
Journal of Automated Reasoning manuscript No.
DOI 10.1007/s10817-016-9384-2 in 59(2):165–218, August 2017

Semantically-Guided Goal-Sensitive Reasoning: Inference
System and Completeness

Maria Paola Bonacina · David A. Plaisted

Received: 9 November 2015 / Accepted: 22 July 2016 / Published online: 6 August 2016

Abstract We present a new method for clausal theorem proving, named SGGS from
semantically-guided goal-sensitive reasoning. SGGS generalizes to first-order logic
the Conflict-Driven Clause Learning (CDCL) procedure for propositional satisfiabil-
ity. Starting from an initial interpretation, used for semantic guidance, SGGS em-
ploys a sequence of constrained clauses to represent a candidate model, instance
generation to extend it, resolution and other inferences to explain and solve conflicts,
amending the model. We prove that SGGS is refutationally complete and model com-
plete in the limit, regardless of initial interpretation. SGGS is also goal sensitive, if
the initial interpretation is properly chosen, and proof confluent, because it repairs
the current model without undoing steps by backtracking. Thus, SGGS is a com-
plete first-order method that is simultaneously model-based à la CDCL, semantically-
guided, goal-sensitive, and proof confluent.

Keywords Theorem Proving · Conflict-Driven Clause Learning · Semantic
Guidance · Refutational Completeness · Goal Sensitivity

1 Introduction

Theorem proving in first-order logic is a main topic in automated reasoning, and his-
torically could even be considered one of the intellectual birth places of computer sci-
ence, since the quest for a formulation and a solution of the Entscheidungsproblem, or
whether there exists an algorithm to decide theoremhood in first-order logic, led Alan
M. Turing to invent Turing machines [24]. By the negative answer to the Entschei-
dungsproblem, theorem proving in first-order logic is not decidable; however, it is

Maria Paola Bonacina
Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
E-mail: mariapaola.bonacina@univr.it

David A. Plaisted
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA
E-mail: plaisted@cs.unc.edu

2 M. P. Bonacina and D. A. Plaisted

semi-decidable by Herbrand’s theorem, which says that a set S of first-order clauses
is unsatisfiable if and only if there exists a finite set of ground instances of clauses
of S that is unsatisfiable [19]. If S is obtained by transforming into clausal form a set
of assumptions and the negation of a conjecture, unsatisfiability means that the con-
jecture follows from the assumptions. First-order clausal theorem-proving methods
implement more or less directly Herbrand’s theorem, and the expressive power of the
logic makes them desirable, even if they are only semi-decision procedures. Methods
for first-order logic may also yield decision procedures for decidable fragments.

In order to be a semi-decision procedure, a theorem-proving method must be
refutationally complete, meaning that it terminates with a refutation whenever the in-
put set of clauses is unsatisfiable. Although in experiments it is legitimate, and often
useful, or even necessary, to use incomplete strategies, establishing refutational com-
pleteness is a fundamental way of understanding a method. In this article we present
and prove refutationally complete a new method for first-order theorem proving,
named SGGS, from Semantically-Guided Goal-Sensitive reasoning. Our motivation
for introducing a new approach, when many exist, is to have a reasoning procedure
that is model-based and lifts to first-order logic the conflict-driven clause learning
(CDCL) procedure at the heart of contemporary SAT solvers [49,51,48,46].

A reasoning method is model-based, if the state of a derivation contains a rep-
resentation of a candidate (partial) model, and inference and search for a model are
intertwined, as inferences build and transform the model while the model drives the
inferences. The CDCL procedure represents a partial model of a set of propositional
clauses by a sequence of literals, called a trail, meaning that literals in the trail are true
in the model. Its main operations include decision, clausal propagation, explanation
of conflicts, learning, and conflict solution by backjumping. Decision and backjump-
ing are search operations, while clausal propagation, explanation, and learning are
inferences. Decision guesses that a literal is true by adding it to the trail. If a literal
is in the trail, all occurrences of its complement are false. Thus, clausal propagation
detects implications and conflicts: if all literals of a clause C but one, say Q, are false,
Q is an implied literal to be added to the trail with C as justification; if all literals
of C are false, C is a conflict clause. Explanation applies resolution to the conflict
clause and a justification, resolving upon the implied literal and its complement in
the conflict clause, so that the resolvent is still in conflict. Learning adds a resolvent
to the set of clauses. The learned clause is used to backjump to a state of the trail
where one of its literals is implied, so that the learned clause is satisfied and becomes
a justification.

In order to lift these features to first-order logic, SGGS adopts semantic guid-
ance and introduces uniform falsity. A reasoning method is semantically guided, if
its search is driven by a given fixed interpretation. Early examples are semantic reso-
lution [60], hyperresolution [58], and resolution with set of support [63]. The reason
for semantic guidance in SGGS is that while in propositional logic there are finitely
many atoms and interpretations, and therefore it makes sense to start the search by
guessing truth values, in first-order logic variables in clauses are implicitly univer-
sally quantified, atoms have infinitely many ground instances, and there are infinitely
many interpretations, so that mere guesses are too uninformed. Thus, SGGS assumes
an initial interpretation, denoted I, which could be based on sign as in hyperresolu-

SGGS: Inference System and Completeness 3

tion, or be a model of a subset of input clauses as in resolution with set of support.
If I satisfies S, the search is over. Otherwise, SGGS seeks to build a model of S, dis-
tinct from I. Uniform falsity is crucial for first-order clausal propagation, because it
restores the symmetry between true and false. In propositional logic, if L is true, ¬L
is false, and if L is false, ¬L is true. In first-order logic, a literal is true if all its ground
instances are, and it is false if at least one ground instance is: if L is true, all ground
instances of ¬L are false, but if L is false, only one ground instance of ¬L is bound to
be true. We say that a literal is uniformly false, if all its ground instances are. Thus, if
L is true, ¬L is uniformly false, and if L is uniformly false, ¬L is true.

SGGS represents a partial model of a set S of first-order clauses by a sequence Γ

of (possibly constrained) clauses with selected literals, called SGGS clause sequence.
Every literal in Γ must be either I-true (true in I) or I-false (uniformly false in I), and
I-false literals are preferred for selection, to get an interpretation that differs from
I where needed to satisfy S. The partial model Ip(Γ) represented by Γ is obtained
by reading Γ from left to right, and taking for each clause C the ground instances
of its selected literal needed to satisfy C, while keeping Ip(Γ) consistent. Ip(Γ) is
completed in an interpretation I[Γ] by recurring to I whenever Ip(Γ) leaves a ground
atom undefined, so that I acts as default interpretation. An SGGS-derivation is a se-
ries Γ0 `Γ1 `Γ2 ` . . . of SGGS clause sequences, where Γ0 is empty, each subsequent
Γi is generated from Γi−1 by an SGGS inference, and Γi replaces Γi−1, so that only one
SGGS clause sequence exists at any time.

SGGS clause sequences are built primarily by an instance generation mechanism,
called SGGS-extension, that adds to the sequence an instance of an input clause and
selects one of its literals. SGGS-extension unifies one or more literals of an input
clause with as many selected literals of opposite sign in Γ . Since selected literals
define I[Γ], SGGS-extension is model-driven, and selection of a literal in a clause
added by SGGS-extension is the analogue of a CDCL decision. A typical way to start
a derivation is to add a clause whose literals are all I-false, so that semantic guidance
gives a starting point. Symmetric to SGGS-extension is SGGS-deletion, that deletes
from Γ any clause satisfied by the partial model induced by clauses of smaller index.
Similar to CDCL, a satisfied clause is a clause that the system is done with.

If literal L is selected in Γ , and all ground instances of literal M appear with
opposite sign among those that L contributes to I[Γ], literal L makes M uniformly
false in I[Γ]. Thus, first-order clausal propagation in SGGS works as follows: if all
literals of a clause C but one, say Q, are uniformly false in I[Γ], Q is an implied
literal and C is its justification; if all literals of C are uniformly false in I[Γ], C is a
conflict clause. Because Ip(Γ) is extracted from Γ in left-to-right order, the position
of clauses in Γ , like that of literals in the trail of CDCL, is relevant. For example, all
justifications are in the disjoint prefix of Γ , denoted d p(Γ), and defined as the longest
prefix of Γ where every selected literal contributes to I[Γ] all its ground instances.
Input unit clauses may enter d p(Γ) right away, similarly to the level-0 propagations
of CDCL. If SGGS-extension adds to Γ a conflict clause, SGGS explains the conflict
by a restricted form of first-order resolution, called SGGS-resolution, that resolves a
conflict clause and a justification, resolving upon the implied literal and a literal of
the conflict clause made uniformly false by the implied literal. Similar to CDCL, the
resolvent is still in conflict, and if the empty clause arises in this process, the input set

4 M. P. Bonacina and D. A. Plaisted

is unsatisfiable. An SGGS-resolvent C is learned when it enters d p(Γ) by moving left
of the clause whose selected literal caused C’s selected literal to be uniformly false:
this SGGS-move, that corresponds to backjumping, solves the conflict by flipping the
truth value of all ground instances of C’s selected literal.

A clause in an SGGS clause sequence may be constrained, so that it only repre-
sents its ground instances that satisfy the constraint. SGGS constraints are a variant of
Herbrand constraints, that are constraints interpreted in the Herbrand universe [44,
45,23,22]. SGGS constraints are introduced by splitting inference rules, that replace
a clause in Γ by a sequence of constrained clauses, such that the union of their sets of
ground instances is equal to that of the original clause, but their selected literals are
disjoint, that is, their atoms do not have ground instances in common. The purpose
is to enable SGGS-deletion and SGGS-resolution to get rid of duplications or con-
tradictions between selected literals. Thus, SGGS-splitting is different from splitting
in the Davis-Putnam-Logemann-Loveland (DPLL) procedure [26,25,19]: splitting in
DPLL recalls the branching of a tree (e.g., L on one branch, ¬L on the other), splitting
in SGGS recalls the splintering of a piece of wood.

Several theorem-proving strategies are goal-sensitive and proof confluent. Goal-
sensitivity ensures that all generated clauses are connected to the theorem to be
proved, which is relevant in practice, especially in case of large axiom sets or knowl-
edge bases. SGGS is goal-sensitive, if I satisfies the clauses issued from the assump-
tions, not those issued from the theorem. Proof confluence means that committing to
an inference does not prevent the procedure from finding a proof, so that backtrack-
ing, in the sense of undoing steps and returning to a previous state, is not needed.
SGGS is proof confluent, because it gets out of a dead end simply by moving a clause
in its model representation structure.

This article is organized as follows. Section 2 summarizes the SGGS approach
to model representation of [18], so that this article is self-contained. Section 3 in-
troduces SGGS-extension and SGGS-splitting as inference schemes, instantiated into
inference rules in Section 4, to form the SGGS inference system, together with SGGS-
deletion, SGGS-resolution, and SGGS-move. Section 5 proves two theorems that
guarantee that SGGS makes progress: the main one is a lifting theorem for SGGS-
extension. Section 6 describes conflict explanation and solving in SGGS, while Sec-
tion 7 gives ancillary inference rules for SGGS constraints, that appeared in prelim-
inary form in [16]. After defining fairness and limit of an SGGS-derivation, Sec-
tion 8 establishes refutational completeness (if S is unsatisfiable, any fair SGGS-
derivation from S is a refutation), model completeness (if S is satisfiable, any fair
SGGS-derivation from S yields a model of S in the limit), and goal-sensitivity. The
article is closed by a discussion of related work (Section 9.1) and a summary of con-
tributions (Section 9.2), that the reader may want to read as overview of SGGS prior
to reading the technical sections. A preliminary exposition of SGGS appeared in [17].

2 First-order Model Representation and Clausal Propagation in SGGS

We assume the standard basic definitions in first-order clausal theorem proving. A
clause C is a disjunction of literals, with all variables implicitly universally quantified;

SGGS: Inference System and Completeness 5

it is treated as a set whenever needed; and ¬C is the implicit universal closure of the
negation of C. We write vars(L) for the set of variables occuring in a literal L, and
this notation extends to clauses. The symbol \ is set subtraction; at(L) is the atom
of literal L; and if T is a set of literals, at(T) = {at(L) : L ∈ T}. The size |L| of an
atom L is the number of occurrences of constant, function, and predicate symbols
in L (e.g., |P(f (a),g(a))| = 5); the size of a literal is that of its atom. Substitutions
are denoted by lower case Greek letters and applied in postfix notation, so that tϑ
is the instance of term t obtained by applying substitution ϑ ; it is a ground instance
if ϑ replaces all variables in t by ground terms; it is a variant of t if ϑ is a variable
renaming, or a substitution that replaces distinct variables by distinct variables. The
same applies to literals, clauses, and other expressions. Clause C subsumes clause D,
written C •≤ D, where •≤ is called subsumption ordering, if Cϑ ⊆ D (as multisets) for
some substitution ϑ ; then C •< D, if C •≤ D and D 6•≤ C. Given a set S of clauses, the
Herbrand universe is the set of ground terms made of symbols from S, with a new
constant symbol added if S has none. Herbrand interpretations have the Herbrand
universe as domain, and interpret ground terms as themselves. Since they suffice for
clausal theorem proving, we consider only Herbrand interpretations, and |=C means
J |=C for all Herbrand interpretations J.

