
Journal of Automated Reasoning manuscript No.
DOI 10.1007/s10817-022-09656-w in 67(1):6, 42 pages, March 2023

Semantically-Guided Goal-Sensitive Reasoning: Decision
Procedures and the Koala Prover

Maria Paola Bonacina and Sarah Winkler

Received: 10 January 2022 / Accepted: 1 October 2022 / Published online: 11 January 2023

Abstract The main topic of this article are SGGS decision procedures for
fragments of first-order logic without equality. SGGS (Semantically-Guided
Goal-Sensitive reasoning) is an attractive basis for decision procedures, be-
cause it generalizes to first-order logic the Conflict-Driven Clause Learning
(CDCL) procedure for propositional satisfiability. As SGGS is both refutation-
ally complete and model-complete in the limit, SGGS decision procedures are
model-constructing. We investigate the termination of SGGS with both posi-
tive and negative results: for example, SGGS decides Datalog and the stratified
fragment (including Effectively PRopositional logic) that are relevant to many
applications. Then we discover several new decidable fragments, by showing
that SGGS decides them. These fragments have the small model property, as
the cardinality of their SGGS-generated models can be upper bounded, and
for most of them termination tools can be applied to test a set of clauses for
membership. We also present the first implementation of SGGS – the Koala
theorem prover – and we report on experiments with Koala.

Keywords SGGS · Decidable fragments · First-order logic · Hyperresolution ·
Ordered resolution · Rewriting · Termination tools

1 Introduction

Many applications of automated reasoning require to combine the decidability
of satisfiability with an expressive logic. In first-order logic (FOL), validity,
or equivalently unsatisfiability, is semidecidable, whereas satisfiability is not

This research was funded in part by grant “Ricerca di base 2017” of the Università degli
Studi di Verona. Authors are listed alphabetically.

Maria Paola Bonacina, Università degli Studi di Verona, Strada Le Grazie 15, 37134
Verona, Italy, E-mail: mariapaola.bonacina@univr.it · Sarah Winkler, Free University
of Bolzano/Bozen, Piazza Domenicani 3, 39100 Bolzano/Bozen, Italy, E-mail: sarwin-
kler@unibz.it

2 M. P. Bonacina and S. Winkler

even semidecidable. Therefore, the quest for decidable fragments of FOL is
key in advancing the field, and many classes of formulae were shown decidable
(e.g., [35,25,43] for surveys). An approach to prove the decidability of a class is
to show that a refutationally complete inference system for first-order theorem
proving is guaranteed to terminate on all inputs in that class. It follows that
any theorem proving strategy given by that inference system and a fair search
plan is a decision procedure for satisfiability in that class.

In this paper we apply this approach to SGGS, or Semantically-Guided
Goal-Sensitive reasoning [22,23]. Similar to semantic resolution [76] and hy-
perresolution [71], SGGS is semantically guided by a fixed initial interpreta-
tion. However, SGGS generates primarily instances of clauses, not resolvents.
By this characteristic, SGGS is a descendant of hyperlinking [53] and ordered
semantic hyperlinking [67]. Other methods with this characteristic include hy-
pertableaux [10,8,11] and Inst-Gen [39,46]. Nonetheless, the essential features
of SGGS set it apart from the theorem-proving methods based on resolution,
instance generation, or tableaux.

SGGS is a generalization to FOL of the CDCL (Conflict-Driven Clause
Learning) procedure for propositional satisfiability (SAT) [56]. Indeed, SGGS
searches for a model of the input set of clauses by building candidate models,
represented by selected literals on a trail of clauses. In this sense SGGS is
model-based, meaning that the state of an SGGS-derivation is a representation
of a candidate model (cf. [17] for a survey of first-order model-based methods).
The initial interpretation in SGGS acts as a starting point, as the candidate
models are built by selecting preferably literals that are not true in the initial
interpretation, but may be needed to get a model of the clauses. In this process,
a conflict may arise in the form of a conflict clause. SGGS applies a restricted
form of resolution only to explain the conflict, which is then solved by moving
the conflict clauses and flipping the sign of its selected literal. In this sense
SGGS is also conflict-driven (cf. [15] for a survey of conflict-driven methods).

By these features, SGGS is a first-order search-based satisfiability proce-
dure, similar to the methods that generalize CDCL to satisfiability modulo
theories (SMT), such as CDCL(T) [63]1, CDCL(Γ+T) [21], MCSAT [28], and
CDSAT [18,19]. For CDCL, termination descends from the finitary nature of
the SAT problem. The termination of CDCL(T) in its original formulation
stems from the fact that it does not create new atoms. As CDCL(Γ+T) inte-
grates superposition in CDCL(T), the result is a semidecision procedure whose
termination is guaranteed only under suitable hypotheses and using specula-
tive inferences [21]. MCSAT, CDSAT, and an extension of CDCL(T) [7] create
new terms and atoms, and they are proved to be terminating by showing that
all new objects come from a finite basis [7,28,18].

The termination of SGGS is challenging, because SGGS is refutationally
complete for FOL, and especially significant, since SGGS is model complete
in the limit: given a satisfiable input, the limit of any fair SGGS-derivation

1 The name of the procedure in [63] is DPLL(T), but the recent literature calls it
CDCL(T), since the DPLL (Davis-Putnam-Logemann-Loveland) [27] and CDCL procedures
have been recognized as distinct. The same remark applies to DPLL(Γ +T) [21].

SGGS Reasoning: Decision Procedures and Koala 3

represents a model. Thus, model generation is guaranteed if termination is, and
SGGS-based decision procedures are model-constructing, a standard feature for
SAT and SMT procedures, but not for first-order theorem-proving methods.

With this motivation, we apply the finite basis approach to SGGS. A finite
basis for SGGS is a finite subset of the Herbrand base of the input set of
clauses. An SGGS-derivation is in a finite basis if all ground instances of all
clauses generated during the derivation are made of atoms coming from the
finite basis. Previous work showed that if the length of the trail during a
fair SGGS-derivation is upper bounded, the derivation is finite [23, Thm. 6
and Cor. 2]. We show that if a fair SGGS-derivation is in a finite basis, the
length of the trail is upper bounded, and hence the derivation is finite. Also,
we prove that given a satisfiable input, the cardinality of the SGGS-generated
model is upper bounded. These results hold regardless of the initial Herbrand
interpretation guiding SGGS. If for all clause sets in a class F it is possible to
identify a finite basis, F is SGGS-decidable and has the small model property.

It follows that SGGS with any guiding interpretation decides all frag-
ments where the Herbrand base itself is finite, including the Datalog lan-
guage (e.g., [26]), the Bernays-Schönfinkel class [14,68], whose clausal version
is known as EPR for Effectively PRopositional logic [65,3,37], and the stratified
fragment [1,47], which is the generalization of EPR to many-sorted logic.2 EPR
and the stratified fragment find application in verification (e.g., [64,57]), while
Datalog is a fundamental language for deductive databases and knowledge rep-
resentation, and has been applied also in connection with neural networks [58].

These positive results are balanced by negative ones: we show by counterex-
amples that SGGS with sign-based semantic guidance (i.e., either all-negative
– all negative literals are true – or all-positive – all positive literals are true)
does not decide the Ackermann [2,44,36], monadic [2,44,38], FO2 [41,38], and
guarded [4,29] fragments. Since the sets of clauses in these counterexamples
admit finite model, these counterexamples also show that the existence of a
finite model does not imply the termination of SGGS with sign-based semantic
guidance. However, we also give examples where SGGS terminates and repre-
sents with a finite trail an infinite Herbrand model. Thus, the termination of
SGGS does not imply the existence of a finite Herbrand model.

A clause is positively/negatively ground-preserving, or range-restricted, if
all its variables occur in its negative/positive literals. This property is used
in deductive databases [61,78], as it is also a property of Datalog clauses,
in theorem proving [55,49,50], model building [34,25], and decision proce-
dures [34,25,21,52,12]. The role of sign in the definition of ground-preserving
clauses suggests to adopt sign-based semantic guidance for SGGS and compare
it with hyperresolution, that is semantic resolution with sign-based semantic
guidance. Under the assumption that the input clauses are ground-preserving,
we prove two results: first, similar to hyperresolution, SGGS generates only
ground clauses; second, SGGS terminates whenever hyperresolution does. It

2 In this paper stratified is used in the sense of sort-stratified [1,47,57], not in the sense
of stratified logic programs (e.g., [26]).

4 M. P. Bonacina and S. Winkler

follows that SGGS decides all ground-preserving fragments decided by hy-
perresolution, such as the positive variable dominated (PVD) [34,25] and the
bounded depth increase (BDI) [52] fragments. However, many theorem-proving
problems do not belong to any known decidable class.

Example 1 Problem HWV036-2 from TPTP 7.3.0 [77] specifies a full-adder in
51 clauses, including for instance:

¬andok(x) ∨ ¬1(in1(x)) ∨ ¬1(in2(x)) ∨ 1(out1(x)) ¬fulladd(x) ∨ halfadd(h1(x))
¬halfadd(x) ∨ connection(in1(x), in1(or1(x))) ¬lor(x) ∨ orok(x) ∨ error(x).

This set is satisfiable, but it does not belong to any known decidable fragments.

In the second part of the paper we apply SGGS to find new decidable
fragments. We define the positively/negatively restrained fragments by adding
to ground-preservingness an ordering-based restriction. By distinguishing be-
tween sorts populated by finitely or infinitely many ground terms, we define
the positively/negatively sort-restrained classes, where restrainedness is im-
posed only to the literals having infinitely many ground instances. These frag-
ments generalize the respective restrained fragments and the stratified frag-
ment, which represents the special case where there are finitely many ground
terms for all sorts. The sort-refined-PVD class is defined analogously with the
PVD restrictions in place of restrainedness, so that it generalizes the PVD
and the stratified fragments. We show that SGGS with sign-based semantic
guidance decides all these new classes by the finite basis approach, so that the
new classes have the small model property. We prove that sign-based resolution
strategies (e.g., hyperresolution and PO-resolution) decide the restrained frag-
ments. However, they do not decide the sort-restrained and sort-refined-PVD
classes, because they do not decide the stratified fragment.

The introduction of a new decidable class poses the problem of how to
determine that a clause set belongs to the class and whether this test is decid-
able. We reduce the problem of deciding whether a clause set is restrained or
sort-restrained to that of deciding whether rewriting by an associated rewrite
system terminates. It follows that membership in these fragments is undecid-
able in general, but can be tested in practice by termination tools for rewriting
such as TTT2 [48] and AProVE [40].

In the experiments, we applied these tools to discover restrained and sort-
restrained problems in the TPTP library [77]. The other decidability crite-
ria (e.g., stratification, PVD) can also be tested automatically, resulting in a
classification of TPTP problems. This allows us to evaluate empirically the
relevance of the new classes and discover problems not previously known to be
decidable. For instance, the axiomatization in Example 1 and all the TPTP
problems that include it are restrained. Then we describe the Koala theorem
prover, which is the first implementation of SGGS. We report on applying
Koala to TPTP problems, including both SGGS-decidable and semidecidable
problems. We present and analyze these experiments, which show promising
performances especially on satisfiable problems.

SGGS Reasoning: Decision Procedures and Koala 5

The paper is organized as follows. After the basic definitions (Section 2)
we give an overview of SGGS (Section 3). Section 4 presents the finite ba-
sis approach, and all the results about SGGS and already known decidable
fragments. Section 5 introduces the new decidable fragments and contains the
results showing that they are SGGS-decidable. Section 6 covers the reduc-
tion of membership in the new fragments to the termination of rewriting, the
application of the termination tools, the Koala prover, and the experiments.
Discussions of related and future work conclude the paper. A short version of
this paper appeared [24].

2 Basic Definitions

A signature is given by a set Σ of sorts and a set of constant, function, and
predicate symbols. We use s, s1, s2, . . . for sorts, a, b, 0, 1 for constants, P,Q,R
for predicates, f, g, h, s for functions, v, w, x, y, z for variables, t, u for terms,
Var(t) for the set of variables in t, Vars(t) for those of sort s, top(t) for the
top symbol of t. Sorts are nonempty (there is a ground term for every sort),
and t : s says that t has sort s. We use L,M,P,Q for literals, at(L) for L’s
atom, α, σ, ϑ, τ for substitutions, C,D,E for clauses, that are disjunctions of
literals where all variables are implicitly universally quantified, and S for a
(finite) set of clauses, understood as the conjunction of its elements.

The top notation is extended to atoms, Var and Vars to atoms, literals,
and clauses, and at to sets of literals, clauses, and sets of clauses. A clause C
is positive if all its literals are positive, negative if all its literals are negative,
and mixed otherwise. C+ and C− denote the disjunctions of the positive and
negative literals in C. A unit clause has exactly one literal, and a Horn clause
has at most one positive literal. A Horn clause is a fact if it is a positive unit,
a query if it is negative, and a rule if it is mixed. We use I and J for Herbrand
interpretations and I for other interpretations. The symbol |= is overloaded to
mean satisfaction of a clause or set of clauses in an interpretation, validity in
the sense of satisfaction in all Herbrand interpretations, and logical entailment.

Viewing terms as trees, the depth of a term t is defined as depth(t) = 0, if
t is a constant or a variable, and depth(t) = 1 +max{depth(ti) : 1⩽ i⩽n},
if t is a compound term f(t1, . . . , tn). The depth of a literal L is defined as
depth(L) = depth(at(L)) = 1 + max{depth(ti) : 1 ⩽ i ⩽ n} if t1, . . . , tn are
the predicate’s arguments in at(L). By labeling arcs with natural numbers,
every subterm has a position defined as the string of natural numbers from
the root to the subterm. We use p, q, r, and o for positions. The subterm of t
at position p, denoted as t|p, is defined by t|Λ = t, where Λ is the top position,
and f(t1, . . . , tn)|ip = ti|p for all i, 1⩽ i⩽n. The notation t = c[u]p says that t
is equal to a context c where u occurs as subterm at position p. A term t has
occurrence depth k in atom L if L|p = t and k is the length of position p.

An ordering > on terms is well-founded, if it admits no infinite descending
chain, stable, if t > u implies tσ > uσ for all substitutions σ, monotonic, if
t > u implies c[t]p > c[u]p for all contexts c and positions p, and has the

6 M. P. Bonacina and S. Winkler

subterm property, if c[t]p > t for all contexts c and positions p with p ̸= Λ. A
simplification ordering is stable, monotonic, and has the subterm property. A
complete simplification ordering (CSO) is also total on ground terms. A sim-
plification ordering is well-founded [30]. Recursive path orderings (RPO’s) [30],
lexicographic (recursive) path orderings (LPO’s), and Knuth-Bendix orderings
(KBO’s) [45,54] employ a precedence, which is a partial ordering ≻p on the
symbols in the signature. A KBO attributes non-negative weights to terms:
all variables have weight w0, a weight function w attributes a weight to every
non-variable symbol, and the weight of a term is the sum of the weights of
its symbols. RPO’s, LPO’s, and KBO’s are simplification orderings. If ≻p is
total, KBO’s and LPO’s are CSO’s (see e.g., [31] for a survey on orderings).

We recapitulate resolution [72], because resolution-based strategies appear
in later sections. Binary resolution generates from parents ¬L∨C and L′∨D the
resolvent (C ∨D)σ, if Lσ = L′σ with most general unifier (mgu) σ. Factoring
generates from parent L1 ∨ . . . ∨ Lk ∨ C the factor (L1 ∨ C)σ, if L1σ=L2σ=
. . .=Lkσ with mgu σ. Many refinements of resolution preserve its refutational
completeness. Positive resolution, also known as the P1-strategy [71,42] or P1-
deduction [66], requires that every binary resolution step has a positive parent.
Negative resolution, also known as all-negative-resolution [66], requires that
every binary resolution step has a negative parent. Semantic resolution [76]
generates only resolvents that are false in a fixed guiding interpretation I.
Hyperresolution [71] is semantic resolution where I is either the all-negative
interpretation I− or the all-positive interpretation I+. Positive hyperresolution
resolves a non-positive clause C, called the nucleus, with as many positive
clauses, termed satellites, as needed to resolve away with a simultaneous mgu
all literals in C− and get a positive clause, which is false in I−. Negative
hyperresolution is defined dually. Ordered resolution [42] assumes a CSO > on
literals and requires that in every binary resolution step ¬Lσ is >-maximal
in (¬L ∨C)σ and L′σ is >-maximal in (L′ ∨D)σ; and in every factoring step
L1σ is >-maximal in (L1∨ . . .∨Lk∨C)σ. PO-resolution adds the requirement
that L′ ∨D is positive and drops the >-maximality constraint on ¬Lσ.

3 SGGS: an Overview

SGGS [22,23] works with constrained clauses, written A▷C, where A is a con-
straint and C is a clause. The atomic constraints are true, false, top(t)= f ,
and t≡u, where ≡ is identity. For ground terms t and u, |= top(t)= f if the
top symbol of t is f , and |= t≡u if t and u are the same term. The negation,
conjunction, and disjunction of constraints is a constraint. Any variable that
appears in A and not in C is implicitly existentially quantified. Thus, if A is
ground, either |= A or |= ¬A, and if A is not ground, |= A means that the exis-
tential closure of A is valid. A constraint is in standard form if it is true, false,
or a conjunction of distinct atomic constraints of the form x ̸≡ y or top(x) ̸= f .
SGGS keeps constraints in standard form [23, Sect. 7]. Substitutions are sort-
preserving (i.e., xσ has the same sort as x) so that instantiation respects sorts.

SGGS Reasoning: Decision Procedures and Koala 7

For a constrained clause A▷C the set of its constrained ground instances (cgi’s)
is Gr(A ▷ C) = {Cϑ : Cϑ is ground and |= Aϑ}. Thus, Gr(false ▷ C) = ∅,
Gr(true ▷ C) = Gr(C), and true ▷ C can be written C. Literals A ▷ L and
B▷M intersect if at(Gr(A▷L))∩at(Gr(B▷M)) ̸= ∅ and are disjoint other-
wise. The notation Gr is extended to sets of atoms. Constraints can be omitted
if irrelevant or for brevity.

Example 2 Given a signature with constant symbols a : s1 and b : s2, function
symbol f : s1→ s2, and predicate symbol P ⊆ s2 × s2, the only term of sort
s1 is a, and the only terms of sort s2 are b and f(a). Thus, Gr(P(x, y)) =
{P(b, b), P(f(a), b), P(b, f(a)), P(f(a), f(a))}. Then, top(x) ̸= a▷ P(f(x), y) is
equivalent to false ▷ P(f(x), y), while top(y) ̸= a ▷ P(f(x), y) is equivalent to
true ▷ P(f(x), y) with cgi’s P(f(a), b) and P(f(a), f(a)).

SGGS is semantically guided by an initial interpretation I: if I ̸|= S, SGGS
seeks a Herbrand model of S, by building candidate partial interpretations
different from I, and using I as the default to complete them. If the empty
clause ⊥ arises in the process, unsatisfiability is reported. While I can be any
Herbrand interpretation, in this section I is either I− or I+. If I is I− (I+)
SGGS discovers which positive (negative) literals need to be true to satisfy S.

