiability procedures. ACM Trans. Comput. Log. 10(1), 129–179 (2009)
https://doi.org/10.1145/1459010.1459014

[4] Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: Stewart, D. (ed.) Proc. FMCAD-17, pp. 55–59. FMCAD Inc.,
Austin (2017). https://doi.org/10.5555/3168451.3168468

[5] Bjørner, N., Ganesh, V., Michel, R., Veanes, M.: SMT-LIB sequences and reg-
ular expressions. In: Fontaine, P., Goel, A. (eds.) Proc. of SMT-10. EPiC

41



Series in Computing, vol. 20, pp. 77–87. EasyChair, Manchester (2012).
https://doi.org/10.29007/w5m5

[6] Bonacina, M.P.: The CDSAT method for satisfiability modulo theories and
assignments: an exposition. In: Beckmann, A., Oitavem, I., Manea, F. (eds.)
Proc. of CiE-21. LNCS, vol. 15764, pp. 1–16. Springer, Cham (2025).
https://doi.org/10.1007/978-3-031-95908-0 1

[7] Bonacina, M.P., Echenim, M.: On variable-inactivity and polyno-
mial T -satisfiability procedures. J. Log. Comput. 18(1), 77–96 (2008)
https://doi.org/10.1093/logcom/exm055

[8] Bonacina, M.P., Echenim, M.: Theory decision by decomposition. J. Symb.
Comput. 45(2), 229–260 (2010) https://doi.org/10.1016/j.jsc.2008.10.008

[9] Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability
for theory combination: transition system and completeness. J. Autom. Reason.
64(3), 579–609 (2020) https://doi.org/10.1007/s10817-018-09510-y

[10] Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: CDSAT for nondisjoint the-
ories with shared predicates: arrays with abstract length. In: Hyvärinen, A.,
Déharbe, D. (eds.) Proc. SMT-20. CEUR Proceedings, vol. 3185, pp. 18–37.
CEUR WS-org, Aachen (2022). https://ceur-ws.org/Vol-3185/

[11] Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability
for theory combination: lemmas, modules, and proofs. J. Autom. Reason. 66(1),
43–91 (2022) https://doi.org/10.1007/s10817-021-09606-y

[12] Bonacina, M.P., Graham-Lengrand, S., Vauthier, C.: The QSMA algo-
rithm for quantifiers in SMT. J. Autom. Reason. 69(2), 1–40 (2025)
https://doi.org/10.1007/s10817-025-09727-8 . Article n. 13

[13] Bonacina, M.P., Fontaine, P., Ringeissen, C., Tinelli, C.: Theory combination:
beyond equality sharing. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.-Y.
(eds.) Description Logic, Theory Combination, and All That: Essays Dedi-
cated to Franz Baader. LNCS, vol. 11560, pp. 57–89. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22102-7 3

[14] Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures
with Applications to Verification. Springer, Berlin (2007)

[15] Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) Proc. of VMCAI-7. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006). https://doi.org/10.1007/11609773 28

[16] Chocron, P., Fontaine, P., Ringeissen, C.: Politeness and combination meth-
ods for theories with bridging functions. J. Autom. Reason. 64, 97–134 (2020)

42



https://doi.org/10.1007/s10817-019-09512-4

[17] Collins, G., Syme, D.: A theory of finite maps. In: Schubert, T.E., Windley, P.J.,
Alves-Foss, J. (eds.) Proc. of TPHOLs. LNCS, vol. 971, pp. 122–137. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60275-5 61

[18] Davis, M.: The Undecidable. Raven Press, New York (1965)

[19] de Moura, L., Passmore, G.O.: Exact global optimization on demand (presenta-
tion only). In: Ghilardi, S., Sofronie-Stokkermans, V., Tiwari, A. (eds.) Proc. of
ADDCT-3, pp. 50–50 (2013)

[20] Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758–771 (1980)

[21] Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with
length constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.)
Proc. of HVC-8. LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-39611-3 21

[22] Ganzinger, H., Rueß, H., Shankar, N.: Modularity and refinement in inference
systems. Technical Report CSL-SRI-04-02, CSL, SRI International, Menlo Park,
CA, USA (2004)

[23] Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfia-
bility modulo theories. In: Proc. CAV-21. LNCS, vol. 5643, pp. 306–320. Springer,
Berlin (2009). https://doi.org/10.1007/978-3-642-02658-4 25

[24] Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. J.
Autom. Reason. 33, 221–249 (2004) https://doi.org/10.1007/s10817-004-6241-5

[25] Ghilardi, S., Gianola, A., Kapur, D.: Interpolation and amalgamation for arrays
with MaxDiff. In: Kiefer, S., Tasson, C. (eds.) Proc. of FoSSaCS-24. LNCS, vol.
12650, pp. 268–288. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
71995-1 14