SGGS constraints use the symmetric symbol ≡ for identity and the notation
top(t) for the top symbol of term t. Then, |= s ≡ t, for ground terms s and t, if s
and t are the same term; and |= top(t) = f , if the top symbol of ground term t is f .
From now on we simply write constraint for SGGS constraint. An atomic constraint
is either true or f alse or an expression of the form s ≡ t or top(t) = f , where s and
t are terms, and f is a function symbol. A constraint is either an atomic constraint,
or the negation, conjunction, or disjunction of constraints. Thus, if Aϑ is a ground
instance of a constraint A, either |= Aϑ or |= ¬Aϑ . A constraint is in standard form,
if it is either true or f alse or a conjunction of distinct atomic constraints of the form
x 6≡ y and top(x) 6= f , where x and y are variable symbols. Constraints top(x) 6= f
and x 6≡ y prevent x from being replaced by a term whose top symbol is f , and x and
y from being replaced by the same term, respectively.

A constrained clause is a formula A�C, read “C under A” or “C where A,” where
A is a constraint and C is a clause. Any variable that appears in A and not in C is
implicitly existentially quantified. The notation A�C[L] says that literal L is selected
in A�C, and A�L is called a constrained literal. By convention, if L is the selected
literal of C, Lϑ is the selected literal of Cϑ . Constraint and selected literal may be
omitted when not relevant, and true�C is usually abbreviated as C.

Given a constrained clause A�C, the set of its constrained ground instances (cgi)
is Gr(A�C) = {Cϑ : |= Aϑ , Cϑ ground}, that is, the set of ground instances that
satisfy the constraint (|=Aϑ means that the existential closure of Aϑ is satisfied if Aϑ

is not ground). For example, P(a,b) ∈ Gr(x 6≡ y�P(x,y)), but P(b,b) 6∈ Gr(x 6≡ y�
P(x,y)). If L is the selected literal of C, then Gr(A�L) = {Lϑ : Cϑ ∈ Gr(A�C)},
and ¬Gr(A�L) = {¬Lϑ : Lϑ ∈ Gr(A�L)}. Note how Gr(f alse�C) = /0, while
Gr(true�C) contains all ground instances of C. Constrained clauses A�C and B�D
are equivalent if Gr(A�C) = Gr(B�D).

Subsumption can be generalized to constrained clauses as follows: A�C •≤ B�D,
if Cϑ ⊆D (as multisets) and B |= Aϑ for some substitution ϑ . If A�C •≤ B�D, then

6 M. P. Bonacina and D. A. Plaisted

for all D′ ∈ Gr(B�D), there is a C′ ∈ Gr(A�C) such that C′ ⊆ D′ (as multisets).
Indeed, for D′ = Cϑσ ∨Eσ , where E is a disjunction of literals, and |= Bσ holds,
take C′ =Cϑσ , which is in Gr(A�C), because B |= Aϑ and |= Bσ imply |= Aϑσ .

Literals A�L and B�M intersect if at(Gr(A�L))∩at(Gr(B�M)) 6= /0, and are
disjoint, otherwise. Note that literals of different sign may intersect, as intersection
is defined based on atoms. For example, x 6≡ y�P(x,y) and top(z) 6= f �P(z,z) are
disjoint; while the intersection of P(a,x) and ¬P(z,z) is P(a,a). If A�L and B�M
do not share variables, as it happens if they are literals from distinct clauses, they
intersect if and only if at(L) and at(M) unify and the constraint (A∧B)σ is satisfiable,
where σ is the most general unifier (mgu) of at(L) and at(M). The intersection is
given by at(Gr((A∧B)σ �Mσ)).

For an interpretation J, we have J |= Gr(A�L), if J |= M for all M ∈ Gr(A�L);
J |=¬Gr(A�L), if J |=M for all M ∈¬Gr(A�L); and J |=Gr(A�C), if J |=D for all
D∈Gr(A�C). Since variables in clauses, and their literals, are implicitly universally
quantified, J |= A�L, if J |= Gr(A�L), and J |= A�C, if J |= Gr(A�C).

In propositional logic, if a literal L is false in an interpretation J, its complement
¬L is true in J. If all literals of a clause C are false in J, C is a conflict clause with
respect to J. In first-order logic, if L is false in J, we only know that some ground
instance Lϑ is false in J and ¬Lϑ is true. For first-order model-based reasoning, we
introduce a stronger notion of falsity, which reproduces the propositional behavior: a
literal L is uniformly false in J, if all its ground instances are false in J, or, equiva-
lently, if ¬L is true in J. In symbols, and for constrained literals, A�L is uniformly
false in J, if J |= ¬Gr(A�L). A clause C is uniformly false in J, if all its literals are,
which means that ¬C is true in J. In symbols, and for constrained clauses, A�C is
uniformly false in J, if J |= ¬Gr(A�L) for all literals L of C. If A�C is uniformly
false in J, we say that A�C is a conflict clause with respect to J, or A�C is in conflict
with J, as all its constrained ground instances are false in J.

SGGS assumes an initial interpretation denoted I. A constrained literal A�L is
I-true, if I |= A� L, and I-false, if it is uniformly false in I. Clearly, a constrained
literal may be neither I-true nor I-false. A constrained clause A�C is I-all-true, if all
its literals are I-true, and I-all-false if all its literals are I-false. The sets of I-true and
I-false literals of C are denoted tlits(C) and f lits(C), respectively.

Definition 1 (SGGS clause sequence) An SGGS clause sequence is a possibly empty,
finite sequence of constrained clauses Γ = A1 �C1[L1], . . . ,An �Cn[Ln] (n≥ 0) such
that for all j, 1≤ j ≤ n:

1. C j = f lits(C j)] tlits(C j): every literal is either I-true or I-false; and
2. If f lits(C j) 6= /0, then L j ∈ f lits(C j): if a clause has I-false literals, one is selected.

The clause sequence in SGGS corresponds to the trail in CDCL: its purpose is to
represent a candidate partial interpretation. Condition (1) is a key invariant of SGGS,
while Condition (2) restricts the heuristic choice of selected literal by semantic guid-
ance: in CDCL the choice of decided literal is purely heuristic; in SGGS I-false lit-
erals are preferred in order to build an interpretation different from I. The length of
Γ , denoted |Γ |, is given by the number of clauses in Γ . For all j, 1≤ j ≤ |Γ |, clause
A j �C j[L j] has index j in Γ , and is denoted by π j[Γ]; the prefix of Γ of length j,

SGGS: Inference System and Completeness 7

denoted Γ | j, is given by Γ | j = A1 �C1[L1], . . . ,A j �C j[L j], and is a proper prefix if
j < |Γ |. The empty sequence is denoted by ε , so that Γ |0 = ε .

The partial interpretation induced by an SGGS clause sequence Γ , denoted Ip(Γ),
is defined inductively over the length of the sequence: if |Γ | = n, and n > 0, Ip(Γ)
is given by Ip(Γ |n−1) plus those constrained ground instances of An � Ln that can
be added to satisfy ground instances of An �Cn[Ln] not satisfied by Ip(Γ |n−1). These
constrained ground instances are called proper. Partial interpretations and proper con-
strained ground instances are mutually defined as follows:

Definition 2 (Induced partial interpretation) The partial interpretation induced by
Γ = A1 �C1[L1], . . . ,An �Cn[Ln], denoted Ip(Γ), is defined inductively as follows:

– If Γ = ε , then Ip(Γ) = /0;
– Otherwise, Ip(Γ) = Ip(Γ |n−1)∪ pcgi(An �Ln,Γ).

Definition 3 (Proper constrained ground instances) For Γ =A1�C1[L1], . . . ,An�

Cn[Ln], for all j, 1≤ j≤ |Γ |, the set of proper constrained ground instances (pcgi) of
clause A j �C j[L j], of its selected literal A j �L j, and of Γ itself, is defined as follows:

– pcgi(A j �C j[L j],Γ) = {C[L] ∈ Gr(A j �C j[L j]) : Ip(Γ | j−1)∩C[L] = /0,
¬L 6∈ Ip(Γ | j−1)}: C[L] is not satisfied by Ip(Γ | j−1), as none of its literals is in
Ip(Γ | j−1), and can be satisfied by adding L, because ¬L is not in Ip(Γ | j−1);

– pcgi(A j�L j,Γ)= {L : C[L]∈ pcgi(A j�C j[L j],Γ)}: that is, the selected literals
from the pcgi’s of the clause; and

– pcgi(Γ) =
⋃n

j=1 pcgi(A j �L j,Γ).

It follows that pcgi(Γ) = Ip(Γ). A constrained ground instance of A j �C j[L j]
in Γ is complementary, if it is not satisfied by Ip(Γ | j−1) and cannot be satisfied by
adding its selected literal, because its selected literal appears negated in Ip(Γ | j−1):

Definition 4 (Complementary constrained ground instances) For Γ =A1�C1[L1],
. . . ,An �Cn[Ln], for all j, 1≤ j ≤ |Γ |, the set of complementary constrained ground
instances (ccgi) of clause A j �C j[L j] and of its selected literal A j �L j is defined as
follows:

– ccgi(A j �C j[L j],Γ) = {C[L] ∈ Gr(A j �C j[L j]) : Ip(Γ | j−1)∩C[L] = /0,
¬L ∈ Ip(Γ | j−1)}; and

– ccgi(A j �L j,Γ) = {L : C[L] ∈ ccgi(A j �C j[L j],Γ)}.

Proper constrained ground instances of A j �C j[L j] are not satisfied in Ip(Γ | j−1)
and are satisfied in Ip(Γ | j), while complementary ones are not satisfied in either. If
all constrained ground instance of a clause are proper, it means that its selected literal
contributes all its constrained ground instances to Ip(Γ):

Definition 5 (Disjoint prefix) For Γ = A1�C1[L1], . . . ,An�Cn[Ln], the disjoint pre-
fix of Γ , denoted d p(Γ), is its longest prefix such that, for all j, 1 ≤ j ≤ |d p(Γ)|,
Gr(A j �C j[L j]) = pcgi(A j �C j[L j],Γ); if Γ = ε , then by convention d p(ε) = ε .

It follows that a clause in d p(Γ) has no complementary constrained ground in-
stances, and no selected literals in d p(Γ) intersect, which is the reason for its name:
indeed, if Ai �Li and A j �L j intersect, for i < j, the constrained ground instances of
A j �L j whose atoms are in the intersection cannot be proper.

8 M. P. Bonacina and D. A. Plaisted

Example 1 Let Γ be the sequence of unit clauses P(a,x),P(b,y),¬P(z,z),P(u,v),
where a and b are constant symbols, and x, y, z, u, and v are variable symbols.
All ground instances of P(a,x) and P(b,y) are proper, and none is complementary.
All ground instances of ¬P(z,z) are proper, except ¬P(a,a) and ¬P(b,b), that are
complementary. Thus, d p(Γ) = P(a,x),P(b,y). All ground instances of P(u,v) are
proper, except those of the form P(a, t), P(b, t), and P(t, t) for any ground term t;
among these, the complementary ones are those of the form P(t, t) for any ground
term t other than a and b.

If an instance C[L] ∈ Gr(A j �C j[L j]) is not satisfied by Ip(Γ | j−1), it is either
proper (¬L 6∈ Ip(Γ | j−1)) or complementary (¬L ∈ Ip(Γ | j−1)). Equivalently, if it is
neither, it is satisfied by Ip(Γ | j−1). Thus, if A j�C j[L j] has neither proper nor comple-
mentary constrained ground instances, Ip(Γ | j−1) satisfies all its constrained ground
instances, and therefore A j �C j[L j] itself. A clause that is already satisfied by the
partial interpretation induced by the clauses on its left is disposable:

Definition 6 (Disposable clause) A non-empty clause A�C[L] in Γ is disposable,
if pcgi(A�L,Γ) = ccgi(A�L,Γ) = /0.

Clearly, no clause in d p(Γ) can be disposable.

Example 2 Consider for simplicity sequences consisting only of unit clauses whose
sole literal is selected. In P(x), ¬Q(x), P(x), the second P(x) is disposable. In ¬P(x),
¬Q(x), P(x), clause P(x) is not disposable, because all its ground instances are com-
plementary. Similarly, in P(x), ¬P(x), ¬P(x), neither occurrence of ¬P(x) is dispos-
able, because for both all ground instances are complementary. If the signature has
only one function symbol f and one constant symbol a, then P(z) is disposable in
P(a), P(f (x)), P(z), while P(f (x)) and P(a) are disposable in P(z), P(a), P(f (x)).