A literal L is uniformly false in an interpretation J if J |= ¬L, that is, if
J |= ¬L′ for all L′ ∈ Gr(L). Then, L is said to be I-true if it is true in I, and
I-false if it is uniformly false in I. A clause is I-all-true if all its literals are
I-true, and I-all-false if all its literals are I-false. If I = I− negative literals
are I-true, positive literals are I-false, negative clauses are I-all-true, positive
clauses are I-all-false, and mixed clauses are neither. If I = I+ positive literals
are I-true, negative literals are I-false, positive clauses are I-all-true, negative
clauses are I-all-false, and mixed clauses are neither.

SGGS builds a trail Γ of constrained clauses with selected literals. The se-
lected literals form the partial interpretation represented by the trail. Initially
the trail is empty, written ε. Then SGGS adds clauses forming a sequence
A1▷C1[L1], . . . , An▷Cn[Ln] (n ≥ 1). Clause Ai▷Ci[Li] is the clause at index
i in Γ . The notation Ci[Li] means that Li is the literal of Ci that is selected.
SGGS requires that every literal in Γ is either I-true or I-false (trivial if I is
I+ or I−). SGGS also requires that if clause Ci[Li] has I-false literals, then
Li is an I-false literal. The selected literal Li is I-true only if Ci[Li] is an
I-all-true clause. I-false literals are preferred for selection because I ̸|= S and
hence SGGS tries to change something wrt I towards finding a model of S.

In order to see how the selected literals form a partial interpretation, let the
length of a trail Γ , written |Γ |, be the number of clauses in Γ , and let Γ |j denote
the prefix of length j of Γ . Then, the partial interpretation Ip(Γ) represented
by Γ is defined inductively as follows. If Γ = ε, then Ip(Γ) = ∅. If Γ =
A1▷C1[L1], . . . , An▷Cn[Ln], we define I

p(Γ) in terms of Ip(Γ |n−1). Consider
a cgi C[L] of An ▷ Cn[Ln]. If I

p(Γ |n−1) ∩ C[L] ̸= ∅, it means that Ip(Γ |n−1)
already satisfies C[L]. If Ip(Γ |n−1) ∩ C[L] = ∅, it means that Ip(Γ |n−1) does
not satisfy C[L]: if ¬L ̸∈ Ip(Γ |n−1), we can satisfy C[L] by adding L to
Ip(Γ |n−1) to form Ip(Γ). Such an instance C[L] is a proper (or productive)

8 M. P. Bonacina and S. Winkler

sat : Γ ⇝ satisfiable if I[Γ] |= S

extend : Γ ⇝ Γ,A ▷ E[L] where A ▷ E[L] is an extension clause

delete : Γ ⇝ Γ ′ where Γ ′ is Γ with all disposable clauses removed

Assuming B ▷D[M] ∈ dp(Γ) and at(Gr(A ▷ L)) ∩ at(Gr(B ▷M)) ̸= ∅:

s-split : □B ▷D[M]□A ▷ C[L]□ ⇝ □B ▷D[M]□split(C,D)□
if M and L have the same sign

d-split : □B ▷D[M]□A ▷ C[L]□ ⇝ □B ▷D[M]□split(C,D)□
if M and L have opposite sign

Note: □ is a place holder for anonymous subsequences that do not change

Fig. 1 SGGS rules for model search

constrained ground instance (pcgi) of An▷Cn[Ln] and L is a pcgi of An▷Ln.
Then, Ip(Γ) = Ip(Γ |n−1) ∪ pcgi(An ▷ Ln, Γ), where pcgi(An ▷ Ln, Γ) is the
set of all the pcgi’s of An ▷ Ln in Γ .

From the partial interpretation Ip(Γ) we get the interpretation I[Γ] repre-
sented by trail Γ as follows: for all ground literals L, if Ip(Γ) determines the
truth value of L, then I[Γ] |= L iff Ip(Γ) |= L; otherwise, I[Γ] |= L iff I |= L.
Suppose that all cgi’s of An▷Cn[Ln] are pcgi’s: this clause contributes all the
ground instances of its selected literal to Ip(Γ). The longest prefix of Γ that
is made of clauses with this property is called the disjoint prefix of Γ and is
denoted dp(Γ). The name descends from the fact that the selected literals of
clauses in dp(Γ) are all disjoint. Suppose that Ip(Γ |n−1) satisfies all the cgi’s
of An ▷ Cn[Ln] and hence An ▷ Cn[Ln] itself. Such a clause is disposable and
can be removed by SGGS-deletion (rule delete in Fig. 1). A clause An▷Cn[Ln]
is a conflict clause, if all the literals of Cn are uniformly false in I[Γ].

An SGGS-derivation (named Θ if needed) is a series of trails Γ0 ⊢ Γ1 ⊢
. . . Γj ⊢ . . ., where Γ0 = ε, and ∀j, j > 0, SGGS generates Γj from Γj−1 and
S by applying either a model-search rule in Fig. 1 or a conflict-solving rule in
Fig. 2. If I[Γ] |= S, a model has been found, and rule sat in Fig. 1 fires to report
the success of the model search. If ⊥ ∈ Γ , it means that in the attempt to
solve a conflict, the conflict-solving rule SGGS-resolution (resolve in Fig. 2) has
generated the empty clause, which signals that the conflict cannot be solved,
because S itself is unsatisfiable, so that rule unsat in Fig. 2 fires to report that
a refutation has been found.

Otherwise, SGGS makes progress in two ways. If Γ = dp(Γ), the trail is in
order, but since I[Γ] ̸|= S, there exists some C ′ ∈Gr(C) for C ∈S, such that
I[Γ] ̸|= C ′. Then, SGGS applies SGGS-extension (rule extend in Fig. 1) to
generate from C and Γ a clause A▷E, called extension clause, such that E is
an instance of C and C ′ ∈ Gr(A▷E), in order to extend Ip(Γ) to try to satisfy
C ′. If Γ ̸= dp(Γ), the trail needs repair: either there are disposable clauses and
SGGS-deletion removes them, or there are intersections between selected lit-

SGGS Reasoning: Decision Procedures and Koala 9

erals that can be exposed by SGGS-splitting (rules s-split and d-split in Fig. 1),
or there is a conflict clause to be handled by the conflict-solving rules of Fig. 2.
The following example illustrates the model-search rules, demonstrating how
SGGS halts on the input set used to show that hyperresolution cannot decide
EPR ([35, Ex. 4.8] and [25, Ex. 3.17]).

Example 3 The set S consisting of clauses

P(x, x, a) (i) P(x, y, w) ∨ P(y, z, w) ∨ ¬P(x, z, w) (ii)

¬P(x, x, b) (iii) P(x, z, w) ∨ ¬P(x, y, w) ∨ ¬P(y, z, w) (iv)

defeats hyperresolution, because (iv) is obtained from (ii) by flipping signs,
and likewise for (iii) and (i) plus renaming the constant. Positive hyperreso-
lution generates infinitely many clauses of the form P(x1, x2, a)∨P(x2, x3, a)∨
· · · ∨ P(xn−1, xn, a) ∨ P(xn, x1, a), for n ⩾ 2, using (ii) as nucleus, (i) as ini-
tial satellite, and then each resulting hyperresolvent as next satellite. Negative
hyperresolution generates infinitely many clauses of the form ¬P(x1, x2, b) ∨
¬P(x2, x3, b) ∨ · · · ∨ ¬P(xn−1, xn, b) ∨ ¬P(xn, x1, b), for n ⩾ 2, using (iv) as
nucleus, (iii) as initial satellite, and then each resulting hyperresolvent as next
satellite. In contrast, SGGS detects that S is satisfiable with either I− or I+.
Assume that I = I−: all input clauses are satisfied except (i). Thus, SGGS-
extension puts it on the trail selecting its single literal:

Γ0 : ε ⊢ Γ1 : [P(x, x, a)] extend (i)

At this point, I[Γ1] satisfies P(x, x, a), but not the ground instances of clause
(ii) where the third literal is an instance of ¬P(x, x, a). Thus, SGGS-extension
unifies the third literal of clause (ii) with [P(x, x, a)], and adds to the trail the
resulting instance of clause (ii):

⊢ Γ2 : [P(x, x, a)], P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) extend (ii)

An I−-false (i.e., positive) literal is selected in the added clause (choosing
the other makes no difference). Also, SGGS assigns the literal ¬P(x, x, a) to
[P(x, x, a)] to record that ¬P(x, x, a) (which is true in I−) is uniformly false
in Ip(Γ2), and hence in I[Γ2], due to the selection of P(x, x, a). I[Γ2] satisfies
P(y, x, a) and hence all the ground instances of clause (ii) that had been lost in
order to satisfy P(x, x, a). However, the selected literals in Γ2 intersect. Thus,
SGGS-splitting partitions the second clause into two clauses:

⊢ Γ3 : [P(x, x, a)], P(x, x, a) ∨ [P(x, x, a)] ∨ ¬P(x, x, a),
y ̸= x▷ P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) s-split

where both occurrences of ¬P(x, x, a) are assigned to [P(x, x, a)]. A partition
of a clause A▷ C[L] is a set of clauses {Ai ▷ Ci[Li]}ni=1 that covers the same
ground instances (i.e., Gr(A ▷ C) =

⋃n
i=1{Gr(Ai ▷ Ci)}), but such that the

selected literals Ai▷Li are disjoint (cf. [23, Def. 13]). SGGS-splitting replaces
a clause by the partition dictated by another clause: given a clause B▷D[M]

10 M. P. Bonacina and S. Winkler

at a smaller index on the trail ([P(x, x, a)] in Γ2) and a clause A ▷ C[L] at a
larger index on the trail (P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) in Γ2) such that
their selected literals intersect, SGGS-splitting replaces A▷C[L] by a partition
{Ai ▷ Ci[Li]}ni=1 where one of the selected literals Aj ▷ Lj captures exactly
the intersection between B ▷M and A ▷ L (cf. [23, Def. 14]). This partition
is called a splitting of A ▷ C[L] by B ▷ D[M] and is denoted split(C,D).
Clause A▷C[L] is the split clause. Clause Aj ▷Cj [Lj] is the representative of
B ▷ D[M] in split(C,D). The SGGS-splitting rule applied here is s-splitting
(abbreviated s-split) for splitting by similar literals, because L andM have the
same sign (cf. [23, Def. 23]). Now the second clause in Γ3 is disposable, and
SGGS-deletion removes it eliminating the intersection:

⊢ Γ4 : [P(x, x, a)], y ̸= x▷ P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) delete

This holds in general: after an s-splitting, D’s representative in split(C,D) is
disposable (cf. [23, Lemma 3]). As I[Γ4] |= S, rule sat reports satisfiable. The
derivation with I+ proceeds dually with (iii) and (iv).

As seen in Example 3, a derivation starts with an SGGS-extension that puts
on the trail an I-all-false input clause and selects one of its literals. All such
steps can be done as one and we assume they are. In general, SGGS-extension
adds to the trail an instance of an input clause C called main premise. SGGS-
extension generates this instance by simultaneously unifying the I-true literals
L1, . . . , Ln of C with as many I-false selected literals of opposite sign in the
side premises B1 ▷D1[M1], . . . , Bn ▷Dn[Mn] in dp(Γ).

Definition 1 (SGGS-extension scheme) Let S be the input clause set and
Γ be the current trail. Let C ∈ S be a clause such that L1, . . . , Ln (n ≥ 0)
are all its I-true literals, and B1 ▷ D1[M1], . . . , Bn ▷ Dn[Mn] be clauses in
dp(Γ) such that M1, . . . ,Mn are I-false. If ∀j, 1 ⩽ j ⩽ n, Ljα = ¬Mjα
with simultaneous mgu α, then SGGS-extension adds the extension clause
A▷ E = (

∧n
j=1Bjα)▷ Cα to Γ .

An SGGS-extension is conflicting if the extension clause A ▷ E is a conflict
clause, non-conflicting otherwise, that is, if A ▷ E has pcgi’s that get added
to Ip(Γ). Definition 1 is a simplification of the original [23, Def. 12] under the
assumption that I = I− or I = I+, and rule extend in Fig. 1 abstracts away
for simplicity the details of the SGGS-extension rules [23, Defs. 18, 19, 20, and
21] that instantiate the SGGS-extension scheme.

As seen in Example 3, if the selection of an I-false literal M makes an
I-true literal L on the trail uniformly false in Ip(Γ), SGGS assigns L to the
clause where M is selected (cf. [23, Defs. 8, 9]). These assignments record why
literals that are true in I are uniformly false in I[Γ]. SGGS requires that an
I-true literal L on the trail is assigned unless it is selected. Therefore, the
SGGS rules establish or preserve assignments. For example, the I-true literals
of an extension clause are assigned to the side premises; the I-true literals
in the clauses of a partition inherit the assignments from the split clause;

SGGS Reasoning: Decision Procedures and Koala 11

unsat : Γ ⇝ unsatisfiable if ⊥ ∈ Γ

resolve : □B ▷D[M]□A ▷ C[L]Γ ⇝ □B ▷D[M]□Res(C,D)□Γ ′

where Γ ′ is Γ with all clauses with literals assigned to C removed

Assuming A ▷ C[L] ∈ dp(Γ), D[M] is I-all-true, and M is assigned to A ▷ C[L]:

move : □A ▷ C[L]□B ▷D[M]□ ⇝ □B ▷D[M] A ▷ C[L]□□
if ¬Gr(B ▷M) = pcgi(A ▷ L, Γ) and no other literal of D is assigned to C

factor : □A ▷ C[L]□B ▷D[M]□ ⇝ □A ▷ C[L]□split(D,Df)□
if there is a literal Q ∈ D, Q ̸= M , s.t. Q is assigned to C and Qϑ = Mϑ (†)
where Df is the factor Bϑ ▷D[M]ϑ

l-split : □A ▷ C[L]□B ▷D[M]□ ⇝ □split(C,D)□B ▷D[M]□
if ¬Gr(B ▷M) ⊂ pcgi(A ▷ L, Γ) and condition (†) does not hold

Fig. 2 SGGS rules for conflict solving

and the clauses with literals assigned to a split clause can be deleted after
the splitting [23, Def. 36]. This assignment mechanism achieves first-order
propagation in SGGS: for all I-all-true clauses C[L] on the trail, either all
literals of C[L] are assigned (with L assigned rightmost) and C[L] is a conflict
clause, or all literals of C[L] except L are assigned, which means that L is
an implied literal, C[L] is its justification, and C[L] is in dp(Γ). First-order
propagation applies to I-all-true clauses because it is relative to I.

CDCL [56] uses the two-watched-literals scheme to detect conflict clauses
and implied literals without checking the truth value (true, false, or undefined)
of every literal in every clause. It suffices to watch two non-false (i.e., either
true or undefined) literals per clause: if the clause has zero non-false literals, it
is a conflict clause; if it has one, the literal is implied and the clause is its justi-
fication. Since the assignment mechanism is built into the SGGS rules, SGGS
does not need a first-order analogue of the two-watched-literals scheme to com-
pute propagations ex post. The dependencies among literals that determine
the propagations are stored with the clauses.

In SGGS the assignment of I-true literals to clauses also drives the ap-
plication of the conflict-solving rules in Fig. 2. Suppose that SGGS-extension
appends to the trail a conflict clause A▷C[L] with I-false literals. This means
that L is I-false. Then SGGS-resolution [23, Def. 26] (rule resolve in Fig. 2)
explains the conflict by resolving upon L in A ▷ C[L] and M in B ▷ D[M],
where B ▷D[M] is the I-all-true clause in dp(Γ) to which L is assigned.

Definition 2 (SGGS-Resolution) Let B ▷D[M] and A▷ C[L] be clauses
in Γ such that B ▷ D[M] is I-all-true, is in dp(Γ), and occurs at a smaller
index than A ▷ C[L], L is I-false, L = ¬Mϑ for some substitution ϑ, and
A |= Bϑ. Then SGGS-resolution replaces A ▷ C[L] by the SGGS-resolvent
Res(C,D) = A▷R, where R is (C \ {L}) ∪ (D \ {M})ϑ.

12 M. P. Bonacina and S. Winkler

The I-true literals in the resolvent inherit their assignments from the I-
true literals in the parents. Since M is the implied literal in B ▷ D[M], the
resolvent is still a conflict clause. SGGS-extension ensures that every I-false
literal in a conflict clause is assigned to a justification in dp(Γ) (cf. [23, Def.
19]) and therefore can be resolved away. Thus, conflict explanation by one or
more SGGS-resolution steps generates either ⊥ or an I-all-true conflict clause.

Suppose that SGGS-extension appends to the trail an I-all-true conflict
clause B ▷ D[M], or that B ▷ D[M] is the result of conflict explanation by
SGGS-resolution. Then SGGS-move [23, Def. 25] (rule move in Fig. 2) moves
B ▷D[M] to the left of the clause A▷C[L] in dp(Γ) to which M is assigned.
The effect is to solve the conflict by flipping the I-true literal M from being
uniformly false in I[Γ] to being an implied literal with justification B▷D[M].
This is why the selected literal in an I-all-true conflict clause is the one assigned
rightmost: when the clause moves left, all other I-true literals remain assigned.
After the move, B▷D[M] resolves with A▷C[L]. Prior to the move, B▷D[M]
may split A ▷ C[L] by left-splitting [23, Def. 25] (rule l-split in Fig. 2), and
then move to the left of its representative in the splitting. If B ▷ D[M] has
another literal Q that is assigned to A ▷ C[L], has the same sign as M , and
unifies with M , SGGS-factoring [23, Def. 27] (rule factor in Fig. 2) applies to
avoid a situation where Q has nowhere to be assigned after the move.

The fairness of an SGGS-derivation involves several properties: an inference
is applied whenever ⊥ ̸∈ Γ and I[Γ] ̸|= S; no splitting is trivial;3 SGGS-
deletion is applied eagerly; all conflicting SGGS-extensions are followed right
away by conflict solving; and inferences applying to shorter prefixes of the trail
are never neglected in favor of others applying to longer prefixes (cf. [23, Defs.
32, 37, and 49]). The limit of a fair derivation Γ0 ⊢ Γ1 ⊢ . . . Γj ⊢ Γj+1 ⊢ . . . is
the longest trail Γ∞ such that ∀i, i ⩽ |Γ∞|, there exists an ni such that ∀j,
j ⩾ ni, if |Γj | ≥ i then Γj |i ≈c Γ∞|i, where ≈c is the equivalence associated to
a convergence ordering >c on trails ([23, Defs. 46, 50]). In words, all prefixes
of the trail stabilize eventually. Both the derivation and its limit Γ∞ may be
infinite, but if the derivation halts at stage k, then Γ∞ = Γk. The following
results are used in this paper:

1. Finiteness of descending chains of length-bounded trails [23, Thm. 6 and
Cor. 2]: A chain Γ0 >

c Γ1 >
c . . . Γj >

c Γj+1 . . . where ∀j, j ≥ 0, |Γj | ⩽ n,
for some n ≥ 0, is finite.

2. Descending chain theorem [23, Thm. 8]: A fair SGGS-derivation forms a
descending chain Γ0 >

c Γ1 >
c . . . >c Γj >

c Γj+1
3. Completeness [23, Thm. 9 and 11]: For all input clause sets S, initial in-

terpretations I, and fair SGGS-derivations, if S is satisfiable, I[Γ∞] |= S
(model completeness in the limit), and if S is unsatisfiable, ⊥ ∈ Γk for some
k (refutational completeness).

Results (1) and (2) above lead to prove termination and decidability by show-
ing that the length of trails in a fair SGGS-derivation is upper bounded.

3 An SGGS-splitting is trivial if it produces a singleton partition, such as when trying to
split a ground clause or trying to split a clause by a more general one.