[26] Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combi-
nation framework. ACM Trans. Comput. Log. 9(2), 1–54 (2008)
https://doi.org/10.1145/1342991.1342992

[27] Ghilardi, S., Gianola, A., Kapur, D., Naso, C.: Interpolation results for arrays
with length and MaxDiff. ACM Trans. Comput. Log. 24(4), 28–12833 (2023)
https://doi.org/10.1145/3587161

[28] Hyvärinen, A.E.J., Wintersteiger, C.: Parallel satisfiability modulo theories. In:
Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 141–
178. Springer, Cham (2018). Chap. 5. https://doi.org/10.1007/978-3-319-63516-
3 5

43



[29] Jeż, A., Lin, A.W., Markgraf, O., Rümmer, P.: Decision procedures for sequence
theories. In: Enea, C., Lal, A. (eds.) Proc. CAV-35. LNCS, vol. 13965, pp. 18–40.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37703-7 2

[30] Jovanović, D., Dutertre, B.: Interpolation and model checking for nonlinear arith-
metic. In: Silva, A., Leino, K.R.M. (eds.) Proc. CAV-33. LNCS, vol. 12760, pp.
266–288. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 13

[31] Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R.
(eds.) Proc. CAV-26. LNCS, vol. 8559, pp. 646–662. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-319-08867-9 43

[32] Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
Sbornik 103, 147–236 (1977). English transl. in Math. USSR Sbornik 32 (1977)

[33] McCarthy, J.W.: Towards a mathematical science of computation. In: Colburn,
T.R. (ed.) Program Verification. COGS, vol. 14, pp. 35–56. Springer, Heidelberg
(1993). https://doi.org/10.1007/978-94-011-1793-7 2

[34] Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Hoboken
(1967)

[35] Nelson, G.: Combining satisfiability procedures by equality sharing. In: Bledsoe,
W.W., Loveland, D.W. (eds.) Automatic Theorem Proving: After 25 Years, pp.
201–211. AMS, Providence (1983)

[36] Nelson, G., Oppen, D.C.: Simplification by cooperating decision
procedures. ACM Trans. Prog. Lang. Syst. 1(2), 245–257 (1979)
https://doi.org/10.1145/357073.357079

[37] Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform. 105(1-2),
163–187 (2010) https://doi.org/10.3233/FI-2010-362

[38] Pellau, M., Miné, A., Truchet, C., Benhamou, F.: A constraint solver based
on abstract domains. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.)
Proc. VMCAI-14. LNCS, vol. 7737, pp. 434–454. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35873-9 26

[39] Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004) https://doi.org/10.1145/990308.990312

[40] Plandowski, W.: An efficient algorithm for solving word equations.
In: Proc. of STOC-38, pp. 467–476. ACM, New York (2006).
https://doi.org/10.1145/1132516.1132584

44



[41] Quine, W.V.O.: Concatenation as a basis for arithmetic. J. Symb. Log. 11(4),
105–114 (1946)

[42] Ringeissen, C., Senni, V.: Modular termination and combinability for super-
position modulo counter arithmetic. In: Tinelli, C., Sofronie-Stokkermans, V.
(eds.) Proc. of FroCoS-8. LNAI, vol. 6989, pp. 211–226. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-24364-6 15

[43] Sheng, Y., Nötzli, A., Reynolds, A., Zohar, Y., Dill, D., Grieskamp, W., Park,
J., Qaader, S., Barrett, C., Tinelli, C.: Reasoning about vectors: satisfiabil-
ity modulo a theory of sequences. J. Autom. Reason. 67, 32–13232 (2023)
https://doi.org/10.1007/s10817-023-09682-2

[44] Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In: Schmidt, R.A. (ed.) Proc. of CADE-22. LNAI, vol. 5663,
pp. 67–83. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02959-2 5

[45] Stump, A., Barrett, C., Dill, D.L., Levitt, J.: A decision procedure for an exten-
sional theory of arrays. In: Halpern, J. (ed.) Proc. of LICS-16. IEEE Computer
Society Press, Los Alamitos (2001)

[46] Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. North Holland,
Amsterdam (1953)

[47] Toledo, G.V., Przybocki, B., Zohar, Y.: Being polite is not enough (and
other limits of theory combination). In: Barrett, C., Waldmann, U. (eds.)
Proc. of CADE-30. LNAI, vol. 15943, pp. 17–34. Springer, Cham (2025).
https://doi.org/10.1007/978-3-031-99984-0 2

[48] Wang, Q., Appel, A.W.: A solver for arrays with concatenation. J. Autom.
Reason. 67, 4–1431 (2023) https://doi.org/10.1007/s10817-022-09654-y

45