This example shows a difference between disposability and subsumption: a clause
may be made disposable by less general clauses that precede it in Γ , because dispos-
ability is a model-based notion of redundancy, and the order of occurrence of clauses
in Γ affects Ip(Γ). Disposability includes subsumption of clauses of higher index:

Lemma 1 If πk(Γ) is disposable, any π j(Γ) such that j > k and πk(Γ) •≤ π j(Γ) is
also disposable.

Proof Let πk(Γ) be A�C and π j(Γ) be B�D. By the disposability hypothesis, we
have Ip(Γ |k−1) |= A�C, or, equivalently, Ip(Γ |k−1) |= Gr(A�C). By the subsump-
tion hypothesis, we know that for all D′ ∈ Gr(B�D), there is a C′ ∈ Gr(A�C) such
that C′ ⊆D′ (as multisets). Thus, Ip(Γ |k−1) |= Gr(B�D), hence Ip(Γ |k−1) |= B�D.

By consulting I whenever Ip(Γ) does not determine the truth value of a ground
literal, Ip(Γ) can be completed in an interpretation:

Definition 7 (Induced interpretation) The interpretation induced by an SGGS clau-
se sequence Γ , denoted I[Γ], is the interpretation such that, for all ground literals L,
if at(L) ∈ at(Ip(Γ)), then I[Γ] |= L if and only if L ∈ Ip(Γ); if at(L) 6∈ at(Ip(Γ)),
then I[Γ] |= L if and only if I |= L.

SGGS: Inference System and Completeness 9

In other words, I[Γ] makes all proper constrained ground instances of all selected
literals in Γ true, and otherwise is like I. As a special case, I[ε] = I.

Example 3 If Γ is the sequence P(a,x),P(b,y),¬P(z,z),P(u,v) of Example 1, and I
is the all-negative interpretation, where negative literals are true and positive literals
are false, I[Γ] |= P(a, t) and I[Γ] |= P(b, t) for all ground terms t, but I[Γ] 6|= P(t, t)
for t other than a and b, and I[Γ] |= P(s, t) for all distinct ground terms s and t.

Every prefix of a sequence is a sequence, and therefore induces an interpretation:

Example 4 Let Γ =C1,C2,C3 be [P(x)], ¬P(f (y))∨ [Q(y)], ¬P(f (z))∨¬Q(g(z))∨
[R(f (z),g(z))], with I all-negative, so that positive literals have been selected by Con-
dition (2) of Definition 1. Then I[Γ |0] = I[ε] = I; I[Γ |1] interprets all positive literals
as false, except for the ground instances of P(x); I[Γ |2] interprets all positive literals
as false, except for the ground instances of P(x) and Q(y); and I[Γ |3] = I[Γ] inter-
prets all positive literals as false, except for the ground instances of P(x), Q(y) and
R(f (z),g(z)). Note how for this Γ we have d p(Γ) = Γ .

As proper constrained ground instances of I-true selected literals are true in I, I[Γ]
and I differ on the proper constrained ground instances of I-false selected literals, that
are false in I and true in I[Γ]. An I-true literal is selected only in an I-all-true clause:
if A j �C j[L j] is I-all-true, I[Γ | j−1] = I[Γ | j], or I-all-true clauses do not contribute to
build the induced interpretation. The rôle of I-all-true clauses will become clear with
first-order clausal propagation, that we describe next.

Consider CDCL applied to a set of propositional clauses: if literal ¬L appears
in the trail, all occurrences of L in the set are false; the truth value of L depends
on the assertion of ¬L in the trail. Thanks to the notion of uniform falsity, SGGS
generalizes this concept to first-order logic: if all constrained ground instances of a
literal L appear negated among the proper constrained ground instances of a selected
literal M, L is uniformly false in I[Γ]; the uniform falsity of L depends on the fact
that M is selected. SGGS exploits these dependences under semantic guidance by
I, which is the reason for the requirement that all literals in a sequence be either I-
true or I-false (cf. Condition (1) in Definition 1). Under this invariant, if all ground
instances of a literal appear negated among ground instances of another, it must be
that one is I-true and the other I-false; either an I-true literal depends on an I-false
selected literal, or an I-false literal depends on an I-true selected literal:

Definition 8 (Dependence) Given Γ = A1 �C1[L1], . . . ,An �Cn[Ln], for all indices
j and k, 1≤ j,k ≤ n, for all literals L ∈C j[L j], L depends on Lk if

1. k < j,
2. ¬Gr(A j �L)⊆ pcgi(Ak �Lk,Γ),
3. Lk ∈ f lits(Ck[Lk]) if L ∈ tlits(C j[L j]), and
4. Lk ∈ tlits(Ck[Lk]) if L ∈ f lits(C j[L j]).

By Conditions (1) and (2) A j �L is uniformly false in I[Γ]. If Ak �Ck[Lk] is in
d p(Γ), Condition (2) can be rewritten as ¬Gr(A j �L) ⊆ Gr(Ak �Lk), which holds
if there exists a substitution ϑ such that L = ¬Lkϑ and A j |= Akϑ . Since I[Γ] differs

10 M. P. Bonacina and D. A. Plaisted

from Γ for the proper constrained ground instances of I-false selected literals, the
most relevant dependences are those where an I-true literal depends on an I-false
selected literal: the system modifies I into I[Γ] by selecting an I-false literal, but in
so doing uniformly falsifies an I-true literal. SGGS uses assignment functions, or
assignments for short, to represent dependences of I-true literals:

Definition 9 (Assignment) Given Γ = A1 �C1[L1], . . . ,An �Cn[Ln], for all j, 1 ≤
j ≤ n, an assignment is a partial function Φ

j
Γ

: tlits(C j)→ {1, . . . ,n} such that, for
all L ∈ tlits(C j[L j]), if Φ

j
Γ
(L) = k, then:

1. L depends on Lk;
2. If L 6= L j, then Φ

j
Γ
(L) is defined: non-selected I-true literals must be assigned;

3. If L = L j and there exists an Lk such that L depends on Lk, then Φ
j

Γ
(L) is defined:

selected I-true literals are assigned if possible;
4. If L 6= L j, L j ∈ tlits(C j), and Φ

j
Γ
(L j) = i, then k ≤ i < j: if the selected literal L j

of C j is I-true and it is assigned, then it is assigned to the largest index (or to the
rightmost clause) among all literals of C j.

By slightly abusing the terminology, we may write that a literal is assigned to a
literal or to a clause. Condition (4) is a second restriction on literal selection (after
Condition (2) in Definition 1), because it will be fulfilled by selecting in an I-all-true
clause a literal that depends on the rightmost clause. With the notion of assignment,
we can appreciate a rôle of I-false selected literals in the disjoint prefix; since all
constrained ground instances of selected literals in d p(Γ) are proper, it is easier to
assign I-true literals to indices in d p(Γ):

Example 5 Let Γ be [P(x)],¬P(f (y))∨[Q(y)],¬P(f (z))∨¬Q(g(z))∨[R(f (z),g(z))],
with clauses named C1,C2,C3, and all-negative I as in Example 4. The I-true literal
¬P(f (y)) in C2 is assigned to the selected I-false literal P(x) in C1, because all ground
instances of P(x) are proper, and P(f (y)) is an instance of P(x). For the same reason,
the I-true literal ¬P(f (z)) in C3 also is assigned to P(x). Similarly, the I-true literal
¬Q(g(z)) in C3 is assigned to the selected I-false literal Q(y) in C2.

Returning to CDCL, if the complements of all the literals of a clause C appear
in the trail, C is a conflict clause; if the complements of all the literals of C except
one, say Q, appear in the trail, Q is an implied literal with C as justification. By
requiring that all I-true literals that are not selected are assigned, and that selected
I-true literals are assigned if possible, SGGS ensures that all I-all-true clauses in Γ

are either conflict clauses or justifications of implied literals. Indeed, let A j �C j[L j]
be I-all-true. If all its literals are assigned, it means that they are all uniformly false
in I[Γ]: A j �C j[L j] is in conflict with I[Γ]; all its constrained ground instances are
complementary; and it is not disposable. If L j is not assigned, it means that all other
literals of C j are uniformly false in I[Γ], so that satisfying L j is the only way to
satisfy A j �C j[L j]: in this sense L j is an implied literal and A j �C j[L j] stands in
Γ as its justification. We can now appreciate the rôle of I-true selected literals in
the disjoint prefix: if an I-all-true clause is in d p(Γ), its selected literal cannot be
assigned, because it is disjoint from all selected literals of smaller index. Thus, an

SGGS: Inference System and Completeness 11

I-true selected literal in d p(Γ) and its clause are necessarily an implied literal and its
justification. We shall see how SGGS ensures that all justifications are in d p(Γ).

Also a non-I-all-true A j �C j[L j] can be in conflict. Consider an I-false literal L
in A j �C j[L j]: if none of its constrained ground instances appear among the proper
constrained ground instances of any I-false selected literal Lk with k < j, it means
that L is uniformly false in I[Γ | j−1]. If this happens for all I-false literals in A j �

C j[L j], as its I-true literals are assigned and therefore uniformly false, A j�C j[L j] is in
conflict with I[Γ | j−1]. How about I[Γ | j]? If A j�C j[L j] has proper constrained ground
instances, they are satisfied in I[Γ | j], and A j �C j[L j] is not in conflict with I[Γ | j].
On the other hand, if all I-false literals in A j �C j[L j] depend on implied literals in
d p(Γ), no matter which one is selected, this clause has no proper constrained ground
instances and is in conflict also with I[Γ | j]. We shall see how SGGS explains conflicts
by resolving I-false literals in conflict clauses with implied literals they depend on: it
is the I-false literals in a conflict clause that get resolved away in conflict explanation,
because they are those that differentiate I[Γ] from I. Unless a contradiction arises, the
resulting I-all-true conflict clause will enter d p(Γ) and become the justification of its
selected literal. It is an I-all-true conflict clause that gets learned, and it is one of its
literals that gets implied, because the system has learned that all constrained ground
instances of this literal ought to be true also in I[Γ].

3 The SGGS Inference Schemes

Knowing what SGGS clause sequences represent, in this section and the next we
describe how SGGS generates and transforms SGGS clause sequences, hence their
induced interpretations. As usual in theorem proving, this process is called derivation:

Definition 10 (SGGS-derivation) Given set S of clauses and initial interpretation I,
an SGGS-derivation from S is a series of triples

(S; I;Γ0) ` (S; I;Γ1) ` . . .(S; I;Γj) ` . . .

where Γ0 = ε , and ∀ j > 0, Γj is an SGGS clause sequence generated from (S; I;Γj−1)
by an SGGS-inference.

An SGGS-derivation may be written in the form Γ0 ` Γ1 ` . . .Γj ` . . ., as S and I
do not change. A derivation is successful if there is a k, k ≥ 0, such that I[Γk] |= S or
Γk (k > 0) contains the empty clause, denoted by ⊥; in the latter case the derivation
is a refutation.

3.1 The SGGS-extension Inference Scheme

SGGS generates an SGGS-derivation seeking a Γ such that I[Γ] |= S. If I[Γ] |= S,
the search is over. Otherwise, there is a clause C ∈ S such that I[Γ] 6|=C. This means
that there is a ground instance C′ of C such that I[Γ] 6|= C′. Then, SGGS will apply
an SGGS-extension inference to generate from C and Γ a possibly constrained clause
A�E, such that E is an instance of C, and C′ is a constrained ground instance of

12 M. P. Bonacina and D. A. Plaisted

A�E. By adding A�E to Γ , SGGS adds to Ip(Γ) the proper constrained ground
instances of the selected literal of A�E, so that I[Γ] satisfies its ground instance that
appears in C′ (since C′ is an instance of E) and therefore C′ itself.

Since SGGS-extension generates instances of clauses in S, in order to define it, we
need to specify substitutions to instantiate input clauses. SGGS-extension will apply
if there are clauses C ∈ S, and B1 � D1[M1], . . . ,Bn � Dn[Mn] in d p(Γ), such that
M1, . . . ,Mn are I-false, and for distinct literals L1, . . . ,Ln of C there is a simultaneous
most general unifier α such that L jα = ¬M jα , for all j, 1≤ j ≤ n. SGGS-extension
unifies literals with I-false selected literals, because they are those that differentiate
I[Γ] from I; and it picks them in d p(Γ), so that all their ground instances are proper,
hence relevant to I[Γ]: in this way instance generation is model-driven. This generates
the clause (

∧n
j=1 B jα)�Cα . Since M1, . . . ,Mn are I-false, and L jα =¬M jα , 1≤ j≤

n, it follows that L1α, . . . ,Lnα are I-true. Since every literal in a clause that enters
an SGGS clause sequence must be either I-true or I-false, we may need to apply a
second substitution β to guarantee that all other literals of the added clause are I-
false. If I is based on sign, that is, either all-negative (all negative literals are true)
or all-positive (all positive literals are true), this is not necessary: if I is all-negative
(all-positive), any input positive (negative) literal is I-false. For I not based on sign,
we introduce falsifiers, that is, substitutions that capture false ground instances and
make literals uniformly false. We say that two sets of substitutions S and T are
equivalent with respect to clause C, written S ≡C T , if they capture the same set
of ground instances:

⋃
ϑ∈S Gr(Cϑ) =

⋃
ϑ∈T Gr(Cϑ). Then, a set of substitutions is

J-falsifying if it captures the ground instances that are false in an interpretation J:

Definition 11 (J-falsifier) Given a clause C and an interpretation J, a set S of sub-
stitutions is J-falsifying for C, if S ≡C {ϑ : Cϑ ∈Gr(C)∧J 6|=Cϑ}. An element of
a J-falsifying set for C is a J-falsifier for C.