SGGS Reasoning: Decision Procedures and Koala 13

4 SGGS and Known Decidable Fragments

In this section we use the concept of finite basis to ensure that the length
of trails in a fair SGGS-derivation is upper bounded, so that the derivation
is guaranteed to halt. If the input is satisfiable, the cardinality of the finite
basis offers an upper bound on the cardinality of the generated model. The
SGGS-decidability of Datalog and of the stratified fragment is a straightfor-
ward consequence. On the other hand, counterexamples show that SGGS with
sign-based semantic guidance cannot decide other known decidable fragments.
These derivations are useful to understand SGGS. Then we show that if clauses
are ground-preserving, SGGS terminates whenever hyperresolution does.

4.1 SGGS-Derivations in a Finite Basis Are Finite

Let S be the input set of clauses, H its Herbrand universe, and A its Herbrand
base. A finite subset B ⊆ A is a finite basis for an SGGS-derivation if all cgi’s
of all clauses on the trail during the derivation are made of atoms in B.

Definition 3 (SGGS-Derivation in a basis) A clause A ▷ C is in B if
at(Gr(A▷ C)) ⊆ B. A trail is in B if all its clauses are. An SGGS-derivation
is in B if all its trails are.

The next lemma shows that the cardinality of B provides an upper bound
on the length of the trail during a fair SGGS-derivation.

Lemma 1 If a fair SGGS-derivation Γ0 ⊢ Γ1 ⊢ . . . Γj ⊢ Γj+1 ⊢ . . . is in a
finite basis B, then ∀j, j⩾ 0, |Γj | ⩽ |B|+1, and if dp(Γj) = Γj then |Γj | ⩽ |B|.

Proof SGGS cannot do worse than generating a ground trail where every atom
in B appears selected with either positive or negative sign: any trail with
non-ground clauses cannot be longer, since a non-ground clause covers many
(possibly infinitely many) ground instances. By fairness, if the trail contains an
intersection given by clauses C[L] andD[L], or C[L] andD[¬L] with L∈B, the
clause on the right is either deleted eagerly by SGGS-deletion, or replaced with
a resolvent by SGGS-resolution before SGGS-extension applies. Thus, there
can be at most one such intersection, and the first claim follows. The second
claim holds, because dp(Γj) = Γj implies that there is no such intersection.

By the descending chain theorem and the finiteness of descending chains
of length-bounded trails, the following general result follows:

Theorem 1 A fair SGGS-derivation in a finite basis is finite.

If for all sets S of clauses in a fragment F there exists a finite basis B,
which may depend on S, such that all SGGS-derivations from S are in B, all
fair SGGS-derivations from problems in F terminate, and SGGS decides F .
Assuming for simplicity the one-sorted case, where the cardinality of a model

14 M. P. Bonacina and S. Winkler

is that of its domain, we show that F also has the small model property : every
satisfiable clause set in F admits a model whose cardinality is upper bounded.
Let H(B) = {t : t is a strict subterm of L for L∈B}, where “strict” says that
the elements of B are not included. Since B is finite, H(B) also is finite.

Theorem 2 If a fair SGGS-derivation from a satisfiable set S of clauses is
in a finite basis B, then S has a model of cardinality |H(B)| + 1 that can be
extracted from the limit of the derivation.

Proof Let I be the initial interpretation. By Theorem 1 the derivation halts
with some trail Γ which is its limit. Since SGGS is model complete in the
limit, I[Γ] |= S. The domain of I[Γ] is H, which is infinite in general. How-
ever, since the derivation is in B, all cgi’s of all clauses in Γ are in B, and
therefore we can extract from I[Γ] a model J with domain H(B) ⊎ {u},
where u is a new constant symbol. For every constant symbol c, let cJ = c if
c ∈ H(B), and cJ = u otherwise; for every n-ary (n ⩾ 1) function symbol f , let
fJ(t1, . . . , tn) = f(tJ1 , . . . , t

J
n) if f(t1, . . . , tn) ∈ H(B), and fJ(t1, . . . , tn) = u

otherwise; for every predicate symbol P , (t1, . . . , tn) ∈ P J if and only if I[Γ] |=
P (t1, . . . , tn). Note that J is well-defined because if f(t1, . . . , tn) ∈ H(B) then
t1, . . . , tn are also, hence all terms are interpreted in H(B) ⊎ {u}. As J agrees
with I[Γ] on all atoms, J |= S, and its cardinality is |H(B)|+1 by construction.

In summary, the finite basis approach for SGGS yields termination, decid-
ability, and the small model property.

4.2 SGGS Decides Datalog, EPR, and the Stratified Fragment

A set of Datalog clauses, or Datalog program (e.g., [26]), is a set of Horn
clauses where (i) there are no functions, so that all terms are either constants
or variables, (ii) every fact is ground, and (iii) every variable that occurs in
the positive literal of a rule C also occurs in at least one negative literal
of C. Since the Herbrand universe and the Herbrand base A of a Datalog
program are finite, A itself is the finite basis, and Theorem 1, together with
the completeness theorems for SGGS, yields the following.

Theorem 3 Given a Datalog program S, every fair SGGS-derivation halts, is
a refutation if S is unsatisfiable, and constructs a model of S if S is satisfiable.

The Bernays-Schönfinkel (BS) class [14,68] includes the sentences of the
form ∃∗∀∗φ, where φ is a formula with no occurrences of either quantifiers
or functions, while constants are allowed. The reduction of BS formulae to
clausal form yields Effectively PRopositional logic [65,3,37], abbreviated EPR.
The stratified fragment generalizes EPR to many-sorted logic [1,47,64].

A signature is stratified [1,47,64], if there is a well-founded ordering <s on
the set Σ of sorts, and for all functions f : s1×· · ·×sn→ s, it holds that si>s s
for all i, 1⩽ i⩽n. The sort-dependency graph displays dependencies between
sorts: it is a directed graph such that the set of vertices is Σ and there is an arc

SGGS Reasoning: Decision Procedures and Koala 15

from s to s′ if and only if there is a function symbol f : s1× · · · × sn→ s′ such
that si=s for some i, 1⩽ i⩽n. A sort s is cyclic, if there exists a non-trivial
path (i.e., a path of length greater or equal than 1) from s to s in the graph, and
acyclic otherwise. In a stratified signature all sorts are acyclic. If a sentence
over a stratified signature belongs to the ∃∗∀∗ fragment, Skolemization only
introduces constants and preserves stratification. If there is only one sort, this
fragment reduces to EPR, because stratification over a single sort implies that
there are no function symbols. However, also stratified sentences with a prefix
other than ∃∗∀∗ can yield stratified clauses [57].

Example 4 Assume the signature from Example 2, which is stratified with or-
dering s1 >s s2. The Skolemization of ∀x∃y.P(f(x), y) preserves stratification,
as clause P(f(x), g(x)) with Skolem symbol g : s1→s2 is still stratified. On
the other hand, the Skolemization of ∀x∃y.P(f(y), x) yields P(f(g(x)), x) with
Skolem symbol g : s2→s1, so that stratification is lost.

A set of clauses whose signature is stratified is also called stratified. Since
stratification prevents building terms of unbounded depth, the Herbrand uni-
verse and the Herbrand base are again finite, and we have the next theorem.

Theorem 4 Given a stratified input set S, every fair SGGS-derivation halts,
is a refutation if S is unsatisfiable, and constructs a model of S if S is satis-
fiable.

However, SGGS-derivations in EPR can be exponentially long, as in the
following example with a clause set Sk that describes a k-digits binary counter.
Let Q be a predicate symbol of arity k, and for all i, 1⩽ i⩽ k, let 0i, 1i, and
xi be i-tuples of 0’s, 1’s, and distinct variables x1, . . . , xi, respectively. Then
Sk consists of the following k + 2 clauses, for 0 ⩽ m ⩽ k − 1:

C0 : Q(0k) Cm+1 : ¬Q(xm, 0, 1k−m−1) ∨ Q(xm, 1, 0k−m−1) Ck+1 : ¬Q(1k).

This set was used in the context of an analysis of first-order theorem-proving
strategies [66, Def. 2.4.10] to show that resolution can do better than hyperres-
olution or positive/negative resolution. Indeed, resolution offers a refutation in
2k+1 steps [66, Thm. 2.4.11], whereas positive resolution and positive hyper-
resolution simulate the binary counter, and negative resolution and negative
hyperresolution do the same counting in reverse, so that all four strategies
generate exponentially long derivations [66, Thm. 2.4.12]. As these sign-based
refinements of resolution only generate ground clauses from Sk, this set was
also used to show that generating ground instances and applying a proposi-
tional proof system can do exponentially worse than resolution in EPR [59,
Sect. 2.1]. A recent model-based clause-learning decision procedure for EPR
named SCL and evolved from NRCL [3] also behaves exponentially on Sk [37,
Sect. 4]. Unlike in Example 3, SGGS behaves like hyperresolution on Sk.

16 M. P. Bonacina and S. Winkler

Example 5 Given as input the k-digits binary counter clause set Sk, and I
−

as initial interpretation, SGGS generates a derivation that simulates binary
counting with a series of 2k+1 SGGS-extension steps, each adding a clause:

Γ0 : ε ⊢ Γ1 : [Q(0k)] extend (C0)

⊢ Γ2 : [Q(0k)], ¬Q(0k) ∨ [Q(0k−1, 1)] extend (Ck−1)

⊢ Γ3 : . . . ,¬Q(0k−1, 1) ∨ [Q(0k−2, 1, 0)] extend (Ck−2)

⊢ Γ4 : . . . ,¬Q(0k−2, 1, 0) ∨ [Q(0k−2, 1, 1)] extend (Ck−1)

⊢ Γ5 : . . . ,¬Q(0k−2, 1, 1) ∨ [Q(0k−3, 1, 0, 0)] extend (Ck−3)

.

⊢ Γ2k−1 : . . . ,¬Q(1k−2, 0, 1) ∨ [Q(1k−1, 0)] extend (Ck−2)

⊢ Γ2k : . . . ,¬Q(1k−1, 0) ∨ [Q(1k)] extend (Ck−1)

⊢ Γ2k+1 : . . . ,¬Q(1k−1, 0) ∨ [Q(1k)], [¬Q(1k)] extend (Ck+1).

At this stage a conflict emerges with I−-all-true conflict clause [¬Q(1k)]. After
another 2k+1 steps, alternating SGGS-move (abbreviated move) and SGGS-
resolution (abbreviated resolve), unsatisfiability is detected:

⊢ Γ2k+2 : . . . , [¬Q(1k)], ¬Q(1k−1, 0) ∨ [Q(1k)] move

⊢ Γ2k+3 : . . . , [¬Q(1k)], [¬Q(1k−1, 0)] resolve

⊢ Γ2k+4 : . . . , [¬Q(1k−1, 0)], ¬Q(1k−2, 0, 1) ∨ [Q(1k−1, 0)], [¬Q(1k)] move

⊢ Γ2k+5 : . . . , [¬Q(1k−1, 0)], [¬Q(1k−2, 0, 1)], [¬Q(1k)] resolve

.

⊢ Γ2k+2 : [¬Q(0k)], [Q(0k)], . . . move

⊢ Γ2k+2+1 : ⊥, . . . resolve

SGGS with I+ also behaves exponentially operating the counter in reverse.

In essence, this set of clauses appears to defeat simultaneously sign-based
semantic guidance, instance generation, and conflict-driven clause learning.

4.3 SGGS Does Not Decide the Ackermann, Monadic, and FO2 Classes

In this section we show that SGGS with sign-based semantic guidance does not
decide the Ackermann, monadic, and FO2 fragments. Let φ be a formula with
no occurrences of either quantifiers or functions, while constants are allowed.
The Ackermann class comprises the sentences of the form ∃∗∀∃∗φ [2,44,36].
The monadic, or Löwenheim, class contains the sentences where there are no
functions and predicates are unary [2,44,38]. In the two-variable fragment,
denoted FO2, there are only two variables and no functions [41,38].

We consider three sets of clauses to illustrate how SGGS works. Two of
them are well-known in the literature. As these clause sets admit finite models,

SGGS Reasoning: Decision Procedures and Koala 17

the nontermination of SGGS in these examples shows that SGGS is not guar-
anteed to terminate whenever the input set has a finite model. We conclude
the section with an example that shows that it is not the case that whenever
SGGS terminates there is a finite Herbrand model. Indeed, a finite SGGS trail
can represent an infinite Herbrand model by using non-ground selected liter-
als (SGGS is not restricted to generate ground instances of clauses) and by
borrowing infinitely many literals from the initial interpretation.

The first set is S0 = {P(x)∨P(f(x)), ¬P(x′)∨¬P(f(x′))} [44, Sect. 5]. Set S0

is in FO2, because there are only two variables; and it is in the Ackermann and
monadic classes because it is obtained from the Skolemization of the sentence
∀x∃y.(P(x) ∨ P(y)) ∧ (¬P(x) ∨ ¬P(y)). S0 has a finite model I with domain
{0, 1}, interpreting P as PI = {0}, and f as fI(0) = 1 and fI(1) = 0. Adding
to the signature a constant a to form Herbrand universe and Herbrand base,
S0 has two infinite Herbrand models: J1 = {P(f2k(a)),¬P(f2k+1(a)) : k ⩾ 0}
and J2 = {¬P(f2k(a)),P(f2k+1(a)) : k ⩾ 0}.

The addition of P(a) selects only J1 as Herbrand model, yielding a simpler
problem S1 = {P(a), P(x) ∨ P(f(x)), ¬P(x′) ∨ ¬P(f(x′))}. S1 is in the same
classes (membership in the Ackermann and monadic classes stems from the
Skolemization of ∃w∀x∃y.P(w) ∧ (P(x) ∨ P(y)) ∧ (¬P(x) ∨ ¬P(y))), and it is
satisfied by finite model I extended with aI = 0.

By enriching the signature so that binary clauses are mixed one gets
S2 = {P(a), ¬P(b), ¬P(x)∨P(f(x)), P(x′)∨¬P(g(x′))}, which is in the same
classes (membership in the Ackermann and monadic classes descends from the
Skolemization of ∃v∃w∀x∃y∃z.P(v)∧¬P(w)∧(¬P(x)∨P(y))∧(P(x)∨¬P(z))),
has only Herbrand model J3 = {P(a),¬P(b),P(fk(a)),¬P(gk(b)) : k⩾0}, and
finite model I extended with bI = 1 and gI = fI . Problem S2 is even simpler,
because it is made of Horn clauses, and because with binary mixed clauses
every sign-guided hyperinference unifies only one pair of literals.

Resolution, even with subsumption, generates infinitely many clauses from
S0, S1, and S2, and so does hyperresolution [44]. From S0 positive hyper-
resolution generates {P(x) ∨ P(f2k+1(x)) : k ⩾ 1} and negative hyperres-
olution generates {¬P(x) ∨ ¬P(f2k+1(x)) : k ⩾ 1}. From S1 positive hy-
perresolution also adds {P(f2k(a) : k ⩾ 1}, while negative hyperresolution
also adds {¬P(f2k+1(a) : k ⩾ 0}. From S2 positive hyperresolution generates
{P(fk(a)) : k ⩾ 1} and negative hyperresolution generates {¬P(gk(b)) : k ⩾
1}. Ordered resolution with an ordering > on literals such that P(f(x)) > P(x),
and P(g(x)) > P(x) for S2, plus tautology elimination for S0 and S1, termi-
nates right away.

The first example of this section shows how SGGS generates infinite deriva-
tions from S2, working to modify I− or I+ to get model J3 in the limit. Set
S2 is so simple that derivations made only of SGGS-extensions are possible.

Example 6 Given S2 and I = I−, the SGGS-derivation begins by putting
on trail Γ the I-all-false (i.e., positive) clause P(a). Thus, I[Γ] |= P(a), but
I[Γ] ̸|= ¬P(x) ∨ P(f(x)), and an infinite series of instances gets generated:

ε ⊢ [P(a)] extend

18 M. P. Bonacina and S. Winkler

⊢ [P(a)], ¬P(a) ∨ [P(f(a))] extend

⊢ [P(a)], ¬P(a) ∨ [P(f(a))], ¬P(f(a)) ∨ [P(f(f(a)))] extend

⊢ . . .

The derivation lists as selected the positive literals of J3, while I[Γ] gets
the negative ones from I−. If the initial interpretation is I+, SGGS starts
by putting [¬P(b)] on the trail, and then generates the instances of P(x′) ∨
¬P(g(x′)) by an infinite series of SGGS-extensions. The derivation lists as
selected the negative literals of J3, as I[Γ] imports the positive ones from I+.

The next example shows how input set S1 induces SGGS to embark in
infinite derivations4 aiming at reaching model J1 in the limit.

Example 7 Given S1 = {P(a), P(x)∨P(f(x)), ¬P(x′)∨¬P(f(x′))} and I = I−,
the SGGS-derivation starts by placing the I-all-false input clauses on the trail:

ε ⊢ [P(a)], [P(x)] ∨ P(f(x)) extend

where either literal can be selected in the second clause. Selecting P(f(x))
avoids an intersection with P(a), but suppose that P(x) is selected. Then the
first clause splits the second one by s-splitting and SGGS-deletion removes
the representative because it is disposable. We abbreviate top(x) ̸= a ▷ φ[x]
as φ[f(x)] where x is a new variable.

⊢ [P(a)], [P(a)] ∨ P(f(a)), [P(f(x))] ∨ P(f2(x)) s-split

⊢ [P(a)], [P(f(x))] ∨ P(f2(x)) delete

At this point I[Γ] satisfies no instance of the I-all-true input clause ¬P(x′) ∨
¬P(f(x′)). SGGS-extension fires unifying the two literals of this clause with
the two selected literals on the trail (the mgu is α = {x′ ← a, x← a}):

⊢ [P(a)], [P(f(x))] ∨ P(f2(x)), ¬P(a) ∨ [¬P(f(a))] extend

The added clause is a conflict clause with ¬P(a) assigned to the first clause, and
¬P(f(a)) to the second one, so that ¬P(f(a)) is selected, because the selected
literal in an I-all-true clause, if selected, must be assigned rightmost. Since
P(f(a)) is less general than P(f(x)) (¬Gr(¬P(f(a))) ⊂ pcgi(P(f(x)), Γ)), the
third clause splits the second one by left splitting (abbreviated l-split), which
enables SGGS-move followed by SGGS-resolution:

⊢ [P(a)], [P(f(a))] ∨ P(f2(a)), [P(f2(x))] ∨ P(f3(x)),

¬P(a) ∨ [¬P(f(a))] l-split

⊢ [P(a)], ¬P(a) ∨ [¬P(f(a))], [P(f(a))] ∨ P(f2(a)),

[P(f2(x))] ∨ P(f3(x)) move

⊢ [P(a)], ¬P(a) ∨ [¬P(f(a))], ¬P(a) ∨ [P(f2(a))],

4 The SGGS-derivation with I− given for this set in [24, Ex. 11] is incorrect.

SGGS Reasoning: Decision Procedures and Koala 19

[P(f2(x))] ∨ P(f3(x)) resolve

⊢ . . .

The infinite derivation lists as selected the literals P(a), ¬P(f(a)), P(f2(a)), . . .
of model J1, and so do three other infinite derivations, one with I = I− and
P(f(x)) selected in the second extension clause, one with I = I+ and P(x)
selected, and one with I = I+ and P(f(x)) selected.

The following example illustrates how SGGS generates infinite derivations
from S0 to get either model J1 or model J2 depending on literal selection.

Example 8 Given S0 = {P(x)∨P(f(x)), ¬P(x′)∨¬P(f(x′))}, and I = I−, the
first SGGS-extension adds the I-all-false input clause

ε ⊢ [P(x)] ∨ P(f(x)) extend

where either literal can be selected and P(x) is. If P(x) is selected, SGGS builds
model J1, and if P(f(x)) is selected, SGGS builds model J2. SGGS-extension
applies next with ¬P(x′)∨¬P(f(x′)) as main premise and two variants [P(x1)]∨
P(f(x1)) and [P(x2)] ∨ P(f(x2)) of the clause in Γ as side premises. There are
two mgu’s, hence two possible steps with extension clause ¬P(x) ∨ ¬P(f(x)):
α1 = {x1 ← x′, x2 ← f(x′)} and α2 = {x2 ← x′, x1 ← f(x′)}. If α1 is
applied, ¬P(x) is assigned to the first variant and ¬P(f(x)) to the second one,
so that ¬P(f(x)) is selected, because the selected literal in an I-all-true clause,
if assigned, must be assigned rightmost. If α2 is applied, ¬P(f(x)) is assigned
to the first variant and ¬P(x) to the second one, so that ¬P(x) is selected.
Putting both variants on the trail is useless, since SGGS-deletion removes the
second one, and both literals of the extension clause can be assigned to the
first clause on the trail, but distinguishing the two mgu’s is useful to see which
literal gets selected in the extension clause. If α2 is applied, the result is:

⊢ [P(x)] ∨ P(f(x)), [¬P(x)] ∨ ¬P(f(x)) extend

However at this point the derivation is stuck, because neither SGGS-move nor
SGGS-factoring nor left splitting apply to the I-all-true conflict clause. SGGS-
move does not apply because the second clause has two literals assigned to the
first one. SGGS-factoring does not apply because the two literals do not unify.
Left splitting does not apply because ¬Gr(¬P(x)) = pcgi(P(x), Γ). Since a
stuck derivation is not fair, a stuck state must be avoided by looking ahead or
undoing. If α1 is applied, the derivation proceeds with left splitting:

⊢ [P(x)] ∨ P(f(x)), ¬P(x) ∨ [¬P(f(x))] extend

⊢ top(x) ̸= f ▷ [P(x)] ∨ P(f(x)), [P(f(x))] ∨ P(f2(x)) l-split

where ¬P(x) ∨ [¬P(f(x))] is removed, because it has literals assigned to the
split clause. SGGS-extension applies again with ¬P(x′) ∨ ¬P(f(x′)) as main
premise, the two clauses in Γ as side premises, and mgu α = {x′ ← x}:

⊢ top(x) ̸= f ▷ [P(x)] ∨ P(f(x)), [P(f(x))] ∨ P(f2(x)),

20 M. P. Bonacina and S. Winkler

top(x) ̸= f ▷ ¬P(x) ∨ [¬P(f(x))] extend

The first and the second literal of the extension clause are assigned to the first
and second clause, respectively, so that the second literal is selected. Then left
splitting applies:

⊢ top(x) ̸= f ▷ [P(x)] ∨ P(f(x)), top(x) ̸= f ▷ [P(f(x))] ∨ P(f2(x)),

[P(f2(x))] ∨ P(f3(x)), top(x) ̸= f ▷ ¬P(x) ∨ [¬P(f(x))] l-split

so that SGGS-move and SGGS-resolution can solve the conflict:

⊢ top(x) ̸= f ▷ [P(x)] ∨ P(f(x)), top(x) ̸= f ▷ ¬P(x) ∨ [¬P(f(x))],
top(x) ̸= f ▷ [P(f(x))] ∨ P(f2(x)), [P(f2(x))] ∨ P(f3(x)) move

⊢ top(x) ̸= f ▷ [P(x)] ∨ P(f(x)), top(x) ̸= f ▷ ¬P(x) ∨ [¬P(f(x))],
top(x) ̸= f ▷ ¬P(x) ∨ [P(f2(x))], [P(f2(x))] ∨ P(f3(x)) resolve

As the selected literals of the third and fourth clauses intersect, s-splitting
applies, followed by the deletion of the representative:

⊢ top(x) ̸= f ▷ [P(x)] ∨ P(f(x)), top(x) ̸= f ▷ ¬P(x) ∨ [¬P(f(x))],
top(x) ̸= f ▷ ¬P(x) ∨ [P(f2(x))],

top(x) ̸= f ▷ [P(f2(x))] ∨ P(f3(x)), [P(f3(x))] ∨ P(f4(x)) s-split

⊢ top(x) ̸= f ▷ [P(x)] ∨ P(f(x)), top(x) ̸= f ▷ ¬P(x) ∨ [¬P(f(x))],
top(x) ̸= f ▷ ¬P(x) ∨ [P(f2(x))], [P(f3(x))] ∨ P(f4(x)) delete

⊢ . . .

Since top(x) ̸= f is satisfied by {x← a} in the Herbrand universe, the infinite
derivation is listing J1 = {P(a), ¬P(f(a)), P(f2(a)), . . .}. If P(f(x)) is selected
in the first clause, the same sequence of inference rules is applied:

ε ⊢ P(x) ∨ [P(f(x))] extend

⊢ P(x) ∨ [P(f(x))], ¬P(f(x)) ∨ [¬P(f2(x))] extend

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))], P(f(x)) ∨ [P(f2(x))] l-split

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))], P(f(x)) ∨ [P(f2(x))],

top(x) ̸= f ▷ ¬P(f(x)) ∨ [¬P(f2(x))] extend

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))], top(x) ̸= f ▷ P(f(x)) ∨ [P(f2(x))],

P(f2(x)) ∨ [P(f3(x))], top(x) ̸= f ▷ ¬P(f(x)) ∨ [¬P(f2(x))] l-split

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))],

top(x) ̸= f ▷ ¬P(f(x)) ∨ [¬P(f2(x))],
top(x) ̸= f ▷ P(f(x)) ∨ [P(f2(x))], P(f2(x)) ∨ [P(f3(x))] move

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))],

top(x) ̸= f ▷ ¬P(f(x)) ∨ [¬P(f2(x))],

SGGS Reasoning: Decision Procedures and Koala 21

top(x) ̸= f ▷ ¬P(f(x)) ∨ [P(f(x))], P(f2(x)) ∨ [P(f3(x))] resolve

Unlike in the first derivation, the resolvent is disposable and gets deleted:

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))],

top(x) ̸= f ▷ ¬P(f(x)) ∨ [¬P(f2(x))], P(f2(x)) ∨ [P(f3(x))] delete

The derivation continues with SGGS-extension with ¬P(x′) ∨ ¬P(f(x′)) as
main premise, the third and first clauses in Γ as side premises, and mgu
α = {x′ ← f3(y), x← f(y)}, renaming as y the x in the third clause of Γ :

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))],

top(x) ̸= f ▷ ¬P(f(x)) ∨ [¬P(f2(x))], P(f2(x)) ∨ [P(f3(x))],

top(x) ̸= f ▷ ¬P(f3(x)) ∨ [¬P(f4(x))] extend

⊢ top(x) ̸= f ▷ P(x) ∨ [P(f(x))],

top(x) ̸= f ▷ ¬P(f(x)) ∨ [¬P(f2(x))],
top(x) ̸= f ▷ P(f2(x)) ∨ [P(f3(x))], P(f3(x)) ∨ [P(f4(x))] l-split

⊢ . . .

The first three selected literals are P(f(a)), ¬P(f2(a)), and P(f3(a)), and since
I[Γ] gets ¬P(a) from I−, model J2 = {¬P(a), P(f(a)), ¬P(f2(a)), P(f3(a)) . . .}
emerges. Since S0 is symmetric with respect to sign, with I = I+ one gets two
derivations identical to those above, except that all signs of all literals on the
trail are flipped: the first derivation yields J2 and the second one yields J1.

Terminating SGGS-derivations can capture infinite Herbrand models, as
a finite SGGS trail can represent an infinite Herbrand model by using non-
ground selected literals and by borrowing infinitely many literals from I.

Example 9 Let the input set of clauses be S = {(i) P(x, a), (ii) ¬P(x, y) ∨
R(y) ∨ P(x, f(y)), (iii) ¬R(f(x)) ∨ ¬P(x, f(x))}. SGGS with I+ halts after
putting clause (iii) on the trail. If the first literal is selected, we have

Γ0 : ε ⊢ Γ1 : [¬R(f(x))] ∨ ¬P(x, f(x)),

where Ip(Γ1) = {¬R(fk(a)) : k ⩾ 1} and I[Γ1] is the infinite Herbrand model
given by Ip(Γ1) plus all the positive literals whose complement is not in Ip(Γ1).
If the second literal is selected,

Γ0 : ε ⊢ Γ1 : ¬R(f(x)) ∨ [¬P(x, f(x))],

we have Ip(Γ1) = {¬P(fk(a), fk+1(a)) : k ⩾ 0} and I[Γ1] is the infinite Her-
brand model given by Ip(Γ1) plus all the positive literals whose complement is
not in Ip(Γ1). If I is I−, the termination of SGGS depends on literal selection.
The following derivation halts:

Γ0 : ε ⊢ Γ1 : [P(x, a)] ⊢ Γ2 : [P(x, a)], ¬P(x, a) ∨ [R(a)] ∨ P(x, f(a)),

22 M. P. Bonacina and S. Winkler

with Ip(Γ2) = {P(fk(a), a) : k ⩾ 0} ∪ {R(a)} and I[Γ2] given by Ip(Γ2) plus
all the negative literals whose atom is not in Ip(Γ2). If the last literal in the
instances of ¬P(x, y)∨R(y)∨P(x, f(y)) is systematically selected, SGGS with
I− diverges:

ε ⊢ [P(x, a)] ⊢ [P(x, a)], ¬P(x, a) ∨ R(a) ∨ [P(x, f(a))]

⊢ [P(x, a)], ¬P(x, a) ∨ R(a) ∨ [P(x, f(a))],

¬P(x, f(a)) ∨ R(f(a)) ∨ [P(x, f2(a))] ⊢

Hyperresolution generates infinitely many clauses from this set. For example,
using (ii) as nucleus, (i) as initial satellite, and then each resulting hyperre-
solvent as next satellite, positive hyperresolution produces R(a) ∨ P(x, f(a)),
R(a) ∨ R(f(a)) ∨ P(x, f2(a)), R(a) ∨ R(f(a)) ∨ R(f2(a)) ∨ P(x, f3(a)), and so on.

4.4 SGGS Does Not Decide the Guarded Fragment

In this section we show by counterexamples that SGGS with sign-based se-
mantic guidance does not decide the guarded fragment [4,29]. The guarded
fragment admits no function symbols and restricts quantification to the fol-
lowing schemes: ∀ȳ.(R(x̄, ȳ) ⊃ ψ[x̄, ȳ]) and ∃ȳ.(R(x̄, ȳ) ∧ ψ[x̄, ȳ]), where ψ is
also a guarded formula, and all the variables that occur in ψ must appear
in the atomic guard R(x̄, ȳ). For the fragments considered in the previous
sections, the clausal version of a fragment contains the sets of clauses gener-
ated by transforming into clausal form the formulae of the fragment. For the
guarded fragment this is not the case: we adopt the existing notion of guarded
clauses [29] and we refer to [29] for a discussion of reduction to clausal form
in the guarded fragment.

A clause C is guarded, if (i) for all non-ground compound subterms t of
C, Var(t) = Var(C), and (ii) if Var(C) ̸= ∅, there exists a literal L ∈ C−,
called a guard, such that Var(L) = Var(C) and every compound subterm
of L is ground [29]. Although formulæ in the guarded fragment have no
function symbols, guarded clauses may contain function symbols introduced
by Skolemization. A guarded set is a set of guarded clauses. For example,
G0 = {R(f(a)), ¬P(x) ∨ R(x) ∨ Q(f(x))} is a guarded set. Given G0, SGGS
with I+ halts right away, and SGGS with I− halts after placing R(f(a)) on
the trail. However, it is simple to give a guarded set where the termination of
SGGS depends on the initial interpretation.

Example 10 Given the guarded set G1 = {P(a), ¬P(x)∨P(f(x))}, SGGS with
I+ halts right away, but the SGGS-derivation with I− is infinite:

ε ⊢ [P(a)] extend

⊢ [P(a)], ¬P(a) ∨ [P(f(a))] extend

⊢ [P(a)], ¬P(a) ∨ [P(f(a))], ¬P(f(a)) ∨ [P(f2(a))] extend

⊢ . . .

SGGS Reasoning: Decision Procedures and Koala 23

In the next example the termination of SGGS depends on both initial
interpretation and literal selection.

Example 11 Given the guarded set G2 = {¬P(a), ¬Q(x) ∨ P(x) ∨ ¬P(f(x))},
SGGS halts right away with I−, but goes on forever with I+:

ε ⊢ [¬P(a)]
⊢ [¬P(a)], ¬Q(a) ∨ P(a) ∨ [¬P(f(a))]
⊢ [¬P(a)], ¬Q(a) ∨ P(a) ∨ [¬P(f(a))], ¬Q(f(a)) ∨ P(f(a)) ∨ [¬P(f2(a))]
⊢ . . .

where SGGS-extension is applied at every step. However, it suffices to select
¬Q(fn(a)) in place of ¬P(fn+1(a)), for some n ⩾ 0, that the derivation halts.

In the following example SGGS does not terminate regardless of literal
selection and choice between I− and I+.

Example 12 The set G3 = {P(a), ¬P(x) ∨ P(f(f(x))), ¬P(x) ∨ ¬P(f(x))} is
guarded and is satisfied by the same finite model I and infinite Herbrand
model J1 given for S1 from the previous section. With I− SGGS generates an
infinite derivation that lists as selected the positive literals of model J1:

ε ⊢ [P(a)] extend

⊢ [P(a)], ¬P(a) ∨ [P(f2(a))] extend

⊢ [P(a)], ¬P(a) ∨ [P(f2(a))], ¬P(f2(a)) ∨ [P(f4(a))] extend

⊢ . . .

The SGGS-derivation with I+ is infinite even if literals of lower depth are
preferred for selection, as the literals of model J1 are listed as selected:

ε ⊢ [¬P(x)] ∨ ¬P(f(x)) extend

⊢ [¬P(x)] ∨ ¬P(f(x)), [P(a)] extend

⊢ [¬P(a)] ∨ ¬P(f(a)), [¬P(f(x))] ∨ ¬P(f2(x)), [P(a)] l-split

⊢ [P(a)], [¬P(a)] ∨ ¬P(f(a)), [¬P(f(x))] ∨ ¬P(f2(x)) move

⊢ [P(a)], [¬P(f(a))], [¬P(f(x))] ∨ ¬P(f2(x)) resolve

⊢ [P(a)], [¬P(f(a))], [¬P(f(a))] ∨ ¬P(f2(a)),
[¬P(f2(x))] ∨ ¬P(f3(x)) s-split

⊢ [P(a)], [¬P(f(a))], [¬P(f2(x))] ∨ ¬P(f3(x)) delete

⊢ [P(a)], [¬P(f(a))], [¬P(f2(x))] ∨ ¬P(f3(x)), [¬P(a)] ∨ P(f2(a)) extend

⊢ [P(a)], [¬P(f(a))], [¬P(f2(x))] ∨ ¬P(f3(x)), [P(f2(a))] resolve

⊢ [P(a)], [¬P(f(a))], [¬P(f2(a))] ∨ ¬P(f3(a)),
[¬P(f3(x))] ∨ ¬P(f4(x)), [P(f2(a))] l-split

⊢ [P(a)], [¬P(f(a))], [P(f2(a))], [¬P(f2(a))] ∨ ¬P(f3(a)),

24 M. P. Bonacina and S. Winkler

[¬P(f3(x))] ∨ ¬P(f4(x)) move

⊢ [P(a)], [¬P(f(a))], [P(f2(a))], [¬P(f3(a))],
[¬P(f3(x))] ∨ ¬P(f4(x)) resolve

⊢ . . .

Resolution generates infinitely many clauses from these sets, while hy-
perresolution behaves similarly to SGGS. From G0 both positive and neg-
ative hyperresolution generate nothing. From G1 negative hyperresolution
does not generate anything, whereas positive hyperresolution yields the in-
finite series {P(fk(a)) : k ⩾ 1}. From G2 positive hyperresolution does not
generate anything, whereas negative hyperresolution yields the infinite series
{
∨k

i=0 ¬Q(fi(a)) ∨ ¬P(fk+1(a)) : k ⩾ 0}. From G3 positive hyperresolution
yields the infinite series {P(f2k(a))}k⩾0, while negative hyperresolution gener-
ates ¬P(f(a)) from nucleus P(a) and satellite ¬P(x) ∨ ¬P(f(x)), and then the
infinite series {¬P(x)∨¬P(f2k+1(x)) : k ⩾ 1} from nucleus ¬P(x)∨P(f(f(x)))
using ¬P(x) ∨ ¬P(f(x)) as initial satellite and then each resulting hyperresol-
vent as next satellite. Given an ordering > on literals such that P(f(x)) > P(x)
for G1 and G2, and such that P(f(x)) > P(x) and P(f2(x)) > P(x) for G3, or-
dered resolution halts right away.

4.5 SGGS Decides the Ground-Preserving Sets Decided by Hyperresolution

SGGS with I− or I+ as initial interpretation and hyperresolution share sign-
based semantic guidance. We show that if the input clauses are positively
ground-preserving, SGGS with I− terminates whenever positive hyperresolu-
tion does. The result for SGGS with I+ and negative hyperresolution is dual.

Definition 4 (Ground-Preserving) A clause C is positively ground-pre-
serving if Var(C) ⊆ Var(C−), and negatively ground-preserving if Var(C) ⊆
Var(C+). A set of clauses is positively/negatively ground-preserving if all its
clauses are, and ground-preserving if it is one or the other.

For example, ¬P(x, y, z) ∨ Q(y) ∨ Q(f(z)) and ¬Q(x) ∨ ¬Q(y) are positively
ground-preserving. Datalog clauses are positively ground-preserving. The bi-
nary counter clauses of Example 5 are both positively and negatively ground-
preserving. Guarded clauses are positively ground-preserving, since the guard
is negative and contains all variables.

If a set S is positively ground-preserving, the positive clauses in S are
ground, hence the initial satellites are ground, and positive hyperresolution
generates only ground clauses, as at every step all variables in the nucleus
get instantiated with ground terms by the simultaneous mgu with literals in
ground satellites. The dual properties hold for the negative variant.

We begin by showing that SGGS also has this property, which implies that
SGGS-splitting inferences do not apply and hence SGGS-constraints do not
appear. Let I be suitable for a ground-preserving set S if either I is I− and S is
positively ground-preserving, or I is I+ and S is negatively ground-preserving.

SGGS Reasoning: Decision Procedures and Koala 25

Lemma 2 If the input set S is ground-preserving, all clauses on the trail of
a fair SGGS-derivation with initial interpretation suitable for S are ground.