For the initial interpretation I, we use semantic falsifying set and semantic falsifier
in place of I-falsifying set and I-falsifier. The key point is that if ϑ is a semantic
falsifier for C, all literals of Cϑ are I-false.

As it is typical in first-order inferences, we should not over-commit, and just
like we apply a most general unifier, we want to apply a most general falsifier. A
most general substitution is minimal with respect to an ordering. For example, a most
general unifier is minimal with respect to the ordering on substitutions defined by
σ •≤ ϑ if there is a ρ such that ϑ = σ ◦ρ , where ◦ is composition. In order to define
a most general falsifier for C, we introduce an ordering on substitutions relative to C:
ϑ1 ≤Gr

C ϑ2 if Gr(Cϑ2)⊆Gr(Cϑ1). As usual, ϑ1 <
Gr
C ϑ2 if ϑ1 ≤Gr

C ϑ2 and ϑ2 6≤Gr
C ϑ1;

ϑ1 ≡Gr
C ϑ2, if ϑ1 ≤Gr

C ϑ2 and ϑ2 ≤Gr
C ϑ1; ϑ1 ≥Gr

C ϑ2 if ϑ2 ≤Gr
C ϑ1; and ϑ1 >Gr

C ϑ2
if ϑ2 <

Gr
C ϑ1. Note how to a smaller substitution corresponds a larger set of ground

instances. The following lemma shows that the ordering <Gr
C is well-founded; there

cannot be an infinite descending chain of substitutions, or, equivalently, there cannot
be an infinite ascending chain of ever larger sets of ground instances:

Lemma 2 For all clauses C, the ordering <Gr
C is well-founded.

Proof By assumption, the Herbrand universe has at least one constant symbol. If
clause C has no function symbols, the theorem is trivial. We assume that C has at least

SGGS: Inference System and Completeness 13

one function symbol, so that the Herbrand universe is infinite. By way of contradic-
tion, assume that there is an infinite chain ϑ1 >

Gr
C ϑ2 >

Gr
C ϑ3 >

Gr
C . . .ϑi >

Gr
C ϑi+1 . . .,

or Gr(Cϑ1)⊂Gr(Cϑ2)⊂Gr(Cϑ3) . . .Gr(Cϑi)⊂Gr(Cϑi+1) The strict subset re-
lation implies that no two Cϑi’s are equal or variants, that is, there are infinitely many
distinct Cϑi’s. All Cϑi’s have number of literals bounded by the number of literals of
C. Since the number of clauses with bounded number of literals and bounded literal
size is finite, the sizes of the literals in the Cϑi’s must increase without bound. For
any n, there is an i such that Cϑi has a literal L of size larger than n, which means that
any clause in Gr(Cϑi) has a literal of size larger than n. Suppose the maximum size
of any literal in Cϑ1 is n. Let j be such that Cϑ j has a literal of size larger than n. We
have Gr(Cϑ1) ⊂ Gr(Cϑ j). However, all elements of Gr(Cϑ j) have a literal of size
larger than n. Because the Herbrand universe has at least one constant symbol, there
is a clause D ∈ Gr(Cϑ1) such that the maximum literal size of D is n (D is obtained
by replacing all variables by the constant). Therefore D 6∈ Gr(Cϑ j), contradicting
Gr(Cϑ1)⊂ Gr(Cϑ j). 2

A set S of substitutions is most general for C, if no distinct substitutions ϑ1 and
ϑ2 in S satisfy ϑ1 ≤Gr

C ϑ2. In other words, all substitutions in a most general set are
incomparable, and therefore, intuitively, independent. By well-foundedness of <Gr

C ,
most general sets exist:

Theorem 1 For all sets S of substitutions and clauses C, there is a subset T ⊆S
such that T is most general for C and S ≡C T .

Proof Since <Gr
C is well-founded, there are minimal elements and we can reason by

induction on <Gr
C . Let T ′ be the subset of the minimal elements in S , that is, those

ϑ2 such that for no ϑ1 ∈S it is ϑ1 <
Gr
C ϑ2. First we show that S ≡C T ′. Since T ′ ⊆

S , it is
⋃

ϑ∈T ′Gr(Cϑ)⊆
⋃

ϑ∈S Gr(Cϑ). For
⋃

ϑ∈S Gr(Cϑ)⊆
⋃

ϑ∈T ′Gr(Cϑ), we
show that for every ϑ ∈S there is a ϑ2 ∈T ′ such that ϑ2 ≤Gr

C ϑ . Indeed, if ϑ ∈T ′

the result follows with ϑ2 = ϑ . Otherwise, find a ϑ1 ∈S such that ϑ1 <Gr
C ϑ , and

the result follows by induction on ϑ1. Therefore S ≡C T ′. Next, we construct a
set T that is most general for C. By definition of T ′, for no ϑ1,ϑ2 ∈ T ′ can it be
that ϑ1 <

Gr
C ϑ2. However, there still can be ϑ1,ϑ2 ∈ T ′ such that ϑ1 ≡Gr

C ϑ2. Let T
include one element of each ≡Gr

C -equivalence class of T ′. Then T is most general
for C and T ≡C T ′, so that S ≡C T . 2

Corollary 1 For all interpretations J and clauses C, if there is a J-falsifying set of
substitutions for C, there is a most general J-falsifying set of substitutions for C.

An element of a most general J-falsifying set for C is a most general J-falsifier
for C. For the initial interpretation I, we use most general semantic falsifying set and
most general semantic falsifier. The following theorem gives sufficient conditions to
compute most general semantic falsifiers:

Theorem 2 If I is a Herbrand interpretation such that for any clause C it is decidable
whether I |=C and I |= ¬C, then most general semantic falsifiers can be computed.

14 M. P. Bonacina and D. A. Plaisted

Proof Assume that we have a clause C and we want to find a most general semantic
falsifier for C. If I |= C, there is no semantic falsifier. If I |= ¬C, then the empty
substitution is a most general semantic falsifier. If I 6|= C and I 6|= ¬C, let vars(C) =
{x1, . . . ,xn}, and let f r1

1 , . . . , f rk
k be the function symbols of the signature, each with

its arity, including constant symbols as function symbols of arity 0. This yields n× k
substitutions ϑ i

j = {x j ← fi(y1, . . . ,yri)}, where y1, . . . ,yri are new variables. Since
I 6|=C, it is I 6|=Cϑ i

j for some ϑ i
j. Thus, the same procedure applies to each such Cϑ i

j,
until we find an instance Cϑ such that I |= ¬Cϑ so that ϑ is a semantic falsifier.
Since I 6|= C, this procedure is guaranteed to terminate. However, the computed ϑ

is not necessarily a most general semantic falsifier. If it is not, given ϑ = {x1 ←
t1, . . . ,xm← tm}, a more general semantic falsifier ϑ ′ can be found by replacing with
a new variable one or more subterms of t1, . . . , tm, and checking that I |= ¬Cϑ ′ still
holds. This process terminates and finds eventually a most general semantic falsifier,
because the instances Cϑ ′ are lower bounded by C itself in the strict subsumption
ordering on clauses, which is well-founded. 2

We have all the elements to define an inference scheme for SGGS-extension:

Definition 12 (SGGS-extension inference scheme) Let S be a set of clauses and
Γ an SGGS clause sequence. If there are clauses C ∈ S and B1 �D1[M1], . . . ,Bn �

Dn[Mn], with n≥ 0, in d p(Γ), such that

– The literals M1, . . . ,Mn are I-false,
– For distinct literals L1, . . . ,Ln of C there is a simultaneous most general unifier α

such that L jα = ¬M jα for all j, 1≤ j ≤ n, and
– There is a most general semantic falsifier β of (C \{L1, . . . ,Ln})α ,

the SGGS-extension inference scheme generates the clause A�E = (
∧n

j=1 B jαβ)�
Cαβ ; extends Γ by inserting E at some index larger than the maximum among the in-
dices of D1, . . . ,Dn; and assigns the I-true literals L1αβ , . . . ,Lnαβ of E to D1, . . . ,Dn,
respectively. The clauses C, D1, . . . ,Dn, and A � E are called main premise, side
premises, and extension clause, respectively.

By construction, all literals of E are either I-true or I-false: L1αβ , . . . ,Lnαβ are
I-true, and all the others are I-false. Since L jα = ¬M jα , for all j, 1 ≤ j ≤ n, we
have ¬Gr((

∧n
j=1 B jαβ)�L jαβ)⊆ Gr(B j �M j), and since the side premises are in

d p(Γ), we have ¬Gr((
∧n

j=1 B jαβ)�L jαβ) ⊆ pcgi(B j �M j,Γ), so that the I-true
literals of E depend on the selected literals of the side premises and accordingly are
assigned to them. As a special case, when n = 0, there are no side premises, and the
conditions involving them are satisfied vacuously. This happens, for instance, at the
beginning of the derivation, when SGGS-extension adds to the sequence either I-all-
false input clauses (both α and β are empty), or I-all-false instances of input clauses
(α is empty and β is not). If I is based on sign, β is empty.

Example 6 Let S be {P(a),¬P(x) ∨Q(f (y)),¬P(x) ∨ ¬Q(z)} with I all-negative.
Thus P(a) is an I-all-false input clause, and SGGS-extension adds it to Γ0 = ε gen-
erating Γ1 = [P(a)], where the only literal in the clause is selected: in this step both
α and β are empty. Since I[Γ1] satisfies P(a) but no other positive ground literal, all

SGGS: Inference System and Completeness 15

ground instances of ¬P(x)∨Q(f (y)) of the form ¬P(a)∨Q(f (t)), for t a ground
term, are false in I[Γ1]. SGGS-extension generates Γ2 = [P(a)], ¬P(a)∨ [Q(f (y))],
where Q(f (y)) is selected because it is I-false: in this step α = {x← a} is applied to
unify the I-true literal ¬P(x) in ¬P(x)∨Q(f (y)) with the I-false selected literal P(a).

As we discussed at the beginning of this section, the purpose of extending Γ with
A�E is to modify I[Γ] to satisfy more ground instances of input clauses. It may
happen, however, that this is not possible, because A�E turns out to be in conflict
with I[Γ]. The generation of a conflict clause alerts the system that Γ cannot be
extended, but must be modified to repair I[Γ] and solve the conflict. Thus, in Section 4
the SGGS-extension inference scheme will be instantiated into four SGGS-extension
inference rules, one to add an I-all-true conflict clause, one to add a conflict clause
which is not I-all-true, and two to add a non-conflicting clause.

3.2 The SGGS-splitting Inference Scheme

As the clause sequence Γ grows by SGGS-extensions, it may happen that selected
literals of its clauses intersect. Since proper constrained ground instances of selected
literals form Ip(Γ), hence I[Γ], non-empty intersections of selected literals may rep-
resent duplications, if the literals have the same sign, or contradictions, if the literals
have opposite sign. In order to pull out, and then remove, duplications or contradic-
tions, SGGS needs to be able to partition a clause. We introduce first a notation that
allows us to focus on a literal in a clause even if it is not selected: let C〈L〉 denote a
clause C containing a literal L, which may be the selected literal but does not have to
be. The literal L is said to be specified in C〈L〉.

Definition 13 (Partition) A partition of A�C〈L〉, where A is satisfiable, is a set
{Ai �Ci〈Li〉}n

i=1 such that Gr(A�C) =
⋃n

i=1{Gr(Ai �Ci〈Li〉)}, the constrained lit-
erals Ai � Li are pairwise disjoint, all Ai’s are satisfiable, and the Li’s are chosen
consistently with L, that is, Li is an instance of L, for all i, 1≤ i≤ n.

This definition requires that A is satisfiable, because otherwise Gr(A�C) would
be empty, and an empty set cannot be partitioned.

Example 7 The set {true�〈P(f (z),y)〉∨Q(f (z),y), top(x) 6= f �〈P(x,y)〉∨Q(x,y)}
is a partition of true� 〈P(x,y)〉 ∨Q(x,y). On the other hand, {true�P(f (z),y)∨
〈Q(f (z),y)〉, top(x) 6= f �P(x,y)∨〈Q(x,y)〉} is not a partition of true� 〈P(x,y)〉∨
Q(x,y), because specified literals are not chosen consistently.