Proof Assume that S is positively ground-preserving and I is I− (the other
case is dual). The proof is by induction on the stage k such that the step
Γk ⊢ Γk+1 adds clause C to the trail (i.e., C appears in Γk+1).
Base case: k = 0, and C is one of the I−-all-false (i.e., positive) input clauses
added by the first SGGS-extension that yields Γ1. (S must contain at least
an I−-all-false clause, because otherwise it would be satisfied by I− and the
derivation would not even start.) Since S is ground-preserving, C is ground.
Induction hypothesis: for all j, 0 ≤ j < k, all clauses C added by the step
Γj ⊢ Γj+1 are ground.
Inductive case: let C be a clause added to the trail by the step Γk ⊢ Γk+1.
The only inferences that generate new clauses are SGGS-splitting, SGGS-
resolution, and SGGS-extension. Γk ⊢ Γk+1 cannot be a splitting step, be-
cause the splitting of a ground clause is trivial, hence excluded by fairness. If
Γk ⊢ Γk+1 is an SGGS-resolution step, a resolvent of ground clauses is also
ground. If Γk ⊢ Γk+1 is an SGGS-extension step, it adds an instance Cα of
a clause C ∈ S, where α is the simultaneous mgu of all I−-true (i.e., neg-
ative) literals L1, . . . , Ln in C with as many I−-false (i.e., positive) selected
literals M1, . . . ,Mn in clauses in Γ . By induction hypothesis, the clauses con-
taining M1, . . . ,Mn are ground. Thus, L1α, . . . , Lnα are also ground. The I−-
false (i.e., positive) literals of Cα are ground, because C is positively ground-
preserving, so that all its variables appear in a negative literal and get grounded
by α. Thus, Cα is ground.

Let Res+H(S) be the set of positive hyperresolvents generated from S;

R0
H(S) = S, Rk+1

H (S) = Rk
H(S) ∪ Res+H(Rk

H(S)), and R∗
H(S) =

⋃
k⩾0R

k
H(S).

If S is positively ground-preserving, all clauses in R∗
H(S) \ S are ground.

Lemma 3 If the input set S is positively ground-preserving, for all fair SGGS-
derivations with I− as initial interpretation, for every clause C on the trail
during the derivation, there exists a positive clause C ′ ∈ R∗

H(S) such that
C+ ⊆ C ′.

Proof By Lemma 2 all clauses C that appear on the trail during the deriva-
tion are ground. The proof is by induction on the stage k such that the step
Γk ⊢ Γk+1 adds clause C to the trail (i.e., C appears in Γk+1).
Base case: k = 0, and C is one of the I−-all-false (i.e., positive) input clauses
added by the first SGGS-extension that yields Γ1. Then C+ = C and C ′ =
C ∈ S ⊆ R∗

H(S).
Induction hypothesis: for all j, 0 ≤ j < k, for all clauses C added by step
Γj ⊢ Γj+1 the claim holds.
Inductive case: let C be a clause added to the trail by step Γk ⊢ Γk+1. By
fairness, SGGS-splitting does not apply to ground clauses, and we only need
to consider SGGS-resolution and SGGS-extension. If Γk ⊢ Γk+1 is an SGGS-
resolution step, the added clause is the SGGS-resolvent R generated from

26 M. P. Bonacina and S. Winkler

(ground) parents C1[L] and C2[¬L], where L is I−-false (i.e., positive) and
C2[¬L] is I−-all-true (i.e., negative), so that R+ ⊆ C1

+. By induction hy-
pothesis there exists a positive clause C ′ ∈ R∗

H(S) such that C1
+ ⊆ C ′, and

hence R+ ⊆ C ′. If Γk ⊢ Γk+1 is an SGGS-extension step with main premise
C ∈ S and side premises D1[M1], . . . , Dn[Mn] in Γk, the added clause is the
instance Cα, for α the simultaneous mgu of all I−-true (i.e., negative) literals
L1, . . . , Ln in C with the I−-false (i.e., positive) selected literals M1, . . . ,Mn.
By induction hypothesis, for all i, 1 ⩽ i ⩽ n, there exists a positive clause
D̂i ∈ R∗

H(S) such that D+
i ⊆ D̂i, so that Mi is a literal of D̂i. Thus, positive

hyperresolution applies to nucleus C and satellites D̂1, . . . , D̂n resolving upon
all the negative literals L1, . . . , Ln in C and the positive literals Mi in D̂i

(1 ⩽ i ⩽ n) with simultaneous mgu α. The generated positive hyperresolvent

is C ′ = (C+ ∨ D̂1 \ {M1} ∨ . . . ∨ D̂n \ {Mn})α. Since C+α ⊆ C ′, the claim
holds.

Given a set S of clauses, positive hyperresolution is guaranteed to halt if
and only if R∗

H(S) is finite. The next theorem shows that if positive hyperres-
olution is guaranteed to halt, so is SGGS.

Theorem 5 If the input set S is positively ground-preserving and R∗
H(S) is

finite, all fair SGGS-derivations with I− as initial interpretation are finite.

Proof Since S is positively ground-preserving, all clauses in R∗
H(S) \ S are

ground, and all clauses on the trail during an SGGS-derivation are ground. We
prove the claim by proving the contrapositive: if there exists an infinite SGGS-
derivation Θ with initial interpretation I− and input S, then R∗

H(S) must be
infinite. An SGGS-derivation can be infinite only if there are infinitely many
SGGS-extension inferences, because the model fixing and conflict-solving ac-
tivities of SGGS are inherently finite. Thus, Θ features infinitely many SGGS-
extensions, adding ground clauses involving atoms of increasing depth. (If the
depth of atoms were upper bounded, Θ would be in a finite basis and would be
finite by Theorem 1.) Whenever an SGGS-extension adds a ground instance
Cα of a clause C ∈ S, the substitution α is the simultaneous mgu of all the
negative literals in C with positive selected literals on the trail. Since S is fi-
nite, there are finitely many candidates for main premise. Therefore, infinitely
many SGGS-extensions can occur only if there are infinitely many distinct sets
of side premises in Θ involving atoms of increasing depth. Since the selected
literals in the side premises are positive, this means that in the derivation
Θ infinitely many distinct C+

j ⊆ Cj appear on the trail. By Lemma 3, for
all (ground) clauses Cj on the trail during Θ there exists a positive (ground)
clause C ′ ∈ R∗

H(S) such that C+
j ⊆ C ′. Therefore, R∗

H(S) must be infinite.

The dual variants of Lemma 3 and Theorem 5 hold for SGGS-derivations
with I+ and negative hyperresolution. Since the positive variable dominated
(PVD) [34,25] and bounded depth increase (BDI) [52] fragments are positively
ground-preserving, and positive hyperresolution decides them, so does SGGS.5

5 For PVD also the finite basis approach applies implying the small model property [24].

SGGS Reasoning: Decision Procedures and Koala 27

Corollary 1 Given a PVD or BDI input set S, every fair SGGS-derivation
with I− as initial interpretation halts, is a refutation if S is unsatisfiable, and
constructs a model of S if S is satisfiable.

5 SGGS Decides Three New Fragments of First-Order Logic

In this section we introduce three new decidable fragments of first-order logic,
by showing that SGGS decides them. The first one is the restrained fragment,
which combines ground-preservigness with an ordering-based property. The
other two are the sort-restrained fragment, which generalizes the stratified and
restrained fragments, and the sort-refined-PVD fragment, which generalizes
the stratified and PVD fragments.

5.1 SGGS Decides the Restrained Fragments

The following example gives the intuition for restrained clauses.

Example 13 Consider the set S = {(i) P(s10(0), s9(0)), (ii) ¬P(s(s(x)), y) ∨
P(x, s(y))}, which is positively ground-preserving. Let I− be the initial inter-
pretation. SGGS-extension puts P(10, 9) on the trail, abbreviating sn(0) as n.
This stirs a series of SGGS-extensions aiming at adding to I[Γ] the positive
ground literals needed to satisfy (ii) while satisfying (i). Each SGGS-extension
unifies the negative literal in (ii) with a selected positive ground literal in Γ ,
so that new literals in added clauses are positive:

Γ0 : ε ⊢ Γ1 : [P(10, 9)]

⊢ Γ2 : [P(10, 9)], ¬P(10, 9) ∨ [P(8, 10)]

⊢ Γ3 : [P(10, 9)], ¬P(10, 9) ∨ [P(8, 10)], ¬P(8, 10) ∨ [P(6, 11)].

After adding ¬P(6, 11) ∨ [P(4, 12)], ¬P(4, 12) ∨ [P(2, 13)], and ¬P(2, 13) ∨
[P(0, 14)], SGGS halts with a model of S. The size of positive literals decreases
as the derivation progresses, reflecting the fact that P(s(s(x)), y) ≻ P(x, s(y))
in clause (ii), for ≻ any KBO or any LPO with P ≻p s in the precedence.

This observation suggests to strengthen ground-preservingness with an
ordering-based condition in order to get a finite basis.

Definition 5 (Restraining quasi-ordering) A quasi-ordering ⪰ on terms
and atoms is restraining, if (i) it is stable, (ii) the strict ordering ≻ = ⪰ \ ⪯
is well-founded, and (iii) the equivalence ≈ = ⪰ ∩⪯ has finite equivalence
classes.

Condition (i) implies that ≻ and ≈ are also stable. Let ⪰ be a restraining
quasi-ordering.

28 M. P. Bonacina and S. Winkler

Definition 6 (Restrained) A clause C is (strictly) positively restrained if it
is positively ground-preserving, and for all non-ground literals L ∈ C+ there
exists a literal M ∈ C− such that at(M) ⪰ at(L) (at(M) ≻ at(L)). A set of
clauses is positively restrained if all its clauses are.

Negatively restrained clauses and clause sets are defined dually, and a set
of clauses is restrained if it is positively or negatively restrained. The set of
Example 13 is strictly positively restrained. The next example clarifies why a
quasi-ordering is used.

Example 14 Problem PLA030-1 in TPTP is neither stratified, nor monadic,
nor guarded. It includes a clause differ(x, y) ∨ ¬differ(y, x) that cannot be
strictly restrained. Let ≻acrpo be an AC-compatible [73] RPO with differ as
an AC-symbol, where AC abbreviates associative-commutative. The quasi-
ordering ⪰acrpo, built from ≻acrpo and the AC-equivalence ≈AC that has finite
equivalence classes, satisfies differ(x, y) ≈AC differ(y, x) hence differ(x, y) ⪰acrpo

differ(y, x), so that PLA030-1 is negatively restrained.

Definition 7 (Basis for a restrained set) Given a restrained set S of
clauses with Herbrand base A, let AS be the set of ground atoms occurring in
S. Then the basis for S is A⪯

S = {L : L ∈ A, ∃M ∈ AS such that M ⪰ L}.

In words, A⪯
S contains all the ground atoms upper bounded by those occurring

in clauses in S. By Conditions (ii) and (iii) in Definition 5, A⪯
S is a finite

basis. Since restrained sets are ground-preserving, the notion of suitable initial
interpretation is the same as for ground-preserving sets.

Lemma 4 If the input set S is restrained, every fair SGGS-derivation with
suitable initial interpretation is in the finite basis A⪯

S .

Proof We consider S positively ground-preserving and I− (for the dual case
one exchanges the signs). Since the set is restrained hence ground-preserving,
the derivation is ground by Lemma 2 (†). The proof is by induction on the
length k of the derivation, and it follows the same pattern as that of Lemma 2.
Let Γ ⊢ Γ ′ be the (k+1)-th step. By induction hypothesis, Γ is in A⪯

S . If
Γ ⊢ Γ ′ is an SGGS-resolution step, it is a ground resolution step which does
not generate new atoms, and also Γ ′ is in A⪯

S . If Γ ⊢ Γ ′ is an SGGS-extension
step, it adds an instance Cα of a clause C ∈ S, where α is the simultaneous
mgu of all I−-true (i.e., negative) literals ¬L1, . . . ,¬Ln in C with as many I−-
false (i.e., positive) selected literals M1, . . . ,Mn in Γ . The literals M1, . . . ,Mn

are ground by (†), and by induction hypothesis they are in A⪯
S . We have to

show that at(Cα) ⊆ A⪯
S . For the negative literals ¬L1α, . . . ,¬Lnα we have

Liα = Miα = Mi ∈ A⪯
S . Let L be a literal in C+. If L is ground, then

Lα = L ∈ AS ⊆ A⪯
S . If L is not ground, by positive restrainedness there

exists a ¬Li, 1⩽ i⩽n, such that Li ⪰ L. By stability, Liα ⪰ Lα. Since for all
i, 1⩽ i⩽n, Mi ∈ A⪯

S and Mi =Miα = Liα ⪰ Lα, we have Lα ∈ A⪯
S .

Therefore, Theorems 1 and 2 yield decidability and the small model property.

SGGS Reasoning: Decision Procedures and Koala 29

Theorem 6 Given a restrained input set S, every fair SGGS-derivation with
suitable initial interpretation halts, is a refutation if S is unsatisfiable, and
constructs a model of S if S is satisfiable.

Corollary 2 A restrained satisfiable set S of clauses has a model of cardinality
|H(A⪯

S)|+ 1 that can be extracted from the limit of any fair SGGS-derivation
with input S and suitable initial interpretation.

Example 15 The clause set of Example 13 is a subset of the following satisfiable
clause set S from problem PUZ054-1 in TPTP:

P(s10(0), s9(0)), ¬P(s(s(x)), y) ∨ P(x, s(y)), ¬P(x, s(s(y))) ∨ P(x, s(y)),

¬P(s(0), 0), ¬P(s(x), s(y)) ∨ P(s(x), y).

This set, which is neither EPR nor FO2 nor monadic, can be shown strictly
positively restrained by any LPO with P ≻p s in the precedence or by any
KBO. Let ≻ be a KBO with empty precedence, w(P) = 0, and w(s) = w(0) =
w0 = 1. AS is {P(s10(0), s9(0)), P(s(0), 0)} and its largest atom has weight

w(P(s10(0), s9(0))) = 21. A⪯
S cannot contain an atom L = P(sn(0), sm(0)),

with n ⩾ 0 and m ⩾ 0, if n > 19 or m > 19, because otherwise w(L) >
w(P(s10(0), s9(0))). Therefore, H(A⪯

S) = {si(0) : 0⩽i⩽19} and S has a model
of cardinality 21 by Corollary 2.

Sign-based semantic guidance makes SGGS well suited for the restrained frag-
ments. We see next that this holds also for sign-based resolution strategies.

5.2 Sign-Based Resolution Strategies Decide the Restrained Fragments

We consider PO-resolution and the positively restrained fragment. The results
will then be extended to other positive strategies and to the dual case. Let
Res+>(S) be the set of PO-resolvents generated from clauses in S, where > is
the CSO on literals assumed by PO-resolution. Then, R0

>(S) = S, Rk+1
> (S) =

Rk
>(S) ∪Res+>(Rk

>(S)), and R
∗
>(S) =

⋃
k⩾0R

k
>(S).

Lemma 5 If S is positively restrained, then for all C ∈ R∗
>(S), for all L ∈ C+

either L ∈ A⪯
S or at(M) ⪰ at(L) for some M ∈ C−.

Proof The proof is by induction on the stage k of the construction of R∗
>(S).

For k=0, the clauses in R0
>(S) = S satisfy the claim by Definitions 6 and 7.

The induction hypothesis is that all clauses in Rk
>(S) satisfy the claim. For

the inductive case, let (C ∨D)σ ∈ Res+>(Rk
>(S)) be a PO-resolvent with mgu

σ from parents ¬L ∨ C and L′ ∨ D in Rk
>(S), where L

′ ∨ D is a positive

clause. By induction hypothesis at(L′ ∨D) ⊆ A⪯
S (†), which means L′ ∨D is

ground, (L′ ∨ D)σ = L′ ∨ D, and at(Dσ) ⊆ A⪯
S . For the positive literals in

Cσ, let Qσ be one of them, so Q ∈ C+. By induction hypothesis, either (i)

Q ∈ A⪯
S , or (ii) M ⪰ Q for some negative literal ¬M in ¬L ∨ C. In case (i),

30 M. P. Bonacina and S. Winkler

Q is ground, Qσ = Q, and Qσ ∈ A⪯
S . In case (ii), if ¬M is one of the literals

in C, then ¬Mσ ∈ Cσ, and Mσ ⪰ Qσ holds by stability, so that the claim
follows. Otherwise, ¬M is the resolved-upon literal ¬L with Lσ = L′σ. Thus,
L = M ⪰ Q, which implies Lσ ⪰ Qσ by stability. By (†), L′ ∈ A⪯

S , L
′ is

ground, and L′σ = L′. Since L′ ∈ A⪯
S and L′ = L′σ = Lσ ⪰ Qσ, it follows

that Qσ ∈ A⪯
S by Definition 7.

Thus, a positive clause C ∈ R∗
>(S) is ground, as all its literals are in A⪯

S .

Theorem 7 Given a positively restrained input set S, every fair PO-resolu-
tion derivation terminates and is a refutation if S is unsatisfiable.

Proof We prove that if S is positively restrained then R∗
>(S) is finite, which

guarantees termination. The second part of the claim follows by refutational
completeness of PO-resolution [42]. Consider any PO-resolvent (C ∨ D)σ ∈
R∗

>(S) from parents ¬L∨C and L′∨D with mgu σ. Since L′∨D is positive, (C∨
D)σ has strictly fewer negative literals than ¬L∨C. By way of contradiction,
suppose that R∗

>(S) is infinite. Since the number of negative literals in PO-
resolvents decreases at every resolution step, an infinite R∗

>(S) must contain
infinitely many positive clauses. By Lemma 5, all positive clauses in R∗

>(S)

are ground clauses made of atoms from A⪯
S . Since A

⪯
S is finite, and repeated

literals in ground clauses disappear by merging, only finitely many clauses can
be built from A⪯

S , which contradicts R∗
>(S) being infinite.

These results6 extend to positive resolution, since the >-maximality of L′σ
in (L′∨D)σ is not used in the proofs, and to positive hyperresolution, for which
the proof of Theorem 7 is trivial, since only positive clauses get generated.

Corollary 3 PO-resolution, positive hyperresolution, and positive resolution
decide the positively restrained fragment.

Thus, Theorem 6 follows also from Theorem 5 and Corollary 3. Dually, neg-
ative resolution and negative hyperresolution decide the negatively restrained
fragment. The next example shows that SGGS can be exponentially more ef-
ficient than saturation-based resolution strategies because it is model-based.

Example 16 Consider the following parametric clause set Sn consisting of n+1
clauses, using i+1-ary predicates Pi and constants ci, for all i, 0⩽i⩽n:

P0(c0) ∨ P0(c1) ∨ · · · ∨ P0(cn) (C0),

¬P0(x1) ∨ P1(x1, c0) ∨ P1(x1, c1) ∨ · · · ∨ P1(x1, cn) (C1),

¬P1(x1, x2) ∨ P2(x1, x2, c0) ∨ · · · ∨ P2(x1, x2, cn) (C2),

.

¬Pn−1(x1, . . . , xn) ∨ Pn(x1, . . . , xn, c0) ∨ · · · ∨ Pn(x1, . . . , xn, cn) (Cn).

6 Lemma 5 and Theorem 7 were proved for ordered resolution assuming > ensures that
L′ ∨D is positive [24, Lem. 5 and Thm. 6]; it is better to work with PO-resolution.