In order to pull out intersections, we need a more specific notion of partition
that isolates in an element of the partition the constrained ground instances that two
literals have in common:

Definition 14 (Splitting) A splitting of A�C〈L〉 by B�D[M] is a partition {Ai �

Ci〈Li〉}n
i=1 of A�C〈L〉 such that:

1. ∃ j, 1≤ j ≤ n, such that at(Gr(A j �L j))⊆ at(Gr(B�M)), and

16 M. P. Bonacina and D. A. Plaisted

2. ∀i, 1≤ i 6= j ≤ n, at(Gr(Ai �Li)) and at(Gr(B�M)) are disjoint.

A j�C j〈L j〉 is the representative of B�D[M] in the splitting of A�C〈L〉 by B�D[M].

Thus, at(Gr(A j �L j)) is the intersection of A�L and B�M. Computing split-
tings introduces constraints, including non-standard ones, even when C and D have
empty constraints to begin with, and this is why SGGS works with constrained clauses:

Example 8 Given C = true�P(x,y) and D = true�P(f (w),g(z)), a splitting of C
by D is {true�P(f (w),g(z)), top(x) 6= f �P(x,y), top(y) 6= g�P(f (x),y)}. On the
other hand, {true�P(f (w),g(z)), top(x) 6= f �P(x,y), top(y) 6= g�P(x,y)} is not
a splitting of C by D, because it is not a partition, since top(x) 6= f �P(x,y) and
top(y) 6= g�P(x,y) intersect: for instance, P(a,b) is a constrained ground instance
of both. In the correct splitting, P(a,b) is a constrained ground instance of top(x) 6=
f �P(x,y), not of top(y) 6= g�P(f (x),y).

A partition is trivial, if it is made of only one element, a clause equivalent to the
given one. For example, this happens if we try to split a clause by a more general one:

Example 9 Let A�C[L] be true�P(x, f (x)) and B�D[M] be z 6≡ y�P(z,y). Note
that Gr(A�C[L]) ⊆ Gr(B�D[M]). If we split C by D, the representative of D is
given by the intersection of A�L and B�M, that is, Aσ ∧Bσ �C[L]σ , where σ is
the mgu of at(L) and at(M). We have σ = {z← x,y← f (x)} and the representative is
x 6≡ f (x)�P(x, f (x)), which is equivalent to A�C[L] and can be reduced to A�C[L]
by constraint manipulation. Thus, the splitting and the partition are trivial.

Definition 15 (SGGS-splitting inference scheme) If Γ is an SGGS clause sequence
containing clauses A�C〈L〉 and B�D[M], such that L and M intersect, the SGGS-
splitting inference scheme replaces A�C〈L〉 by a splitting of A�C〈L〉 by B�D[M]
denoted split(A�C〈L〉,B�D[M]) or split(C,D) for short.

With a slight abuse of notation, from now on split(C,D) is treated as a sequence,
rather than a set as in Definition 14, so that it can replace a clause in a sequence. In
the next section the SGGS-splitting inference scheme will be instantiated into three
splitting inference rules, specifying which of the two clauses is subject to splitting.
An application of any splitting inference rule is a splitting inference. By isolating
intersections in representatives, splitting inferences have two effects. First, they make
selected literals disjoint, which grows the disjoint prefix; this is beneficial, because
d p(Γ) intuitively represents a possibly more stable part of Γ and I[Γ]. Second, they
create situations where all constrained ground instances of a selected literal (e.g., the
selected literal L j of the representative of D in split(C,D)) are constrained ground
instances of another one (e.g., the selected literal of D). If two such literals have
opposite sign, the SGGS-resolution inference rule resolves upon them. If they have
the same sign, the representative is disposable, and is deleted by SGGS-deletion, an
inference rule that removes from Γ all disposable clauses. In this way, the inference
system amends I[Γ] by eliminating contradictions and duplications between selected
literals. Thus, all inferences in SGGS are model-based: SGGS-extension works with
S and Γ to extend Γ and I[Γ]; all other rules work on Γ to modify I[Γ].

SGGS: Inference System and Completeness 17

4 The SGGS Inference Rules

Several SGGS inference rules employ an ordering on ground literals that also plays
a rôle in the completeness proof. The size ordering ≺s on ground atoms is defined
by L ≺s M, if |L| < |M|, where < is the ordering on the natural numbers. Given two
orderings < and <′ on a set, <′ extends < if <⊆<′, that is, if a < b implies a <′ b
for all a and b in the set:

Definition 16 (SGGS-suitable ordering) An ordering≺ on ground atoms is SGGS-
suitable if it is total and it extends the size ordering ≺s.

From now on, ≺ is an SGGS-suitable ordering on ground atoms. For literals L
and M, L≺M if and only if at(L)≺ at(M). Then, M � L if L≺M; L�M if L≺M
or L = M; and M � L if L�M. An SGGS-suitable ordering is trivially well-founded,
because ≺s is well-founded and the number of ground atoms of a given size is finite.
Orderings based on size have been traditionally used in theorem proving (e.g., [50]);
among more sophisticated orderings, Knuth-Bendix orderings [34,43] correlate well
with size and are commonly used. An SGGS-suitable ordering is defined on ground
literals because its purpose is to identify minimal elements in sets of constrained
ground instances of selected literals. Let M∞ be a special literal that is larger in ≺
than any other literal:

Definition 17 Given a constrained clause A�C[L] occurring in a sequence Γ , the
minimal constrained ground instance of A�L is

cmin(A�L) =
{

min≺{M : M ∈ Gr(A�L)} if Gr(A�L) 6= /0,
M∞ otherwise;

the minimal proper constrained ground instance of A�L is

pcmin(A�L,Γ) =

{
min≺{M : M ∈ pcgi(A�L,Γ)} if pcgi(A�L,Γ) 6= /0,
M∞ otherwise;

and the minimal complementary constrained ground instance of A�L is

ccmin(A�L,Γ) =

{
min≺{M : M ∈ ccgi(A�L,Γ)} if ccgi(A�L,Γ) 6= /0,
M∞ otherwise.

In the sequel, SGGS inference rules are presented in the form

Γ

Γ ′

which means that Γ ′ is inferred from Γ , and Γ and Γ ′ are used throughout as the
names of the sequences above and below the inference line. Concatenation of se-
quences is juxtaposition, and the symbol 2 is used as a place holder for anonymous
subsequences preserved by inferences: for instance, the inference

2C2D2

2D2C2

only exchanges clauses C and D in the sequence.

18 M. P. Bonacina and D. A. Plaisted

4.1 The SGGS-extension Inference Rules

We begin with the inference rules that instantiate the SGGS-extension inference
scheme: for the next four inference rules, let C ∈ S and B1�D1[M1], . . . ,Bn�Dn[Mn]
in d p(Γ), with n ≥ 0, be the main and side premises that generate extension clause
A�E = (

∧n
j=1 B jαβ)�Cαβ . Recall that all I-true literals in A�E are assigned to

the side premises (cf. Definition 12). The first rule handles the case where the exten-
sion clause is I-all-true. Because all its literals are assigned, it is a conflict clause:

Definition 18 (SGGS-extension with I-all-true conflict clause) If the extension
clause A�E is I-all-true, the SGGS-extension inference rule appends it to Γ :

Γ

Γ A�E[L]

and selects in E the literal L assigned to the side premise of largest index.

The selected literal L in A�E is chosen to satisfy Condition (4) in Definition 9.
Since L is assigned, pcgi(A�L,Γ ′) = /0, and A�E is in conflict with I[Γ ′] = I[Γ].

The second rule covers extension with a conflict clause that is not I-all-true. If all
I-false literals in A�E depend on I-true selected literals in d p(Γ), A�E is in conflict
with I[Γ]. However, this may hold for instances of A�E, rather than for A�E itself,
as I-false literals in A�E intersect I-true selected literals in d p(Γ). Thus, SGGS
seeks a most general substitution to capture such instances:

Definition 19 (SGGS-extension with non-I-all-true conflict clause) If the exten-
sion clause A�E is not I-all-true, and there exists a most general substitution λ such
that for all literals L ∈ f lits(E), there is an I-true selected literal H �P in d p(Γ) that
Aλ �Lλ depends on, the SGGS-extension inference rule appends Aλ �E[L]λ to Γ :

Γ

Γ Aλ �E[L]λ

where L is an arbitrary I-false literal in Eλ . The substitution λ is called extension
substitution and also Aλ �E[L]λ is called extension clause.

As all I-false literals of Aλ �Eλ are uniformly false in I[Γ], anyone of them can
be selected, so that in this case the inference rule leaves room for a heuristic choice;
Aλ �Eλ has no proper constrained ground instances (all its constrained ground in-
stances are complementary), and Aλ �Eλ is in conflict with I[Γ ′] = I[Γ]. An ap-
plication of SGGS-extension according to Definitions 18 or 19 is called conflicting,
because the added clause is a conflict clause. A literal is selected also in a conflict
clause: the selected literal will be relevant when the conflict is explained and solved.

If the extension clause is not in conflict with I[Γ], its addition extends Γ into
a Γ ′ such that I[Γ ′] 6= I[Γ]. Assume that A�E is not I-all-true, and at least one I-
false literal L ∈ f lits(E) does not intersect any I-true selected literal: no constrained
ground instance of A�L appears negated in Ip(Γ), so that if we select L, A�E[L] has
no complementary constrained ground instance, and by extending Γ with A�E[L]

SGGS: Inference System and Completeness 19

we would get a Γ ′ such that I[Γ ′] |= A�E[L]. However, asking that A� L has no
complementary constrained ground instance and I[Γ ′] |= A�E[L] is too much. All
we need is to select an L ∈ f lits(E) that has proper constrained ground instances,
so that I[Γ ′] |= pcgi(A� E[L],Γ ′), while A� E[L] may also have complementary
constrained ground instances. We begin by negating the condition that characterizes
a conflicting extension clause with I-false literals: A�E should have at least one
L ∈ f lits(E) that does not depend on any I-true selected literal in d p(Γ). However,
this is too weak: if all constrained ground instances of L appear among the proper
constrained ground instances of an I-false selected literal in Γ , also L will not have
proper constrained ground instances. Thus, we require that A�E has an L ∈ f lits(E)
such that at(Gr(A� L)) 6⊆ at(pcgi(H �P,Γ)) for all selected literals H �P in Γ .
However, this condition need not apply to the whole Γ . It suffices to find a prefix of
Γ such that A�E has proper constrained ground instances if appended to that prefix.
We consider first the case where such prefix is Γ itself:

Definition 20 (Non-conflicting non-critical SGGS-extension) If the extension clau-
se A�E is not I-all-true, and for some L ∈ f lits(E), at(Gr(A�L)) 6⊆ at(pcgi(H �

P,Γ)) for all selected literals H �P in Γ , then any such literal L can be selected,
provided pcgi(A� L,Γ A�E[L]) 6= /0, in which case the SGGS-extension inference
rule appends A�E[L] to Γ :

Γ

Γ A�E[L]

Here too the inference rule leaves room for heuristic choice of selected literal
among the I-false ones. We consider next the case where the prefix is proper:

Definition 21 (Critical SGGS-extension) If the extension clause A � E is not I-
all-true, and there are a literal L ∈ f lits(E) and a proper prefix Γ 1 of Γ such that
at(Gr(A� L)) 6⊆ at(pcgi(H �P,Γ 1)) for all selected literals H �P in Γ 1, all side
premises are in Γ 1, Γ = Γ 1J �N[O]Γ 2 for a clause J �N[O] such that pcmin(A�

L,Γ 1A�E[L]) ≺ pcmin(J �O,Γ 1J �N[O]), Γ 2 6= ε , and Γ 1 is the shortest such
prefix, the SGGS-extension inference rule replaces J�N[O] with A�E[L]:

Γ 1J�N[O]Γ 2

Γ 1A�E[L]Γ 2

In this case a heuristic choice of selected literal applies only if A�E has more
than one literal L∈ f lits(E) satisfying the conditions of the rule for the same shortest
prefix Γ 1 and clause J�N[O]. An SGGS-extension according to Definitions 20 or 21
is called non-conflicting, because the extension clause is not in conflict, and it is
called critical when the extension clause is not appended at the end of the sequence.
Since SGGS-extension with non-I-all-true conflict clause may apply only after other
inferences placed I-true selected literals in d p(Γ), in order to include this kind of
SGGS-extension, we allow the next example to feature simple instances of SGGS-
move and SGGS-resolution, whose formal definitions appear in Section 4.3:

Example 10 Let S be {¬P(a)∨¬R(y,x), P(a), ¬P(f (x))∨¬Q(x), P(f (x)), ¬P(y)∨
R(z, f (z)) ∨Q(y)} with I all-positive. Starting with Γ0 = ε , I[Γ0] = I 6|= ¬P(a) ∨

20 M. P. Bonacina and D. A. Plaisted

¬R(y,x): in fact, ¬P(a)∨¬R(y,x) is I-all-false. A non-conflicting non-critical SGGS-
extension yields Γ1 = [¬P(a)]∨¬R(y,x). In this example we assume a heuristic that
selects the leftmost eligible literal whenever there is a choice. Next, I[Γ1] 6|= P(a):
P(a) is in conflict with I[Γ1]. SGGS-extension with I-all-true conflict clause gener-
ates Γ2 = [¬P(a)]∨¬R(y,x), [P(a)]. To solve the conflict, SGGS moves P(a) left
of ¬P(a), so that Γ3 = [P(a)], [¬P(a)] ∨ ¬R(y,x), and resolves them, producing
Γ4 = [P(a)], [¬R(y,x)]. As I[Γ4] 6|= ¬P(f (x))∨¬Q(x), non-conflicting non-critical
SGGS-extension yields Γ5 = [P(a)], [¬R(y,x)], [¬P(f (x))]∨¬Q(x). Now P(f (x))
is in conflict with I[Γ5] and SGGS-extension with I-all-true conflict clause produces
Γ6 = [P(a)], [¬R(y,x)], [¬P(f (x))]∨¬Q(x), [P(f (x))]. SGGS-move generates Γ7 =
[P(a)], [¬R(y,x)], [P(f (x))], [¬P(f (x))]∨¬Q(x); and SGGS-resolution yields Γ8 =
[P(a)], [¬R(y,x)], [P(f (x))], [¬Q(x)]. At this stage I[Γ8] 6|=¬P(y)∨R(z, f (z))∨Q(y).
While in all SGGS-extensions so far α is empty, α = {y1← z,x1← f (z),x3← y} is
the simultaneous mgu of literals R(z, f (z)) and Q(y) in C =¬P(y)∨R(z, f (z))∨Q(y)
with ¬R(y1,x1) and ¬Q(x3) in Γ8 = [P(a)], [¬R(y1,x1)], [P(f (x2))], [¬Q(x3)] (after
variable renaming), so that the extension clause is Cα =C. The I-false literal ¬P(y)
in C intersects both I-true literals P(a) and P(f (x)) in d p(Γ). Extension substitution
λ1 = {y← a} yields the conflict clause ¬P(a)∨R(z, f (z))∨Q(a), and extension sub-
stitution λ2 = {y← f (x)} yields the conflict clause ¬P(f (x))∨R(z, f (z))∨Q(f (x)).
Thus, two instances of SGGS-extension with non-I-all-true conflict clause may apply.

This example also shows that there may be more than one extension substitution
for a given Γ and extension clause.

4.2 Splitting Inference Rules

We consider next the splitting inference rules that instantiate the SGGS-splitting
inference scheme (cf. Definition 15). These rules employ the following criteria to
choose the first clause of a partition viewed as a subsequence:

Definition 22 (Preferred clause in a partition) Whenever an SGGS inference Γ `
Γ ′ replaces a clause A�C〈L〉 by its partition {Ai �Ci〈Li〉}n

i=1, the preferred clause
in the partition is the clause Ak �Ck〈Lk〉, for some k, 1≤ k ≤ n, such that

1. If pcgi(A�C,Γ) 6= /0, then pcmin(Ak �Lk,Γ
′) = min≺{pcmin(Ai�Li,Γ

′) : 1≤
i≤ n}; and

2. If pcgi(A�C,Γ) = /0 and ccgi(A�C,Γ) 6= /0, then ccmin(Ak �Lk,Γ
′) =

min≺{ccmin(Ai �Li,Γ
′) : 1≤ i≤ n}.

These criteria will make sense with the completeness proof (cf. Section 8). The
preferred clause is uniquely defined because ≺ is total on ground literals. In the first
splitting inference rule a clause splits a clause of larger index:

Definition 23 (Splitting by similar/dissimilar literal) If A�C[L] occurs to the left
of B�D〈M〉 and in d p(Γ), L and M intersect, and

– Either they have the same sign and truth value in I (similar literal),

SGGS: Inference System and Completeness 21

– Or they have opposite sign and truth value in I (dissimilar literal), and M is the
selected literal in clause D,

the splitting inference rule replaces D by split(D,C) = D1, . . . ,Dn:

2C2D2

2C2split(D,C)2

where D1 is the preferred clause in the partition, and the I-true literals in D1, . . . ,Dn
are assigned to the same clauses that the corresponding literals in D were assigned to.

Since all literals of all clauses in a sequence are either I-true or I-false, having the
same truth value in I means both I-true or both I-false, while having opposite truth
value in I means that one is I-true and the other is I-false. Clauses in split(D,C) may
be deleted without affecting completeness, even if they are not disposable, provided
D1 is kept. Splitting by similar literal is abbreviated similar splitting or s-splitting,
and splitting by dissimilar literal is abbreviated dissimilar splitting or d-splitting.

Example 11 Assume that I is all-positive and two SGGS-extension steps create the
sequence ¬P(a,x),¬P(x,b): s-splitting ¬P(x,b) by ¬P(a,x) generates the sequence
¬P(a,x),¬P(a,b),x 6≡ a�¬P(x,b), where ¬P(a,b) is disposable, so that its deletion
yields ¬P(a,x),x 6≡ a�¬P(x,b).

The next lemma proves that disposability of the representative holds in general
for s-splitting:

Lemma 3 If Γ ′ is inferred from Γ by s-splitting B�D〈M〉 by A�C[L], the represen-
tative of A�C[L] in split(D,C) is disposable in Γ ′.

Proof Let B j �D j〈M j〉 be the representative of C in split(D,C). By Definition 14,
this means that at(Gr(B j �M j)) ⊆ at(Gr(A� L)). Since s-splitting applied, L and
M, hence L and M j, have the same sign, so that we also have Gr(B j �M j)⊆ Gr(A�

L). Since C is in d p(Γ), by Definition 5, we have that Gr(A�C[L]) = pcgi(A�

C[L],Γ) = pcgi(A�C[L],Γ ′), and Gr(A� L) = pcgi(A� L,Γ) = pcgi(A� L,Γ ′).
Let i and k, with i < k, be the indices of C and D j, respectively, in Γ ′: we have
Gr(A� L) ⊆ Ip(Γ ′|k−1). From this and Gr(B j �M j) ⊆ Gr(A� L), it follows that
Ip(Γ ′|k−1) satisfies B j �D j〈M j〉 which is therefore disposable. 2

This proof does not require M to be selected, and this is why s-splitting may split
a clause on a literal other than the selected one: if it were restricted to the case where
M is selected, we could fail to isolate intersections and remove disposable clauses
(cf. also Lemma 7 in Section 5).

The second splitting inference rule is called left splitting, because it splits the
clause of smaller index: this happens only to cover the intersection between the
selected literal M of an I-all-true clause B � D[M] and the I-false literal L of the
clause A �C[L] in d p(Γ) that M is assigned to. For example, B � D[M] is an I-
all-true conflict clause added by SGGS-extension and A�C[L] the rightmost side
premise (cf. Definition 18). By definition of assignment, dependence, and disjoint
prefix, we have ¬Gr(B�M)⊆ pcgi(A�L,Γ) = Gr(A�L), so that at(Gr(B�M))⊆

22 M. P. Bonacina and D. A. Plaisted

at(Gr(A�L)). The inference rule requires that ¬Gr(B�M) ⊂ pcgi(A�L,Γ), be-
cause if ¬Gr(B�M) = pcgi(A� L,Γ), then at(Gr(B�M)) = at(Gr(A� L)) and
there is no point in splitting A�C[L] by B�D[M], as A�L does not have instances
outside of the intersection:

Definition 24 (Left splitting) If A�C[L] occurs to the left of B�D[M] and in d p(Γ),
D is I-all-true, M is assigned to C with ¬Gr(B�M)⊂ pcgi(A�L,Γ), and there is no
other literal of D that is assigned to C and unifies with M, the left splitting inference
rule replaces C by split(C,D) =C1, . . . ,Cn:

2C2D2

2split(C,D)2D2

where C1 is the preferred clause in the partition and M is assigned to the representative
of D in split(C,D).

Here too it is permissible to delete clauses in split(C,D) as long as C1 and the rep-
resentative of D in split(C,D) are kept. Let A j�C j[L j] be the representative: by com-
bining at(Gr(B�M)) ⊂ at(Gr(A�L)) (cf. the above discussion and Definition 24)
with at(Gr(A j �L j))⊆ at(Gr(B�M)) (cf. Condition (1) of Definition 14), we have
at(Gr(A j �L j)) = at(Gr(B�M)), and moreover ¬Gr(B�M) = pcgi(A j �L j,Γ),
because A�C[L] is in d p(Γ) by Definition 24 and A j �C j[L j] is in d p(Γ ′) by Con-
dition (2) of Definition 14. The purpose of left splitting is precisely to transform a Γ

where the selected literal M of an I-all-true conflict clause B�D[M] is assigned to
A�C[L] in d p(Γ) with ¬Gr(B�M)⊂ pcgi(A�L,Γ), into a Γ ′ where M is assigned
to A j �C j[L j] in d p(Γ ′) with ¬Gr(B�M) = pcgi(A j � L j,Γ

′). This condition is
relevant to the inference rule SGGS-move, that we consider next.

4.3 Conflict-Solving Inference Rules: SGGS-move and SGGS-resolution

The purpose of SGGS-move is to solve the conflict represented by an I-all-true con-
flict clause B�D[M] by moving it to the left of the clause A�C[L] in d p(Γ) that
M is assigned to. This move requires that no literal of D other than M is assigned to
C, because if M′ ∈ D were also assigned to C, then M′ would have nowhere to be
assigned after the move. The non-unifiability condition in the definition of left split-
ting (cf. Definition 24) ensures precisely that no literal other than M in B�D[M] gets
assigned to the representative of B�D[M] in the splitting produced by left splitting,
so that after a left splitting inference the requirement for SGGS-move is satisfied.
Of course, SGGS-move can be applied also without being preceded by left splitting:
if ¬Gr(B�M) ⊂ pcgi(A�L,Γ), SGGS applies first left splitting and then SGGS-
move; if ¬Gr(B�M) = pcgi(A�L,Γ), SGGS applies SGGS-move directly.

Definition 25 (SGGS-move) If A�C[L] occurs to the left of B�D[M] and in d p(Γ),
D is I-all-true, M is assigned to C, no other literal of D is assigned to C, and ¬Gr(B�

M) = pcgi(A�L,Γ), the SGGS-move inference rule moves D to the left of C:

2C2D2

2DC22

SGGS: Inference System and Completeness 23

The condition that no literal of D besides M is assigned to C plays a rôle in the
proof of the following lemma, which shows the effects of an SGGS-move step:

Lemma 4 If Γ ` Γ ′ is an SGGS-move step that moves B�D[M] to the left of A�

C[L], B�D[M] is in d p(Γ ′) and at(pcgi(B�M,Γ ′)) = at(pcgi(A�L,Γ)).

Proof Let i be the position of C in Γ and of D in Γ ′, so that Γ |i−1 = Γ ′|i−1. By
definition of SGGS-move, M is assigned to i in Γ and no literal of D is assigned to
i. Since the selected literal is assigned rightmost (cf. Condition (4) in Definition 9),
all the literals of D other than M are assigned to indices strictly smaller than i. This
means that they are uniformly false in I[Γ |i−1] = I[Γ ′|i−1]. It follows that for all
D′[M′] ∈ Gr(B�D[M]), no literal other than M′ can be in Ip(Γ ′|i−1). By definition
of SGGS-move, ¬Gr(B�M) = pcgi(A�L,Γ), so that for all M′ ∈Gr(B�M), there
is an L′ ∈ pcgi(A�L,Γ) such that M′=¬L′. Neither M′ nor¬M′ can be in Ip(Γ ′|i−1):
if M′ were in Ip(Γ ′|i−1), L′ would be a ccgi and not a pcgi; if ¬M′ were in Ip(Γ ′|i−1),
L′ would be also, and it would not be a pcgi. Thus, pcgi(B�M,Γ ′) = Gr(B�M),
B�D[M] is in d p(Γ ′), and at(pcgi(B�M,Γ ′)) = at(pcgi(A�L,Γ)). 2

The effect of an SGGS-move on the induced interpretation is that where I[Γ] con-
tains pcgi(A�L,Γ), I[Γ ′] contains instead pcgi(B�M,Γ ′): since A�L and B�M
have the same (proper) constrained ground instances with opposite sign, the effect
of the move is to flip at once the truth value of all (possibly infinitely many) ground
atoms in at(Gr(B�M)) = at(Gr(A�L)). SGGS-move realizes at the first-order level
the effect of a backjump (which flips the truth value of a propositional literal) in
CDCL. The conflict is solved and B�D[M] enters d p(Γ ′) to be the justification of
its selected literal M that remains unassigned and is an implied literal. Since con-
flicting I-all-true clauses are appended by SGGS-extension at the rightmost end of
the sequence and they become justifications by entering the disjoint prefix when the
conflict is solved by SGGS-move, it follows that all justifications are in the disjoint
prefix. SGGS-move is also the analogue of learning in CDCL: the system learns
B�D[M] by putting it in d p(Γ ′).