SGGS Reasoning: Decision Procedures and Koala 31

The set Sn is positively restrained by an LPO with precedence P0 > · · · >
Pn > ci for all i, 0⩽i⩽n. SGGS with I− detects satisfiability after n+1 SGGS-
extension steps, selecting for instance the leftmost positive literal in each exten-
sion clause, so that the model where P0(c0),P1(c0, c0), . . . ,Pn(c0, . . . , c0) are
true and all other positive literals are false is produced. A saturation by PO-
resolution or positive hyperresolution produces exponentially many clauses,
because for all i, 0⩽i⩽n, all n positive literals in Ci unify with the negative
literal in Ci+1, generating n

i+1 positive clauses, so that the total clause count
is given by

∑n
i=0 n

i+1 or equivalently
∑n+1

k=1 n
k.

5.3 Sort-Refined Versions of the Restrained and PVD Fragments

As observed for the stratified fragment, where all sorts are acyclic, such sorts
are harmless for termination. In this section we consider a signature with both
cyclic and acyclic sorts. Since the key point for termination is the existence
of a finite basis, we reason in terms of whether there are finitely or infinitely
many ground terms of a given sort.

Definition 8 (Infinite domain) A sort has infinite domain if there are in-
finitely many ground terms of that sort, and it has finite domain otherwise. A
variable has infinite domain if its sort does, and finite otherwise.

Clearly, a cyclic sort has infinite domain. For example, if the signature
contains a constant a : s and a function f : s → s, sort s has infinite domain,
as the infinitely many terms fn(a), for all n ≥ 0, have sort s. If the signature
also contains a function g : s→ s′, also s′ has infinite domain, as the infinitely
many terms g(fn(a)), for all n ≥ 0, have sort s′. In general, a sort s has
infinite domain if and only if there exists a path from a cyclic sort to s in the
sort dependency graph. A term, or atom, or literal has infinitely many ground
instances if and only if it contains a variable with infinite domain. The idea is
to apply the restrictions of the restrained, or PVD [34], fragments, respectively,
only to the variables of infinite domain and the literals where such variables
occur. The result will be the sort-restrained and sort-refined-PVD fragments.
We begin by making ground-preservingness relative to a sort:

Definition 9 (Ground-preserving for a sort) A clause C is positively
ground-preserving for sort s if Vars(C) ⊆ Vars(C−), and negatively ground-
preserving for sort s if Vars(C) ⊆ Vars(C+). A set of clauses is positively/ne-
gatively ground-preserving for sort s if all its clauses are.

Both sort-restrained and sort-refined-PVD fragments will require that clauses
are ground-preserving for all sorts of infinite domain.

5.3.1 SGGS Decides the Sort-Restrained Fragments

The next example gives the intuition for the sort-restrained fragment.

32 M. P. Bonacina and S. Winkler

Example 17 Consider the following set S of clauses with sorts {s1, s2}:

P(x, f(b)) (i) ¬Q(x, a) ∨ Q(a, x) (ii) ¬P(x, f(y)) ∨ Q(x, x) ∨ P(x, y) (iii)

where a : s1, b : s2, f : s2 → s2, P ⊆ s1 × s2, and Q ⊆ s1 × s1. This clause set
is not restrained because it is not ground-preserving since the positive clause
(i) is not ground, and it is not stratified because function symbol f induces a
cycle over sort s2. However, S is positively ground-preserving for sort s2: there
are no variables of sort s2 in positive clause (i), and the only variable of sort
s2 in a mixed clause, namely y in (iii), occurs in negative literal ¬P(x, f(y)).
Moreover, P(x, y) in clause (iii) is dominated by ¬P(x, f(y)) in the sense of
positive restrainedness, since P(x, f(y)) ≻ P(x, y) for ≻ any LPO or KBO.
Indeed, SGGS using I− terminates on input S:

ε ⊢ [P(x, f(b))] extend (i)

⊢ [P(x, f(b))], ¬P(x, f(b)) ∨ Q(x, x) ∨ [P(x, b)] extend (iii)

In the second extension clause either positive literal can be selected with either
choice leading to termination.

Let ⪰ be a restraining quasi-ordering with the subterm property.

Definition 10 (Sort-Restrained) A clause C is positively sort-restrained if
it is positively ground-preserving for all sorts with infinite domain, and for all
literals L ∈ C+ such that Gr(L) is infinite there exists a literal M ∈ C− such
that at(M) ⪰ at(L). A set is positively sort-restrained if all its clauses are.

Negatively sort-restrained clauses and clause sets are defined dually, and a set
of clauses is sort-restrained if it is positively or negatively sort-restrained. The
set of Example 17 is positively sort-restrained.

Let a set of atoms L be (i) closed with respect to instantiation, or instan-
tiation-closed for short, if Lσ ∈ L whenever L ∈ L; and (ii) closed under ⪯,
or ⪯-closed for short, if M ∈ L whenever M ⪯ L for some L ∈ L.

Definition 11 (Basis for a sort-restrained set) Given a sort-restrained

set S of clauses with set of sorts Σ, let L↓
Σ be the set of all atoms L such that L

occurs in a clause of S andGr(L) is finite. Let L⪯
Σ be the smallest instantiation-

closed and ⪯-closed superset of L↓
Σ . The basis for S is A⪯

S,Σ = Gr(L⪯
Σ), that

is, the set of the ground instances of the atoms in L⪯
Σ .

Note that A⪯
S,Σ ⊆ L

⪯
Σ because L⪯

Σ is instantiation-closed.

Example 18 For the clause set of Example 17 let ⪰ be the reflexive closure
of an LPO with empty precedence. L↓

Σ is {P(x, f(b)),Q(x, a),Q(a, x),Q(x, x)}.
L⪯
Σ is the union of four sets: L↓

Σ , the singleton set {P(x, b)} by ⪯-closure
since P(x, b) ≺ P(x, f(b)), the set {P(a, f(b)),Q(a, a),P(a, b)} by instantiation-
closure, and the set of all the variants of these atoms (i.e., all the variants of

P(x, f(b)), Q(x, a), Q(a, x), Q(x, x), and P(x, b)). Then A⪯
S,Σ is the set of the

ground instances of the atoms in L⪯
Σ , that is, {P(a, f(b)), Q(a, a), P(a, b)}.

SGGS Reasoning: Decision Procedures and Koala 33

The above definition of closure lets instantiation introduce variables, but
this is not a problem for the finiteness of A⪯

S,Σ for the following reason: a
substitution replaces a variable with finite domain by a term of the same sort,
hence with finite domain, and such a term cannot contain a variable with
infinite domain, because a term of a sort with finite domain cannot have a
subterm of a sort with infinite domain.

Lemma 6 For all sort-restrained sets S of clauses, the basis A⪯
S,Σ is finite.

Proof In order to show that A⪯
S,Σ = Gr(L⪯

Σ) is finite, it suffices to show that

all variables occurring in atoms in L⪯
Σ have finite domain. The set L↓

Σ satisfies
this property by definition. The closure with respect to instantiation introduces
no variable with infinite domain by the above observation. The ⪯-closure does
not introduce variables, because L ⪰ M implies Var(M) ⊆ Var(L) by the
stability and subterm properties of the restraining quasi-ordering.

Similar to the ground-preserving and restrained cases, an initial interpreta-
tion I is suitable for a sort-restrained set S if either I is I− and S is positively
sort-restrained, or I is I+ and S is negatively sort-restrained.

Lemma 7 Given a sort-restrained input set S, every fair SGGS-derivation
with suitable initial interpretation is in A⪯

S,Σ.

Proof We consider S positively sort-restrained and I− (for the dual case one
flips the signs). We show that the derivation is in A⪯

S,Σ = Gr(L⪯
Σ) by showing

that all atoms of all clauses appearing on the trail during the derivation are
in L⪯

Σ . The proof is by induction on the length k of Θ. The base case (k = 0)
is vacuously true. The induction hypothesis is that all atoms of all clauses on
a trail Γ produced by a derivation of length k are in L⪯

Σ . Let Γ ⊢ Γ ′ be the
(k+1)-th step. If Γ ⊢ Γ ′ is a splitting step, the atoms in the split clause are

in L⪯
Σ by induction hypothesis, and so are those in the instances generated

by splitting, since L⪯
Σ is closed with respect to instantiation. If Γ ⊢ Γ ′ is

an SGGS-resolution step, the atoms in the parents are in L⪯
Σ by induction

hypothesis, and so are those in the SGGS-resolvent, by the closure of L⪯
Σ

with respect to instantiation. If Γ ⊢ Γ ′ is an SGGS-extension step, it adds an
instance Cα of a clause C ∈ S, where α is the simultaneous mgu of all I−-true
(i.e., negative) literals ¬L1, . . . ,¬Ln in C with as many I−-false (i.e., positive)

selected literals M1, . . . ,Mn in Γ . For all i, 1 ⩽ i ⩽ n, Mi ∈ L⪯
Σ by induction

hypothesis, and Liα = Miα ∈ L⪯
Σ by instantiation closure. For an L ∈ C+,

there are two cases. If Gr(L) is finite, L ∈ L↓
Σ ⊆ L

⪯
Σ by Definition 11, and

Lα ∈ L⪯
Σ by instantiation closure. Otherwise, by positive sort-restrainedness

there exists a ¬Li, for some i, 1⩽ i⩽n, such that L ⪯ Li. By stability of ⪯,
Lα ⪯ Liα. It follows that Lα ⪯ Liα =Miα ∈ L⪯

Σ because L⪯
Σ is ⪯-closed.

Since the basis A⪯
S,Σ is finite, decidability and the small model property

follow by Theorems 1 and 2.

34 M. P. Bonacina and S. Winkler

Theorem 8 Given a sort-restrained input set S, every fair SGGS-derivation
with suitable initial interpretation halts, is a refutation if S is unsatisfiable,
and constructs a model of S if S is satisfiable.

Corollary 4 A sort-restrained satisfiable set S of clauses has a model of car-
dinality at most |H(A⪯

S,Σ)|+1 that can be extracted from the limit of any fair
SGGS-derivation with input S and suitable initial interpretation.

While sign-based resolution strategies decide the restrained fragments (cf. Sec-
tion 5.2), they do not decide the sort-restrained ones, because they do not
decide the stratified fragment (cf. Example 3), which is contained in each
sort-restrained fragment as the special case where all sorts have finite domain.

5.3.2 SGGS Decides the Sort-Refined-PVD Class

We recall the PVD property [34,25] in order to apply it to the variables of
infinite domain. For a clause C, let depthx(C) be the maximum occurrence
depth in C of a variable x ∈ Var(C).

Definition 12 (PVD fragment) A set S of clauses is in the PVD fragment
if every clause C ∈ S is positively ground-preserving and ∀x ∈ Var(C+) it
holds that depthx(C

+) ⩽ depthx(C
−).

The next example captures the intuition for the sort-refined-PVD fragment.

Example 19 Assume a signature with sorts {s1, s2, s3, s4} and symbols a : s1,
b : s2, c : s3, f : s1 → s1, g : s3 → s2, h : s1 × s2 → s4, P ⊆ s1 × s2, Q ⊆ s4, and
R ⊆ s1 × s1, so that the sort-dependency graph is as follows:

s1 s4 s2 s3

Sort s1 is cyclic, and both s1 and s4 have infinite domain, while s2 and s3
have finite domain. Consider the set S made of the following clauses:

P(f(a), y) (i) ¬P(x, y) ∨ P(x, g(z)) (ii)

¬P(f(x), y) ∨ Q(h(x, y)) (iii) ¬P(x, z) ∨ ¬P(y, z) ∨ R(x, y) (iv)

This set is neither stratified nor ground-preserving, hence neither restrained
nor PVD. Neither it is sort-restrained, because the positive literal R(x, y) in
clause (iv) involves sort s1, but no negative literal in (iv) can dominate R(x, y)
in a restraining quasi-ordering, since no negative literal in (iv) contains both
x and y. However, S is positively ground-preserving for s1 and s4, and all
variables of sorts with infinite domain that occur in a positive literal also occur
in a negative literal of the same clause. Furthermore, such variables occur in
the negative literals at greater or equal depth. In other words, S satisfies the
PVD property restricted to sorts with infinite domain.

SGGS Reasoning: Decision Procedures and Koala 35

Definition 13 (Sort-Refined-PVD) A clause C is sort-refined-PVD if it is
positively ground-preserving for all sorts with infinite domain, and for all vari-
ables x ∈ Var(C+) of infinite domain it holds that depthx(C

+) ⩽ depthx(C
−).

A set of clauses is sort-refined-PVD if all its clauses are.

The set of Example 19 is sort-refined-PVD. We apply the finite basis ap-
proach to show that SGGS decides also this fragment. While the essence of
PVD is to control the depth of variable occurrences, for sort-refined-PVD the
crux is to exclude variables of infinite domain and to ensure that the oc-
currence depth of terms whose sort has infinite domain is upper bounded.
Let d be the maximum depth of an atom in a set S of clauses, or d =
max{depth(L) : L is an atom in clause C and C ∈ S}.

Definition 14 (Basis for a sort-refined-PVD set) Given a sort-refined-
PVD set S of clauses with set of sorts Σ, let Ld

S,Σ be the set of all atoms where
all variables have finite domain and all subterms of a sort with infinite domain
have occurrence depth at most d. Then the basis for S is Ad

S,Σ = Gr(Ld
S,Σ).

Note that Ld
S,Σ is instantiation-closed, because instantiation replaces variables

with finite domain with terms whose sort has finite domain, so that no subterm
whose sort has infinite domain can be introduced. It follows that Ad

S,Σ ⊆ Ld
S,Σ .

Lemma 8 For all sort-refined-PVD sets S of clauses, the basis Ad
S,Σ is finite.

Proof We show that the depth of any ground atom Lσ ∈ Ad
S,Σ for L ∈ Ld

S,Σ

is upper bounded. The occurrence depth of any subterm of Lσ whose sort
has finite domain is trivially upper bounded. By Definition 14 the occurrence
depth of any subterm of L whose sort has infinite domain is upper bounded by
d, and L does not contain variables of infinite domain. Thus, the substitution
σ cannot introduce subterms of infinite domain and also the occurrence depth
of any subterm of Lσ whose sort has infinite domain is upper bounded by d.
As there are only finitely many ground atoms of bounded depth, Ad

S,Σ is finite.

Example 20 In Example 19 the maximum depth of an atom in S is d = 2.
Thus, Ad

S,Σ is the set of all ground atoms where all subterms of sort s1 or s4
occur at depth at most 2:

P(a, b), P(f(a), b), P(a, g(c)), P(f(a), g(c)), Q(h(a, b)),

Q(h(a, g(c))), R(a, a), R(f(a), a), R(a, f(a)), R(f(a), f(a))

For instance, Q(h(f(a), b)) ̸∈ Ad
S,Σ as the subterm a occurs at depth 3.

Lemma 9 Given a sort-refined-PVD input set S, every fair SGGS-derivation
with I− is in the finite basis Ad

S,Σ.

Proof We show that the derivation is in Ad
S,Σ = Gr(Ld

S,Σ) by showing that all

atoms of all clauses appearing on the trail during the derivation are in Ld
S,Σ .

As Ld
S,Σ is instantiation-closed, the proof is the same as that of Lemma 7

36 M. P. Bonacina and S. Winkler

except for the case of SGGS-extension. Consider an SGGS-extension step that
adds an instance Cα of a clause C ∈ S, where α is the simultaneous mgu of all
I−-true (i.e., negative) literals ¬L1, . . . ,¬Ln in C with as many I−-false (i.e.,
positive) selected literals M1, . . . ,Mn in Γ . For all i, 1 ⩽ i ⩽ n, Mi ∈ Ld

S,Σ

by induction hypothesis, and Liα =Miα ∈ Ld
S,Σ by instantiation closure. For

an L ∈ C+, let t be a subterm of Lα at position p (i.e., t = Lα|p) whose sort
has infinite domain. We show that for all such terms t, it holds that t is not a
variable and that |p| ⩽ d. We distinguish two cases depending on whether p is
a position in L or is introduced by α.

– If p is a position in L then |p| ⩽ d because L ∈ C and C ∈ S. For the other
part, by way of contradiction, suppose that t is a variable. Then also L|p
must be a variable x of infinite domain such that xα = t. By Definition 13,
x occurs in some Li, 1⩽ i⩽n, so xα occurs in Liα = Miα. This gives a
contradiction, because Mi ∈ Ld

S,Σ , Miα ∈ Ld
S,Σ , and hence xα = t cannot

be a variable of infinite domain by Definition 14.
– If p is introduced by α, there must be two positions q and r and a variable
y such that p = qr, L|q = y, yα|r = t, and also y must have infinite
domain. By Definition 13, variable y occurs in some Li, 1⩽ i⩽n, and
depthy(L) ⩽ depthy(Li). Hence there is some position o in Li such that
Li|o = y and |q| ⩽ |o|. It follows that Liα|or =Miα|or = t. SinceMi ∈ Ld

S,Σ

and Miα ∈ Ld
S,Σ , term t cannot be a variable. Moreover, by Definition 14

terms of sort with infinite domain occur at depth at most d, so that |or| ⩽ d.
From |q| ⩽ |o| it follows that |p| = |qr| ⩽ |or| ⩽ d, which proves the claim.

By Lemmas 8 and 9, Theorems 1 and 2 apply yielding the following results.

Theorem 9 Given a sort-refined-PVD input set S, every fair SGGS-deriva-
tion with I− as initial interpretation halts, is a refutation if S is unsatisfiable,
and constructs a model of S if S is satisfiable.

Corollary 5 A sort-refined-PVD satisfiable set S of clauses has a model of
cardinality at most |H(Ad

S,Σ)| + 1 that can be extracted from the limit of any

fair SGGS-derivation with I− as initial interpretation and input set S.

Hyperresolution decides the PVD class [34,25], but it does not decide sort-
refined-PVD, because it does not decide the stratified fragment (cf. Exam-
ple 3), which is contained in sort-refined-PVD as the special case where all
sorts have finite domain.

6 Testing for Membership, the Koala Prover, and the Experiments

This section presents first an approach to determine whether a set of clauses
is restrained, and then the experiments. We show that a set S of clauses is
positively restrained, if an associated rewriting relation terminates and defines
a restraining quasi-ordering. The case for negatively restrained sets is dual.
Thanks to this reduction, one can have a tool that extracts candidate rewrite

SGGS Reasoning: Decision Procedures and Koala 37

systems from a set of clauses and invokes a termination tool to test whether the
rewriting relation terminates. Our tool tries both TTT2 [48] and AProVE [40]
to find restrained and sort-restrained problems, and it also detects whether a
problem belongs to any of the other decidable classes considered in this article.

In the experiments, we applied this tool to classify the problems in the
TPTP library [77]. This allows us to assess the relevance of the new decidable
classes and the power of SGGS as a decision procedure: it turns out that SGGS
can decide 65% of the decidable problems without interpreted symbols (e.g.,
equality)7 in TPTP 7.4.0. Then, we present Koala, the first SGGS-based theo-
rem prover. We tested Koala on all the problems without interpreted symbols
in TPTP 7.4.0. We analyze these experiments, report statistics, and compare
Koala with several state-of-the-art reasoners.

6.1 Discovering Restrained Sets

In order to show that a clause set S is positively restrained, one needs to find
a restraining quasi-ordering (cf. Definitions 5 and 6). Since the strict part of a
restraining quasi-ordering is a well-founded ordering, the first intuition is to ex-
tract from S a rewrite systemRS on atoms such that the rewrite relation→RS

is terminating, so that its transitive closure →+
RS

is a well-founded ordering.
Then the transitive and reflexive closure →∗

RS
is a restraining quasi-ordering

whose equivalence relation is identity.
If the problem requires a quasi-ordering whose equivalence is not identity

as in Example 14, one needs to extract from S a pair (RS , ES), where RS is
a rewrite system and ES is a set of equations. Then the rewrite relation is the
rewriting modulo relation →RS/ES

, which is defined by ↔∗
ES
◦ →RS

◦ ↔∗
ES
.

The crucial point is that →RS/ES
is terminating, so that its transitive and

reflexive closure →∗
RS/ES

is a restraining quasi-ordering.

Definition 15 (Restraining system) Given a set S of clauses, a system
(RS , ES) is positively restraining for S if for all clauses C ∈S, for all non-ground
literals L ∈ C+, there exists a literal ¬M ∈ C− such that (M → L) ∈ RS or
(M ≃ L) ∈ ES .

Often ES contains permutative equations, such as differ(x, y) ≃ differ(y, x)
in Example 14. For Example 15, a possible choice is RS = {P(s(s(x)), y) →
P(x, s(y)),P(x, s(s(y)))→ P(x, s(y)),P(s(x), s(y))→ P(s(x), y)} and ES = ∅.

Theorem 10 Given a set S of clauses, if there exists a positively restraining
system (RS , ES) for S such that (i) →RS/ES

is terminating, (ii) for all t ≃ u
in ES, Var(t) = Var(u), and (iii) ↔∗

ES
has finite equivalence classes, then S

is positively restrained, and S is strictly positively restrained if ES = ∅.

Proof We show that S is positively ground-preserving, that is, for all clauses
C ∈ S, it holds that Var(C) ⊆ Var(C−). Suppose that C has a non-ground

7 SGGS and Koala do not have a built-in treatment of equality.

38 M. P. Bonacina and S. Winkler

ground: 82 EPR: 1,059 stratified: 1,260 Ackermann: 102

monadic: 750 FO2: 932 guarded: 569 PVD: 347
restrained: 413 sort-restrained: 1,398 sort-refined-PVD: 1,304

Table 1 Number of problems found decidable according to different criteria

literal L ∈ C+. By Definition 15, there exists a rule t → u in RS or an
equation t ≃ u in ES where t = M and u = L for some literal ¬M ∈ C−.
In the first case, Var(u) ⊆ Var(t) by hypothesis (i), since otherwise →RS

,
and hence →RS/ES

, would not be terminating. In the second case, Var(u) =
Var(t) by hypothesis (ii). It follows that Var(C+) ⊆ Var(C−) and hence
Var(C) ⊆ Var(C−). To complete the proof, it suffices to check that→∗

RS/ES
is

a restraining quasi-ordering. Indeed, →∗
RS/ES

is stable, its strict part →+
RS/ES

is well-founded by hypothesis (i), and the equivalence classes of↔∗
ES

are finite
by hypothesis (iii). If ES = ∅, the restraining quasi-ordering is →∗

RS
. Indeed,

→∗
RS

is stable, its strict part →+
RS

is well-founded by hypothesis (i), and the
equivalence classes of →∗

RS
∩ ∗

RS
← are finite, because →∗

RS
∩ ∗

RS
← is identity.

6.2 Classifying Decidable Problems for the Experiments

The TPTP 7.4.0 library has over 17,000 first-order problems, 4,005 of which
do not have interpreted symbols (e.g., equality, arithmetic). If a problem is
not in clausal form, our testing tool transforms it into clausal form. Given a
set of clauses, the tool extracts all the candidates for restraining rewrite sys-
tems. Then the tool invokes TTT2 and AProVE to determine whether at least
a candidate is a restraining rewrite systems satisfying the termination condi-
tions for a restrained set. For instance, problem HWV036-2 (cf. Example 1) is
a set of axioms which is combined with sets of ground clauses in several other
TPTP problems (e.g., HWV008-2.002 adds 23 ground clauses). We found a
terminating positively restraining rewrite system for HWV008-2.002, so that
both this problem and HWV036-2 are strictly positively restrained.

Both the number of candidate rewrite systems and their size grow expo-
nentially with the number of literals in the clause set. Thus, 555 problems
had to be excluded, because they have more than 500 clauses and the can-
didate rewrite systems turned out to be too large to handle. Also, for each
clause set, TTT2 and AProVE were applied to at most 100 rewrite systems,
with a timeout of 10 sec each. Membership in the already known decidable
classes can also be determined automatically. For example, stratified input
problems are recognized by computing the sort dependency graph and testing
it for acyclicity [47]. This test is applied also to identify sort-restrained and
sort-refined-PVD problems.

Table 1 shows how many of the remaining 3,450 problems belong to the
various (non-disjoint) decidable classes. Initially, 377 problems were found re-
strained. For those still undetermined, we tested whether it is sufficient to flip
the sign of all literals with a certain predicate to get a restrained problem,

SGGS Reasoning: Decision Procedures and Koala 39

which succeeded in 36 cases, for a total of 413 restrained problems. Overall,
2,137 of the 3,450 problems are decidable according to at least one of the crite-
ria, and 1,399 belong to at least one of the SGGS-decidable classes (i.e., ground,
EPR, stratified, PVD, restrained, sort-restrained, and sort-refined-PVD), so
that SGGS can decide 65% of the available decidable problems.

We analyze next how many new decidable problems are discovered thanks to
the classes introduced in this paper. Of the 413 restrained problems in Table 1,
332 are positively restrained, 202 negatively restrained, and 121 are both;
74 are ground, 266 are EPR, 277 are stratified, 89 are Ackermann, 169 are
monadic, 204 are FO2, 209 are guarded, and 232 are PVD, but 77 problems
fall in no other decidable class, and therefore, to the best of our knowledge,
they are found to be decidable for the first time.

Of the 1,398 sort-restrained problems in Table 1, 82 are ground, 1,059 are
EPR, 1,260 are stratified, 93 are Ackermann, 406 are monadic, 534 are FO2,
569 are guarded, 346 are PVD, 413 are restrained, and 20 belong to no other
decidable class. Adding these 20 to the above 77 gives 97 new decidable prob-
lems. The existence of problems that are sort-restrained, but neither stratified
nor restrained, shows that the generalization conquers more problems.

Of the 1,304 sort-refined-PVD problems in Table 1, 82 are ground, 1,059
are EPR, 1,260 are stratified, 93 are Ackermann, 404 are monadic, 515 are
FO2, 569 are guarded, and 347 are PVD. Since 26 sort-refined-PVD problems
are neither stratified nor PVD, also this generalization is useful. However, the
sort-refined-PVD class did not unveil previously unknown decidable problems.

The average TPTP rating of the problems in the new decidable classes
is low,8 which means that most provers can solve them. Nonetheless, the
group of restrained problems includes hard ones such as instances of the binary
counter problem in Example 5 (MSC015-1.n), and Rubik’s cube problems (e.g.,
PUZ052-1). For example, MSC015-1.030 is restrained and has rating 1.00, that
is, no theorem prover could solve it so far in the time allotted in competitions.

6.3 The Koala Prover and the Experiments

Koala is a new prototype theorem prover written in OCaml and it is the
first implementation of SGGS.9 In Koala, the trail is implemented as a list,
with constraints maintained in standard form, and selected literals stored in
a discrimination tree to compute substitutions efficiently. Koala computes the
sort dependency graph, because it facilitates testing sorted constraints for
satisfiability. Thus, Koala can detect stratified problems on its own. The search
plans in Koala are fair, so that all derivations are fair.

8 The average TPTP ratings of the discovered restrained, sort-restrained, and sort-refined-
PVD problems are 0.06, 0.08, and 0.08, respectively.

9 Koala is available at https://github.com/bytekid/koala.

https://github.com/bytekid/koala

40 M. P. Bonacina and S. Winkler

problem class SAT UNSAT #steps #ext #confl #gen #del max |Γ | time
ground 11 68 345 117 141 245 99 8 0.74
EPR 220 538 496 250 154 399 183 106 20.41
stratified 271 667 402 204 123 323 147 89 16.27
monadic 57 223 120 43 46 85 32 9 0.32
FO2 213 371 143 75 40 113 35 46 6.30
Ackermann 14 79 295 100 120 209 84 7 0.63
guarded 124 216 506 210 187 388 182 27 7.22
PVD 74 230 553 228 206 425 201 6 7.50
sort-refined-PVD 274 699 389 198 119 313 142 87 15.74
restrained 65 313 129 53 46 96 41 19 1.32
sort-restrained 290 772 371 189 114 299 136 84 14.91
other problems 110 288 67 48 8 56 20 46 6.73
all problems 481 1,153 270 143 77 219 96 74 12.79

Table 2 Outcomes, statistics, and average running time for the Koala derivations

In the experiments,10 the initial interpretation was I− by default and I+ for
positively ground-preserving problems. The time-out was 300 sec of wall-clock
time. All experiments were run single-threaded on a 12-core Intel i7-5930K
3.50GHz machine with 32GB of main memory. Table 2 reports how many
problems Koala showed satisfiable or unsatisfiable along with statistics and
the average running time. Considering all problems whose satisfiability status
is known, Koala succeeded on 64% of the satisfiable problems, and on 38% of
the unsatisfiable problems, with an overall success rate of 43%. Considering
the problems in SGGS-decidable fragments, Koala found 360 satisfiable sets
and 726 unsatisfiable sets, solving 1,086 problems out of 1,399 (78% success
rate). Koala solved 87 of the 97 problems that were discovered decidable for
the first time (90% success rate). Specifically, it solved 69 of the 77 restrained
problems, finding 61 unsatisfiable sets and 8 satisfiable sets, and 18 of the 20
sort-restrained problems, finding 16 unsatisfiable sets and 2 satisfiable sets.

In Table 2, the columns labeled #steps, #ext, and #confl report the aver-
age derivation length, average number of SGGS-extensions, and average num-
ber of conflicts, respectively. The latter two give some intuition about the time
spent in model building and conflict solving, respectively, where the number of
conflicts may measure the difficulty of the search. The columns labeled #gen,
#del, and max |Γ | report space-related statistics: average number of gener-
ated clauses, average number of deleted clauses, and average maximum trail
length during the derivation. Deleted clauses include disposable clauses and
clauses deleted because they have literals assigned to either a split clause or
the parent that gets deleted in an SGGS-resolution step. Across all problem
classes, SGGS-extensions represent between one third and one half of all in-
ferences, and about half of the generated clauses are extension clauses. The
number of deletions is in a similar magnitude as the number of extensions,
though somewhat smaller. The number of conflicts equals about one third of
the number of inference steps. A comparison of the columns labeled #steps

10 The experimental data are posted at http://cl-informatik.uibk.ac.at/users/swinkler/
koala/, http://profs.sci.univr.it/∼bonacina/sggs.html or https://github.com/bytekid/koala.

http://cl-informatik.uibk.ac.at/users/swinkler/koala/
http://cl-informatik.uibk.ac.at/users/swinkler/koala/
http://profs.sci.univr.it/~bonacina/sggs.html
https://github.com/bytekid/koala

SGGS Reasoning: Decision Procedures and Koala 41

problem class # sets Koala E Vampire iProver CVC5 -fm Darwin -fm
ground 71 68 70 71 71 71 71 71 70
EPR 790 538 561 756 774 628 685 750 595
stratified 933 667 698 900 918 741 823 894 618
monadic 620 223 408 560 558 343 363 590 195
FO2 575 372 403 518 531 406 492 512 283
Ackermann 84 79 83 84 84 78 84 84 73
guarded 403 216 241 385 387 320 347 384 258
PVD 261 230 226 251 251 219 242 248 213
sort-refined PVD 969 699 729 932 953 771 855 929 622
restrained 338 313 317 329 328 316 310 325 216
sort-restrained 1,045 772 796 1,007 1,029 837 916 1,002 624
other problems 131 288 585 815 870 535 664 768 131
all problems 769 1,153 1,675 2,189 2,279 1,462 1,733 2,164 769

Table 3 Problems found unsatisfiable by Koala and some state-of-the-art tools

and max |Γ | shows that the maximum trail length is much smaller than the
derivation length on average. The SGGS trail grows when SGGS-extension
expands the model and shrinks when the other rules fix it.

We compared Koala with E 2.4 [74], Vampire 4.4 [51], iProver 3.5 [33],
CVC5 1.0.0 [6], and Darwin 1.4.4 [9]. E and Vampire are saturation-based the-
orem provers, and hence feature ordered resolution, which decides the Acker-
mann, monadic, FO2, and guarded fragments [44,35,29].11 iProver implements
both saturation and a model-driven instance-based engine that generates in-
stances of clauses by the Inst-Gen method [39,46], grounds them, and submits
them to a SAT-solver: if a ground set is found unsatisfiable, so is the input;
otherwise, the next round of instance generation gets instances that are false
in the model. Darwin implements the model evolution calculus (MEC) [13],
which lifts to FOL the DPLL procedure for propositional satisfiability [27].
Inst-Gen and MEC decide the stratified [47] but not the restrained fragments:
if Inst-Gen picks an unfortunate literal selection for Example 15, it does not
halt, and MEC may not halt on satisfiable negatively restrained sets (e.g., Ex-
ample 14), as it starts with I+ as candidate model. CVC5 is a CDCL(T)-based
SMT solver with instance generation to handle unversally quantified variables;
it also features superposition. We included the finite model (-fm) versions of
CVC5 and Darwin that search for a finite model by iterative deepening on
the model’s cardinality, generating all the ground instances of the clauses for
a given cardinality, and giving them to a SAT solver.

Table 3 reports how many problems each prover found unsatisfiable in
each class, and Table 4 does the same for the problems found satisfiable. The
column #sets gives for each category the number of problems that have status
unsatisfiable (in Table 3) or satisfiable (in Table 4) in TPTP 7.4.0 (these
data are not necessarily current, hence the tools may find more). The best
performance is highlighted in boldface. On unsatisfiable problems, Koala trails

11 Ordered resolution decides FO2 via a reduction to the Gödel fragment [75,41] that is
unlikely to be implemented in provers.

42 M. P. Bonacina and S. Winkler

problem class # sets Koala E Vampire iProver CVC5 -fm Darwin -fm
ground 11 11 11 11 11 11 11 11 11
EPR 267 220 118 211 264 15 251 263 246
stratified 324 271 144 260 320 15 306 319 300
monadic 122 57 56 87 100 14 98 84 108
FO2 349 213 145 240 288 13 271 244 287
Ackermann 18 14 18 18 18 13 18 14 18
guarded 164 124 85 140 162 15 150 161 145
PVD 84 74 44 60 82 13 80 81 76
sort-refined PVD 330 274 146 262 324 15 311 323 303
restrained 72 65 57 66 68 13 67 64 65
sort-restrained 348 290 154 278 342 15 327 337 319
other problems 199 110 52 78 178 0 200 146 199
all problems 713 481 288 456 681 24 676 586 713

Table 4 Problems found satisfiable by Koala and some state-of-the-art tools

behind most systems on most or all classes, except for Darwin -fm. Finite
model search pays the price of the exponential growth of the search space by
iterative deepening, and is less suitable for unsatisfiable instances. However,
CVC5 -fm does better, possibly due to a different underlying CDCL-based SAT
solver. On satisfiable problems, Koala solves more problems than E, CVC5, and
even Vampire in most classes, but remains behind CVC5 -fm, both versions of
Darwin, and iProver, which emerges as the strongest system in both tables.

7 Related Work

Several methods decide Datalog (e.g., positive hyperresolution) or the EPR
or stratified fragments (e.g., [65,47,3,37]) that are popular for applications [1,
64,57]. The other SGGS-decidable fragments in this article involve ground-
preserving clauses. Positively ground-preserving clauses are also termed range-
restricted [61,55,25,12]. Manthey and Bry introduced “range-restricted” for
positively ground-preserving clauses [55]. At the same conference Kounalis and
Rusinowitch introduced “ground-preserving” for negatively ground-preserving
clauses [49,50]. Ground-preserving was used for positively ground-preserving
in [21] and for either positively or negatively ground-preserving in [24]. Ground-
preserving captures exactly the property we are interested in, namely that only
ground clauses get generated. Since the two names are equally old and ground-
preserving is more expressive for our purposes, we chose to use it.

Ground-preserving clauses were introduced in Horn logic [55,49,50]. When
reasoning forward or bottom-up, that is, from the facts (e.g., by positive hy-
perresolution) variables that appear in the positive but not in the negative
literals of a rule were deemed problematic, because they get introduced in the
forward chaining process. In other words, even if we start from ground facts we
get non-ground facts. The restriction to positively ground-preserving clauses
was introduced to prevent this phenomenon [55].

SGGS Reasoning: Decision Procedures and Koala 43

When reasoning backward or top-down, that is, from a query (e.g., by nega-
tive hyperresolution) variables that appear in the negative but not in the pos-
itive literals of a rule get introduced in the backward chaining process. Even
if we start from a ground query we get non-ground queries. The restriction
to negatively ground-preserving clauses was introduced to prevent this phe-
nomenon in Horn theories with equality [49,50]. The purpose was to obtain lin-
ear input proofs where all center clauses are ground and decreasing in the CSO
used in ordered resolution and superposition (see also [16, Sect. 5.2]). Thus,
positively ground-preserving clauses are convenient for positive strategies that
reason forward or bottom-up, and negatively ground-preserving clauses are
convenient for negative strategies that reason backward or top-down. SGGS
with I− is another forward-reasoning or bottom-up method and SGGS with
I+ is another backward-reasoning or top-down method.

CDCL(Γ+T), where Γ is an inference system including hyperresolution,
superposition with negative selection, and simplification, decides essentially
finite theories with positively ground-preserving axiomatizations [21]. Essen-
tially finite means only one monadic function f with finite range. This de-
cidability result rests on adding speculative axioms of the form f j(x)≃ fk(x)
(j > k) for increasing values of j and k. Simplification applies the speculative
axioms to limit the depth of generated terms.

Example 21 The clause set {P(a), ¬P(x) ∨ P(f(f(x))), ¬P(x) ∨ ¬P(f(x))}
from Example 12 is essentially finite (the range of f is finite, because the set
admits a finite model). CDCL(Γ+T) tries f(x) ≃ x, detects a conflict, back-
tracks, tries f2(x) ≃ x, and halts reporting satisfiability. Without speculative
axioms and simplification, it is not surprising that SGGS does not halt.

Baumgartner and Schmidt offered a comprehensive treatment of bottom-up
model-generation (BUMG) methods, with an emphasis on positive hyperres-
olution enhanced with first-order splitting [12]. First-order splitting [80,70]
generalizes to first-order clauses the splitting of disjunctions of DPLL, at the
expense of introducing backtracking in saturation. The model generation and
decidability results in [12] involve range-restriction transformations and a tech-
nique called blocking. A range-restriction transformation transforms a set of
clauses into an equisatisfiable set of range-restricted clauses. Blocking allows
the BUMG method to guess an equality on a splitting branch and its negation
on another. If a guess causes a conflict it can be undone by backtracking. Thus,
these guesses are speculative inferences in the sense of [21]. Since positive hy-
perresolution with these enhancements decides the Bernays-Schönfinkel class
with equality [12], one can conjecture that a generalization to the many-sorted
case could enable it to decide the sort-restrained and sort-refined-PVD classes.