An I-all-true clause B�D[M] can resolve with a clause on its right, resolving
upon its implied literal M and a selected I-false literal that depends on M:

Definition 26 (SGGS-resolution) If B�D[M] occurs to the left of A�C[L] and in
d p(Γ), B�D[M] is I-all-true, L is I-false, L=¬Mϑ for some substitution ϑ , and A |=
Bϑ , the SGGS-resolution inference rule generates the SGGS-resolvent Res(C,D) =
A�R, where R is (C \{L})∪ (D\{M})ϑ , and replaces C by Res(C,D):

2D2CΓ †

2D2Res(C,D)Γ ††

where Γ †† is Γ † with all clauses including literals assigned to C deleted, and for all
Pϑ ∈ tlits(R), Pϑ is assigned to the same clause that literal P∈ tlits(C)∪tlits(D) was
assigned to. An application of this rule is denoted by res(A�C[L],B�D[M],A�R).

Assignments can be inherited, because if P depends on a literal, so does Pϑ . Thus,
all I-true literals in an SGGS-resolvent are assigned. If an SGGS-resolvent is I-all-
true, its literal assigned rightmost is selected. Otherwise, an I-false literal is selected,

24 M. P. Bonacina and D. A. Plaisted

and if an SGGS-resolvent has more than one, a heuristic choice will apply. Since
B�D[M] is I-all-true and in d p(Γ), B�D[M] is a justification and M an implied
literal. The conditions L =¬Mϑ and A |= Bϑ mean that ¬Gr(A�L)⊆Gr(B�M) =
pcgi(B�M,Γ). Thus, SGGS-resolution resolves the I-true implied literal B�M with
a selected I-false literal A�L that depends on B�M. After moving B�D[M] to the
disjoint prefix, the system “cleans” the sequence by resolving away literals made
uniformly false by the move:

Lemma 5 If A�C[L] and B�D[M] SGGS-resolve in Γ , then pcgi(A�L,Γ) = /0.

Proof It follows from ¬Gr(A�L)⊆ pcgi(B�M,Γ). 2

SGGS-resolution is the only SGGS inference that can generate ⊥. It removes
A�C[L] from Γ , because it does not contribute to I[Γ], and replaces it by either ⊥ or
an A�R that may contribute proper or complementary constrained ground instances:

Lemma 6 If A�C[L] and B�D[M] SGGS-resolve, A�C[L] is not disposable, and
Res(C,D) 6=⊥, then Res(C,D) is not disposable.

Proof Let Γ ` Γ ′ be an SGGS-resolution step with premises A�C[L] and B�D[M],
where Γ = Γ 1DΓ 2CΓ †, and Γ ′ = Γ 1DΓ 2Res(C,D)Γ †† according to Definition 26.
Since pcgi(A�L,Γ) = /0 by Lemma 5, but A�C[L] is not disposable by hypothesis,
it follows that ccgi(A�L,Γ) 6= /0. Let C′[L′] be a ccgi of A�C[L]. Since ¬Gr(A�

L) ⊆ Gr(B�M) = pcgi(B�M,Γ), there exists a D′[M′] ∈ Gr(B�D[M]) such that
¬L′ = M′. Without loss of generality, let Γ 1 be the longest prefix of Γ not containing
D, and Γ ′′ = Γ 1DΓ 2 the longest prefix of Γ not containing C. Consider the cgi (C′ \
{L′})∪ (D′ \ {M′}) of Res(C,D). We show that this cgi has no intersection with
Ip(Γ ′′). For the literals in C′ \ {L′}, this follows from the fact that C′ is a ccgi of C
(cf. Definition 4). For any literal Q′ in D′ \ {M′}, let Q be the literal in D \ {M} of
which Q′ is instance. Since D is I-all-true, Q is I-true; since Q is not M, Q is assigned
to some clause E[P] in Γ 1. Thus, Q′ appears negated among the pcgi’s of P, that
are included in Ip(Γ 1) and in Ip(Γ ′′). Therefore Q′ cannot occur in Ip(Γ ′′), because
otherwise Ip(Γ ′′) would be inconsistent. Since at least a cgi of Res(C,D) does not
intersect Ip(Γ ′′), Res(C,D) is not disposable in Γ ′. 2

Left splitting and SGGS-resolution apply to dual situations: left splitting applies
when an I-true selected literal depends on an I-false selected literal in d p(Γ); SGGS-
resolution applies when an I-false selected literal depends on an I-true selected literal
in d p(Γ). When left splitting, SGGS-move, and SGGS-resolution are applied in this
order, an I-all-true conflict clause splits the clause that its selected literal is assigned
to, moves left of its representative in the splitting, and then resolves with it.

4.4 More Splitting Inference Rules and Bookkeeping Rules

The splitting inference rules also comprise SGGS-factoring. This rule applies when
left splitting does not (cf. Definition 24), because the I-all-true conflict clause B�

D[M] has more than one literal assigned to the clause A�C[L] which M is assigned
to. If these literals unify, SGGS-factoring generates a factor of the I-all-true clause,
and splits the I-all-true clause by its factor:

SGGS: Inference System and Completeness 25

Definition 27 (SGGS-factoring) If A�C[L] occurs to the left of B�D[M] and in
d p(Γ), D is I-all-true, M is assigned to C, and there is another literal Q in D, that is
assigned to C, has the same sign as M, and unifies with M with most general unifier
ϑ , the SGGS-factoring inference rule generates the factor D f = Bϑ �D[M]ϑ , and
replaces D by split(D,D f) = D1, . . . ,Dn:

2C2D2

2C2split(D,D f)2

where D1 is the preferred clause in the partition, D f is its own representative in
split(D,D f), and for all Pϑ ∈ tlits(D f), Pϑ is assigned to the same clause that literal
P ∈ tlits(D) was assigned to.

Note that D f is also I-all-true and a conflict clause, and it is its own representa-
tive in split(D,D f) by Definition 14. Similar to SGGS-resolution (cf. Definition 26)
assignments are inherited. In particular, the selected literal Mϑ of D f is assigned to
C. As before, clauses in split(D,D f) can be deleted as a heuristic, except for D1 and
D f , which must be kept. If Mϑ still unifies with other literals of D f , then additional
SGGS-factoring steps can be applied to C and D f . If Mϑ does not unify with any
other literals of D f , then left splitting can be applied to C and D f . Thus, the sequence
left splitting, SGGS-move, and SGGS-resolution can be preceded by one or more
SGGS-factoring steps.

The SGGS inference system also features a few bookkeeping rules. The first one
deletes disposable clauses, because they are useless to find a refutation or a different
model, since they are satisfied by I[Γ] (cf. Definition 6):

Definition 28 (SGGS-deletion) The SGGS-deletion inference rule deletes any dis-
posable clause in Γ :

Γ

Γ ′

where Γ ′ is Γ with all disposable clauses removed.

SGGS-deletion helps keeping the clause sequence from growing too long. SGGS-
sorting reorders clauses in d p(Γ) so that clauses with small minimal proper con-
strained ground instance migrate as far as possible to the left:

Definition 29 (SGGS-sorting) If A�C[L] occurs to the left of B�D[M], both are in
d p(Γ), no literal of D is assigned to C, and pcmin(B�M,Γ)≺ pcmin(A�L,Γ), the
SGGS-sorting inference rule reorders them:

2CDΓ †

2DCΓ ††

where Γ †† is Γ † with F [Q] replaced by F [P] if there is an I-all-true clause F whose
literals Q and P are assigned to D and C, respectively.

26 M. P. Bonacina and D. A. Plaisted

The latter provision ensures that a selected literal remains assigned rightmost (cf.
Condition (4) in Definition 9). SGGS-sorting can be applied multiple consecutive
times. It is not needed for completeness, but it might help to generate proofs faster.
The last rule, named recursive partitioning, uses the notion of literal mapping: given
sets of literals M = {M1, . . . ,Mk} and L = {L1, . . . ,Ln}, a literal mapping from M
to L is a function f : {1, . . . ,k}→ {1, . . . ,n}.

Definition 30 A literal mapping f from M = {M1, . . . ,Mk} to L = {L1, . . . ,Ln} is
compatible, if there exists a simultaneous most general unifier ϑ f such that for all
i, 1 ≤ i ≤ k, Miϑ f = ¬L f (i)ϑ f , assuming that for all i, j, 1 ≤ i 6= j ≤ n, vars(Li)∩
vars(L j) = /0.

Recursive partitioning applies after a splitting inference replaces a clause by a
partition where the specified literal is the selected one:

Definition 31 (Recursive partitioning) Let A�C[L] be a clause that was replaced
by its partition ΓC = {Ai�Ci[Li]}n

i=1, B�D a clause with literals assigned to A�C[L],
L = {L1, . . . ,Ln} the set of the selected literals in ΓC, and M = {M1, . . . ,Mk} the set
of the literals of D that were assigned to C. The recursive partitioning inference rule
replaces B�D by its partition ΓD:

2ΓC2D2

2ΓC2ΓD2

made of all clauses [(
∧k

i=1 A f (i)ϑ f)∧Bϑ f]�Dϑ f such that f is a compatible literal
mapping from M to L , and the constraint (

∧k
i=1 A f (i)ϑ f)∧Bϑ f is satisfiable. For all

i, 1 ≤ i ≤ k, the literal Miϑ f in [(
∧k

i=1 A f (i)ϑ f)∧Bϑ f]�Dϑ f is assigned to A f (i)�

C f (i)[L f (i)]; and the first clause in ΓD is the preferred clause in the partition.

The fact that M ∈ M was assigned to A �C[L], means that ¬Gr(B � M) ⊆
pcgi(A� L,Γ) ⊆ Gr(A� L). When A�C[L] gets partitioned into {Ai �Ci[Li]}n

i=1,
the sets Gr(Ai �Li) are subsets of Gr(A�L), and that is why recursive partitioning
considers all the ways the literals in M can be unified with literals of opposite sign
in L . If other clauses have literals assigned to B�D, they may be partitioned in turn.
Alternatively, an SGGS-strategy may simply delete clauses with literals assigned to
a partitioned one: such deletions, like those embedded in SGGS-resolution (cf. Def-
inition 26) represent a (partial) restart of the search, resembling a restart in CDCL.
We use partitioning inferences to include splitting inferences and recursive partition-
ing inferences. A partitioning inference is trivial if it replaces a clause by a trivial
partition. The following example showcases several SGGS inference rules:

Example 12 Consider the set S = {¬P(f (x))∨¬Q(g(x))∨R(x), P(x), Q(y), ¬R(c)}
with all-negative I, and a heuristic that selects the rightmost eligible literal whenever
there is a choice. The steps of an SGGS-derivation are as follows:

1. Clause P(x) is not satisfied by I, and therefore non-critical non-conflicting SGGS-
extension adds it to Γ0 = ε producing Γ1 = [P(x)]. I[Γ1] satisfies all ground in-
stances of P(x) and no other positive literal.

SGGS: Inference System and Completeness 27

2. As clause Q(y) is not satisfied by I[Γ1], another non-critical non-conflicting SGGS-
extension yields Γ2 = [P(x)], [Q(y)], so that I[Γ2] satisfies all ground instances of
P(x) and Q(y) and no other positive literal.

3. Since I[Γ2] does not satisfy ¬P(f (x))∨¬Q(g(x))∨R(x), a third non-critical non-
conflicting SGGS-extension generates Γ3 = [P(x)], [Q(y)], ¬P(f (x))∨¬Q(g(x))∨
[R(x)], where ¬P(f (x)) is assigned to P(x), ¬Q(g(x)) is assigned to Q(y), and
I[Γ3] satisfies all ground instances of P(x), Q(y), and R(x), but no other positive
literal.

4. As ¬R(c) is in conflict with I[Γ3], SGGS-extension with I-all-true conflict clause
gives Γ4 = [P(x)], [Q(y)], ¬P(f (x))∨¬Q(g(x))∨ [R(x)], [¬R(c)] with ¬R(c)
assigned to R(x) and I[Γ4] = I[Γ3]. This is the first stage where the disjoint prefix
does not coincide with the whole sequence, as ¬R(c) remains outside of d p(Γ4).