8 Future work

A key open issue in automated reasoning is whether it is better to bring
conflict-driven reasoning to the first-order level (e.g., SGGS) or keep it at the

44 M. P. Bonacina and S. Winkler

propositional level, as done by the instance-based approaches that perform
instance generation on top of a CDCL-based SAT solver. Some of the systems
that we compared with Koala include in various ways the second approach.
We do not regard our experimental comparison as conclusive, because Koala
is only a prototype. This fundamental problem is open also in SMT, where
it is still unknown whether it is better to stick to the CDCL(T) paradigm
(conflict-driven reasoning only at the propositional level) [63,21] or move to
the MCSAT/CDSAT paradigm (conflict-driven reasoning in the theories) [28,
18,19]. An answer based on experiments is premature, as not enough engi-
neering has been invested in first-order conflict-driven systems. Furthermore,
comparing implementations is necessary, but it is a comparison of tools, not
methods [20]. This is all the more true given that contemporary reasoners
implement multiple paradigms. This is a welcome development to get more
powerful and flexible provers, but it may make it harder to know to which
features a certain empirical behavior should be attributed.

In addition to this broad issue, there are several directions for future work
on SGGS. A main one is to add equality reasoning by building the equality
axioms in both model representation and rules. A natural candidate would be
an SGGS-superposition rule, focused on generating clauses needed to explain
equality conflicts. For the ground case, one may integrate in SGGS a con-
gruence closure algorithm (e.g., [60,32,5,62]). Congruence closure and block-
ing [12] were used to import some equational reasoning in tableaux-based
methods [79]. SGGS could be enhanced with blocking or other speculative
inferences. Speculative inferences that cause conflicts are undone by back-
tracking [21,79,12]. SGGS does not have backtracking in the sense of undoing
inferences. Since the model in SGGS is read off the trail in left-to-right order,
it suffices to move a clause by the SGGS-move inference rule to flip the truth
value of a selected literal in the candidate model. One would have then to fit
speculative inferences in the SGGS approach to represent and fix models.

Methods that integrate first-order theorem proving and SMT solving have
gained traction (e.g., [21,69]). One can envision composing SGGS with theory
modules in CDSAT [18,19], viewing SGGS as a CDSAT module for FOL. Such
a composition would lead to study how to bridge Herbrand interpretations and
models represented by assignments, including first-order (i.e., non-Boolean)
assignments. It would also be a context where to consider SGGS with initial
interpretations that are not based on sign, since SGGS could assume as initial
interpretation some completion of a partial interpretation built by CDSAT.

An initial interpretation is goal-sensitive, if it satisfies all the input clauses
except the goal clauses, that is, those in the clausal form of the negation of the
conjecture. If the initial interpretation is goal-sensitive, SGGS is goal-sensitive,
meaning that it generates only clauses connected to goal clauses [23]. It is open
whether goal-sensitivity is useful to reason in large knowledge bases.

The experiments with Koala allow us to identify critical issues for the per-
formance of an SGGS prover. For example, instance generation by SGGS-
extension may be a bottleneck for problems with many input clauses, and
forms of caching should be considered to avoid repeating computations.

SGGS Reasoning: Decision Procedures and Koala 45

Acknowledgements We thank Konstantin Korovin for the iProver (v2.8) code for basic
data structures, term indexing, and type inference, imported in Koala. Parts of this work
were done while the first author was visiting the Simons Institute for the Theory of Com-
puting, the Leibniz Zentrum für Informatik at Schloss Dagstuhl, and the Computer Science
Laboratory of SRI International, whose support is greatly appreciated.

References

1. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic. J.
Symb. Comput. 45(2), 153–172 (2010). DOI 10.1016/j.jsc.2009.03.003

2. Ackermann, W.: Solvable Cases of the Decision Problem. North Holland, Amsterdam
(1954). DOI 10.1007/BFb0022557

3. Alagi, G., Weidenbach, C.: NRCL – a model building approach to the Bernays-
Schönfinkel fragment. In: C. Lutz, S. Ranise (eds.) Proceedings of FroCoS-10, Lecture
Notes in Artificial Intelligence, vol. 9322, pp. 69–84. Springer, Berlin (2015). DOI
10.1007/978-3-319-24246-0 5

4. Andréka, H., van Benthem, J., Nemeti, I.: Modal logics and bounded fragments of
predicate logic. J. Phil. Log. 27(3), 217–274 (1998). DOI 10.1023/A:1004275029985

5. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom. Reason.
31(2), 129–168 (2003). DOI 10.1023/B:JARS.0000009518.26415.49

6. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds,
A., Sheng, Y., Tinelli, C., Zohar, Y.: CVC5: A versatile and industrial-strength
SMT solver. In: D. Fisman, G. Rosu (eds.) Proceedings of TACAS-28, Lecture
Notes in Computer Science, vol. 13243, pp. 415–442. Springer, Berlin (2022). DOI
10.1007/978-3-030-99524-9\ 24

7. Barrett, C.W., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT
modulo theories. In: M. Hermann, A. Voronkov (eds.) Proceedings of LPAR-13, Lecture
Notes in Artificial Intelligence, vol. 4246, pp. 512–526. Springer, Berlin (2006). DOI
10.1007/11916277 35

8. Baumgartner, P.: Hyper tableaux – the next generation. In: H. de Swart (ed.) Proceed-
ings of TABLEAUX-7, Lecture Notes in Artificial Intelligence, vol. 1397, pp. 60–76.
Springer, Berlin (1998)

9. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Int.
J. Artif. Intell. Tools 15(1), 21–52 (2006). DOI 10.1142/S0218213006002552

10. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: J.J. Alferes, L.M.
Pereira, E. Or lowska (eds.) Proceedings of JELIA-5, Lecture Notes in Artificial In-
telligence, vol. 1126, pp. 1–17. Springer, Berlin (1996)

11. Baumgartner, P., Furbach, U., Pelzer, B.: The hyper tableaux calculus with equality
and an application to finite model computation. J. Log. Comput. 20(1), 77–109 (2008)

12. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up
model generation methods. J. Autom. Reason. 64, 197–251 (2020). DOI 10.1007/
s10817-019-09515-1

13. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL
method. Artif. Intell. 172(4-5), 591–632 (2008). DOI 10.1016/j.artint.2007.09.005

14. Bernays, P., Schönfinkel, M.: Zum Entscheidungsproblem der mathematischen Logik.
Mathematische Annalen 99, 342–372 (1928). DOI 10.1007/BF01459101

15. Bonacina, M.P.: On conflict-driven reasoning. In: N. Shankar, B. Dutertre (eds.) Pro-
ceedings of the 6th Workshop on Automated Formal Methods (AFM) May 2017, Kalpa
Publications, vol. 5, pp. 31–49. EasyChair (2018). DOI 10.29007/spwm

16. Bonacina, M.P., Dershowitz, N.: Canonical ground Horn theories. In: A. Voronkov,
C. Weidenbach (eds.) Programming Logics: Essays in Memory of H. Ganzinger, Lecture
Notes in Computer Science, vol. 7797, pp. 35–71. Springer, Berlin (2013). DOI 10.1007/
978-3-642-37651-1 3

17. Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: On first-order model-based
reasoning. In: N. Mart́ı-Oliet, P. Olveczky, C. Talcott (eds.) Logic, Rewriting, and
Concurrency: Essays Dedicated to José Meseguer, Lecture Notes in Computer Science,
vol. 9200, pp. 181–204. Springer, Berlin (2015). DOI 10.1007/978-3-319-23165-5 8

46 M. P. Bonacina and S. Winkler

18. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability for
theory combination: transition system and completeness. J. Autom. Reason. 64(3),
579–609 (2020). DOI 10.1007/s10817-018-09510-y

19. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability for
theory combination: lemmas, modules, and proofs. J. Autom. Reason. 66(1), 43–91
(2022). DOI 10.1007/s10817-021-09606-y

20. Bonacina, M.P., Hsiang, J.: On the modelling of search in theorem proving – towards a
theory of strategy analysis. Inf. Comput. 147, 171–208 (1998). DOI 10.1006/inco.1998.
2739

21. Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem
proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011). DOI
10.1007/s10817-010-9213-y

22. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: model
representation. J. Autom. Reason. 56(2), 113–141 (2016). DOI 10.1007/
s10817-015-9334-4

23. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: inference
system and completeness. J. Autom. Reason. 59(2), 165–218 (2017). DOI 10.1007/
s10817-016-9384-2

24. Bonacina, M.P., Winkler, S.: SGGS decision procedures. In: N. Peltier, V. Sofronie-
Stokkermans (eds.) Proceedings of IJCAR-10, Lecture Notes in Artificial Intelligence,
vol. 12166, pp. 356–374. Springer, Berlin (2020). DOI 10.1007/978-3-030-51074-9 20

25. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Kluwer Academic
Publishers (2004). DOI 10.1007/978-1-4020-2653-9

26. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and
never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989). DOI
10.1109/69.43410

27. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. C.
ACM 5(7), 394–397 (1962). DOI 10.1145/368273.368557

28. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: R. Gi-
acobazzi, J. Berdine, I. Mastroeni (eds.) Proceedings of VMCAI-14, Lecture Notes
in Computer Science, vol. 7737, pp. 1–12. Springer, Berlin (2013). DOI 10.1007/
978-3-642-35873-9 1

29. de Nivelle, H., de Rijke, M.: Deciding the guarded fragments by resolution. J. Symb.
Comput. 35(1), 21–58 (2003). DOI 10.1016/S0747-7171(02)00092-5

30. Dershowitz, N.: Orderings for term-rewriting systems. Theoret. Comput. Sci. 17(3),
279–301 (1982). DOI 10.1016/0304-3975(82)90026-3

31. Dershowitz, N., Plaisted, D.A.: Rewriting. In: J.A. Robinson, A. Voronkov (eds.) Hand-
book of Automated Reasoning, vol. 1, chap. 9, pp. 535–610. Elsevier (2001). DOI
10.1016/b978-044450813-3/50011-4

32. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem.
J. ACM 27(4), 758–771 (1980). DOI 10.1145/322217.322228

33. Duarte, A., Korovin, K.: Implementing superposition in iProver (system description).
In: N. Peltier, V. Sofronie-Stokkermans (eds.) Proceedings of IJCAR-10, Lecture Notes
in Computer Science, vol. 12167, pp. 388–397. Springer, Berlin (2020). DOI 10.1007/
978-3-030-51054-1\ 24

34. Fermüller, C.G., Leitsch, A.: Model building by resolution. In: E. Börger, G. Jäger,
H. Kleine Büning, S. Martini (eds.) Proceedings of CSL-6, Lecture Notes in Computer
Science, vol. 702, pp. 134–148. Springer, Berlin (1993). DOI 10.1007/3-540-56992-8 10

35. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures.
In: Handbook of Automated Reasoning, pp. 1791–1849. Elsevier and MIT Press, Ams-
terdam and Cambridge (2001). DOI 10.1016/b978-044450813-3/50027-8

36. Fermüller, C.G., Salzer, G.: Ordered paramodulation and resolution as decision proce-
dure. In: A. Voronkov (ed.) Proceedings of LPAR-4, Lecture Notes in Artificial Intelli-
gence, vol. 698, pp. 122–133. Springer, Berlin (1993). DOI 10.1007/3-540-56944-8 47

37. Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: P. Fontaine
(ed.) Proceedings of CADE-27, Lecture Notes in Artificial Intelligence, vol. 11716, pp.
233–249. Springer, Berlin (2019). DOI 10.1007/978-3-030-29436-6 14

SGGS Reasoning: Decision Procedures and Koala 47

38. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic.
In: S. Ghilardi, R. Sebastiani (eds.) Proceedings of FroCoS-7, Lecture Notes in Ar-
tificial Intelligence, vol. 5749, pp. 263–278. Springer, Berlin (2009). DOI 10.1007/
978-3-642-04222-5 16

39. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In:
Proceedings of LICS-18, pp. 55–64. IEEE (2003)

40. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Hensel,
J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann,
R.: Analyzing program termination and complexity automatically with AProVE. J.
Autom. Reason. 58(1), 3–31 (2017). DOI 10.1007/s10817-016-9388-y

41. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-
order logic. Bull. Symb. Log. 3, 53–69 (1997). DOI 10.2307/421196

42. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving
strategies: the transfinite semantic tree method. J. ACM 38(3), 559–587 (1991). DOI
10.1145/116825.116833

43. Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order fragments
and description logics. J. of Relational Methods in Computer Science 1, 251–276 (2004).
DOI 10.1007/978-3-642-37651-1 15

44. Joyner Jr., W.H.: Resolution strategies as decision procedures. J. ACM 23(3), 398–417
(1976). DOI 10.1145/321958.321960

45. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: J. Leech
(ed.) Proceedings of the Conference on Computational Problems in Abstract Algebras,
pp. 263–298. Pergamon Press (1970). DOI 10.1016/B978-0-08-012975-4

46. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reason-
ing. In: A. Voronkov, C. Weidenbach (eds.) Programming Logics: Essays in Memory
of H. Ganzinger, Lecture Notes in Computer Science, vol. 7797, pp. 239–270. Springer,
Berlin (2013). DOI 10.1007/978-3-642-37651-1 10

47. Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: P. Fontaine, C. Ringeissen,
R.A. Schmidt (eds.) Proceedings of FroCoS-9, Lecture Notes in Artificial Intelligence,
vol. 8152, pp. 214–228. Springer, Berlin (2013). DOI 10.1007/978-3-642-40885-4 15

48. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2. In:
R. Treinen (ed.) Proceedings of RTA-20, Lecture Notes in Computer Science, vol. 5595,
pp. 295–304. Springer, Berlin (2009). DOI 10.1007/978-3-642-02348-4 21

49. Kounalis, E., Rusinowitch, M.: On word problems in Horn theories. In: E. Lusk, R. Over-
beek (eds.) Proceedings of CADE-9, Lecture Notes in Computer Science, vol. 310, pp.
527–537. Springer, Berlin (1988). DOI 10.1007/BFb0012854

50. Kounalis, E., Rusinowitch, M.: On word problems in Horn theories. J. Symb. Comput.
11(1–2), 113–128 (1991). DOI 10.1016/S0747-7171(08)80134-4

51. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: N. Sharygina,
H. Veith (eds.) Proceedings of CAV-25, Lecture Notes in Computer Science, vol. 8044,
pp. 1–35. Springer, Berlin (2013). DOI 10.1007/978-3-642-39799-8\ 1

52. Lamotte-Schubert, M., Weidenbach, C.: BDI: a new decidable clause class. J. Log.
Comput. 27(2), 441–468 (2017). DOI 10.1093/logcom/exu074

53. Lee, S.J., Plaisted, D.A.: Eliminating duplication with the hyperlinking strategy. J.
Autom. Reason. 9, 25–42 (1992)

54. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like
properties. In: N. Dershowitz, A. Voronkov (eds.) Proceedings of LPAR-14, Lecture
Notes in Artificial Intelligence, vol. 4790, pp. 348–362. Springer, Berlin (2007). DOI
10.1007/978-3-540-75560-9 26

55. Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: E. Lusk,
R. Overbeek (eds.) Proceedings of CADE-9, Lecture Notes in Computer Science, vol.
310, pp. 415–434. Springer, Berlin (1988). DOI 10.1007/BFb0012847

56. Marques Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: A. Biere, M. Heule, H. Van Maaren, T. Walsh (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS Press
(2009). DOI 10.3233/978-1-58603-929-5-131

57. McMillan, K.L.: Developing distributed protocols with Ivy. Slides from http://
vmcaischool19.tecnico.ulisboa.pt/ (2019)

http://vmcaischool19.tecnico.ulisboa.pt/
http://vmcaischool19.tecnico.ulisboa.pt/

48 M. P. Bonacina and S. Winkler

58. Mei, H., Qin, G., Xu, M., Esiner, J.: Neural Datalog through time: informed temporal
modeling via logical specification. In: H. Daumé III, A. Singh (eds.) Proceedings of
ICML-37, Proceedings of Machine Learning Research, vol. 119, pp. 6808–6819 (2020)

59. Navarro, J.A., Voronkov, A.: Proof systems for effectively propositional logic. In:
A. Armando, P. Baumgartner, G. Dowek (eds.) Proceedings of IJCAR-4, Lecture
Notes in Artificial Intelligence, vol. 5195, pp. 426–440. Springer, Berlin (2008). DOI
10.1007/978-3-540-71070-7 36

60. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM
27(2), 356–364 (1980). DOI 10.1145/322186.322198

61. Nicolas, J.M.: Logic for improving integrity checking in relational databases. Acta Infor.
18(3), 227–253 (1982). DOI 10.1145/322186.322198

62. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Inf. Comput.
205(4), 557–580 (2007). DOI 10.1016/j.ic.2006.08.009

63. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6),
937–977 (2006)

64. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verification
by interactive generalization. SIGPLAN Notices 51(6), 614–630 (2016). DOI 10.1145/
2980983.2908118

65. Piskac, R., de Moura, L., Bjørner, N.: Deciding effectively propositional logic using
DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010). DOI 10.1007/
978-3-540-71070-7 35

66. Plaisted, D.A., Zhu, Y.: The Efficiency of Theorem Proving Strategies. Friedr. Vieweg
& Sohn (1997)

67. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper linking. J. Autom. Reason. 25, 167–217
(2000)

68. Ramsey, F.P.: On a problem in formal logic. Proceedings of the London Mathematical
Society 30, 264–286 (1930). DOI 10.1112/plms/s2-30.1.264

69. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: A.P. Felty, A. Middeldorp
(eds.) Proceedings of CADE-25, Lecture Notes in Artificial Intelligence, vol. 9195, pp.
399–415. Springer, Berlin (2015). DOI 10.1007/978-3-319-21401-6 28

70. Riazanov, A.: Implementing an efficient theorem prover. Ph.D. thesis, Department of
Computer Science, The University of Manchester (2003)

71. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. of Computer Math-
ematics 1, 227–234 (1965). DOI 10.2307/2272384

72. Robinson, J.A.: A machine oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965). DOI 10.1145/321250.321253

73. Rubio, A.: A fully syntactic AC-RPO. Inf. Comput. 178(2), 515–533 (2002). DOI
10.1006/inco.2002.3158

74. Schulz, S., Cruanes, S., Vukmirovic, P.: Faster, higher, stronger: E 2.3. In: P. Fontaine
(ed.) Proceedings of CADE-27, Lecture Notes in Computer Science, vol. 11716, pp.
495–507. Springer, Berlin (2019). DOI 10.1007/978-3-030-29436-6\ 29

75. Scott, D.: A decision method for validity of sentences in two variables. J. Symb. Log.
27, 377–377 (1962)

76. Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution. J.
ACM 14(4), 687–697 (1967). DOI 10.1145/321420.321428

77. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017). DOI 10.1007/
s10817-009-9143-8

78. van Gelder, A., Topor, R.W.: Safety and translation of relational calculus queries. ACM
Trans. Database Syst. 16(2), 235–278 (1991). DOI 10.1145/114325.103712

79. Waldmann, U., Schmidt, R.A.: Modal tableau systems with blocking and congruence
closure. In: H. de Nivelle (ed.) Proceedings of TABLEAUX-24, Lecture Notes in
Artificial Intelligence, vol. 9323, pp. 38–53. Springer, Berlin (2015). DOI 10.1007/
978-3-319-24312-2 4

80. Weidenbach, C.: Combining superposition, sorts and splitting. In: A. Robinson,
A. Voronkov (eds.) Handbook of Automated Reasoning, vol. 2, pp. 1965–2012. Else-
vier, Amsterdam (2001). DOI 10.1016/b978-044450813-3/50029-1