5. The conditions for a left splitting step are fulfilled, and I-all-true clause ¬R(c)
splits clause ¬P(f (x))∨¬Q(g(x))∨R(x), yielding Γ5 = [P(x)], [Q(y)], x 6≡ c�
¬P(f (x))∨¬Q(g(x))∨ [R(x)], ¬P(f (c))∨¬Q(g(c))∨ [R(c)], [¬R(c)]. Clearly,
¬R(c) is still in conflict with I[Γ5] = I[Γ4].

6. Next SGGS-move puts ¬R(c) on the left of its representative in the splitting,
namely ¬P(f (c))∨¬Q(g(c))∨ [R(c)], resulting in Γ6 = [P(x)], [Q(y)], x 6≡ c�
¬P(f (x))∨¬Q(g(x))∨ [R(x)], [¬R(c)], ¬P(f (c))∨¬Q(g(c))∨ [R(c)]. The ef-
fect is to flip the truth value of ¬R(c) from false to true, solving the conflict that
it represented, and putting ¬R(c) in the disjoint prefix, as the justification of its
sole literal. Now clause ¬P(f (c))∨¬Q(g(c))∨ [R(c)] is in conflict with I[Γ6] and
it is not I-all-true.

7. SGGS-resolution explains this conflict by resolving the I-false literal R(c) in
¬P(f (c))∨¬Q(g(c))∨ [R(c)] with the implied literal ¬R(c) that makes it false
in I[Γ6]. The outcome is Γ7 = [P(x)], [Q(y)], x 6≡ c �¬P(f (x))∨¬Q(g(x))∨
[R(x)], [¬R(c)], ¬P(f (c))∨ [¬Q(g(c))], where the last clause is I-all-true and in
conflict with I[Γ7] = I[Γ6].

8. Thus, left-splitting splits the second clause by the last, so as to isolate the inter-
section between Q(y) and ¬Q(g(c)): Γ8 = [P(x)], top(y) 6= g� [Q(y)], z 6≡ c�
[Q(g(z))], [Q(g(c))], x 6≡ c�¬P(f (x))∨¬Q(g(x))∨ [R(x)], [¬R(c)], ¬P(f (c))∨
[¬Q(g(c))] with I[Γ8] = I[Γ7].

9. Now SGGS-move places the I-all-true conflict clause ¬P(f (c))∨ [¬Q(g(c))] on
the left of its representative in the splitting, getting Γ9 = [P(x)], top(y) 6= g�
[Q(y)], z 6≡ c� [Q(g(z))], ¬P(f (c))∨ [¬Q(g(c))], [Q(g(c))], x 6≡ c�¬P(f (x))∨
¬Q(g(x))∨ [R(x)], [¬R(c)]. The effect is to flip the truth value of ¬Q(g(c)) from
false to true, solving the conflict represented by ¬P(f (c))∨¬Q(g(c)), that enters
the disjoint prefix as the justification of its selected literal. Literal Q(g(c)) is false
in I[Γ9], and because it is the only literal in its clause, we have a conflict clause
made of a single I-false literal.

10. SGGS-resolution explains this conflict by resolving Q(g(c)) with the implied
literal ¬Q(g(c)) in the disjoint prefix, producing Γ10 = [P(x)], top(y) 6= g �

[Q(y)], z 6≡ c�[Q(g(z))], ¬P(f (c))∨[¬Q(g(c))], [¬P(f (c))], x 6≡ c�¬P(f (x))∨
¬Q(g(x))∨ [R(x)], [¬R(c)], where the resolvent ¬P(f (c)) is I-all-true and in con-
flict with I[Γ10] = I[Γ9].

28 M. P. Bonacina and D. A. Plaisted

11. To pull out the intersection between P(x) and ¬P(f (c)) left-splitting applies to
split P(x): Γ11 = top(x) 6= f � [P(x)], y 6≡ c� [P(f (y))], [P(f (c))], top(y) 6= g�
[Q(y)], z 6≡ c�[Q(g(z))], ¬P(f (c))∨[¬Q(g(c))], [¬P(f (c))], x 6≡ c�¬P(f (x))∨
¬Q(g(x))∨ [R(x)], [¬R(c)] with I[Γ11] = I[Γ10].

12. This enables SGGS-move to move ¬P(f (c)) to the left of P(f (c)): Γ12 = top(x) 6=
f � [P(x)], y 6≡ c� [P(f (y))], [¬P(f (c))], [P(f (c))], top(y) 6= g� [Q(y)], z 6≡ c�
[Q(g(z))], ¬P(f (c))∨[¬Q(g(c))], x 6≡ c�¬P(f (x))∨¬Q(g(x))∨[R(x)], [¬R(c)].
The effect is to flip the truth value of ¬P(f (c)) from false to true, solving the con-
flict that ¬P(f (c)) represented.

13. The ensuing SGGS-resolution of ¬P(f (c)) and P(f (c)) reveals the inconsis-
tency: Γ13 = top(x) 6= f � [P(x)], y 6≡ c� [P(f (y))], [¬P(f (c))], ⊥, top(y) 6= g�
[Q(y)], z 6≡ c� [Q(g(z))], ¬P(f (c))∨ [¬Q(g(c))], x 6≡ c�¬P(f (x))∨¬Q(g(x))∨
[R(x)], [¬R(c)]; and this terminates the derivation.

5 The Lifting Theorem and Other Properties of the SGGS Inference System

In this section we prove two main results about SGGS: first we show that if Γ 6=
d p(Γ), that is, the disjoint prefix is a proper prefix of Γ , an inference rule other than
SGGS-extension applies to Γ . Then, we prove a lifting theorem which shows that if
Γ = d p(Γ) and I[Γ] 6|= S, an SGGS-extension inference rule applies. We begin with
two preparatory lemmas. The first one uses the invariant that all literals in a sequence
are either I-true or I-false (cf. Condition (1) in Definition 1). In the following we use
the notation πi[Γ] for the clause of index i in Γ that was introduced after Definition 1.

Lemma 7 If π j[Γ] has a constrained ground instance D′ such that Ip(Γ | j−1)∩D′ 6=
/0, splitting by similar literal applies to Γ .

Proof If π j[Γ] = B�D has a constrained ground instance D′ such that Ip(Γ | j−1)∩
D′ 6= /0, by Definition 3, there must be a πi[Γ] = A�C[L] for some i < j, such that
some literal M′ of D′ is in pcgi(A � L,Γ). Let M be a literal of D such that M′

is instance of M. It follows that L and M have the same sign. Since all literals of
all clauses in a sequence are either I-true or I-false, and L and M have the ground
instance M′ in common, it also follows that either both L and M are I-true or both L
and M are I-false. Thus, s-splitting applies to A�C[L] and B�D〈M〉. 2

Lemma 8 If the selected literals of πi[Γ] and π j[Γ] intersect, for some 1 ≤ i 6= j ≤
|Γ |, an SGGS inference rule other than SGGS-extension applies to Γ .

Proof Without loss of generality, let πi[Γ] = A�C[L] and π j[Γ] = B�D[M], where
i < j, so that C occurs to the left of D, and (i, j) is the smallest pair of indices
satisfying the hypothesis, with pairs of indices compared in the lexicographic ex-
tension of the ordering on the integers to pairs of integers. Any prefix of Γ |i does
not include a pair of intersecting literals, and therefore is a prefix of d p(Γ). This
means that A�C[L] is in d p(Γ), so that Gr(A�L) = pcgi(A�L,Γ). By hypothesis,
at(Gr(A�L))∩at(Gr(B�M)) 6= /0. Then, we distinguish two cases:

SGGS: Inference System and Completeness 29

– at(Gr(B�M))⊆ at(Gr(A�L)) = at(pcgi(A�L,Γ)): if L and M have the same
sign, D is disposable and SGGS-deletion applies. Let L and M have opposite sign.
If L is I-true and M is I-false, SGGS-resolution applies to C and D. If L is I-false
and M is I-true, then M can be assigned, and therefore it is, by Condition (3) in
Definition 9. If M were assigned to πk[Γ], for some k, i < k < j, then (i, j) would
not be the smallest pair satisfying the hypotheses, as (i,k) would be smaller. Thus,
M is assigned to C, and either SGGS-factoring or left splitting or SGGS-move
applies to C and D.

– at(Gr(B�M)) 6⊆ at(Gr(A�L)): if L and M have the same sign and truth value
in I, splitting by similar literals applies. If L and M have opposite sign and truth
value in I, splitting by dissimilar literals applies. 2

Theorem 3 For all SGGS clause sequences Γ , if Γ 6= d p(Γ), an SGGS inference
rule other than SGGS-extension applies to Γ .

Proof If d p(Γ) is a proper prefix of Γ , it means that there is an i, 1 ≤ i ≤ |Γ |,
such that πi(Γ) is not in d p(Γ). Let B�D[M] be πi(Γ). By Definition 5, Gr(B�

D[M]) 6= pcgi(B�D[M],Γ), which means there is a D′[M′] ∈ Gr(B�D[M]) such
that D′[M′] 6∈ pcgi(B�D[M],Γ). According to Definition 3, there are two cases: ei-
ther D′∩ Ip(Γ |i−1) 6= /0 or D′ ∈ ccgi(B�D[M],Γ).

– If D′∩ Ip(Γ |i−1) 6= /0, then by Lemma 7, an s-splitting step applies to Γ .
– If D′[M′]∈ ccgi(B�D[M],Γ), then ¬M′ ∈ Ip(Γ |i−1). This means that there exists

a j, j < i, such that π j(Γ) = A�C[L] and ¬M′ ∈ pcgi(A�L,Γ)⊆ Gr(A�L). It
follows that M and L intersect, and by Lemma 8, an inference other than SGGS-
extension applies to Γ . 2

When Γ = d p(Γ), the lifting theorem says that if a clause C ∈ S has a ground
instance C′ such that I[Γ] 6|= C′, it is possible to extend Γ with a clause A�E, such
that C′ is a constrained ground instance of A�E and E is an instance of C:

Theorem 4 (Lifting Theorem) Let S be the set of input clauses, I the initial interpre-
tation, Γ an SGGS clause sequence such that Γ = d p(Γ), and C′ a ground instance
of some clause C ∈ S such that I[Γ] 6|= C′. Then there is a constrained clause A�E
such that: (1) C′ is a constrained ground instance of A�E; (2) E is an instance of C;
(3) A�E can be added to Γ by an SGGS-extension inference yielding Γ ′; (4) A�E
is not disposable in Γ ′; and (5) if the SGGS-extension adding A�E is not conflicting,
then pcgi(A�E,Γ ′) 6= /0.

Proof I[Γ] 6|= C′ means that for all L′ ∈ C′, either L′ is I-true and depends on an I-
false selected literal in Γ = d p(Γ), or L′ is I-false and depends on an I-true selected
literal in Γ = d p(Γ), or L′ is I-false and at(L′) 6∈ at(Ip(Γ)). Let µ be the substitution
such that C′ =Cµ and {L1, . . . ,Ln} be the set of literals of C such that Liµ , 1≤ i≤ n,
is I-true. Since I[Γ] 6|= C′ there must be clauses B1 � D1[M1], . . . ,Bn � Dn[Mn] in
Γ = d p(Γ), such that for all i, 1≤ i≤ n, Mi is I-false and ¬Liµ ∈ pcgi(Bi �Mi,Γ).
Let B1�D1[M1], . . . ,Bn�Dn[Mn] be the leftmost such clauses. For all i, 1≤ i≤ n,¬Li
and Bi �Mi have a (constrained) ground instance in common; since all constrained
ground instances of Bi �Mi are ground instances of Mi, ¬Li and Mi have a ground

30 M. P. Bonacina and D. A. Plaisted

instance in common; since vars(Li)∩ vars(Mi) = /0, as they are literals of distinct
clauses, it follows that ¬Li and Mi unify. Also vars(Mi)∩ vars(M j) = /0, for all 1 ≤
i 6= j ≤ n, as they are literals of distinct clauses. Thus, there exists a simultaneous
most general unifier α such that Liα = ¬Miα , for all i, 1 ≤ i ≤ n. Let β be a most
general semantic falsifier for (C \ {L1, . . . ,Ln})α such that C′ = Cµ is constrained
ground instance of (

∧n
i=1 Biαβ)�Cαβ . Such a β exists, because C′ is false in I[Γ]

and {L1µ, . . . ,Lnµ} are all the I-true literals in C′. Thus, at the very least, β is the
substitution such that Cαβ = Cµ = C′. Up to here we have proved that the SGGS-
extension inference scheme (cf. Definition 12) can generate from main premise C
and side premises B1 �D1[M1], . . . ,Bn �Dn[Mn] a clause (

∧n
i=1 Biαβ)�Cαβ that

has C′ =Cµ as constrained ground instance. For the rest of the proof, we distinguish
three cases corresponding to SGGS-extension with I-all-true conflict clause, SGGS-
extension with non-I-all-true conflict clause, and non-conflicting SGGS-extension:

(I) If C′ is I-all-true, let A�E = (
∧n

i=1 Biαβ)�Cαβ , and τ be the substitution such
that |=

∧n
i=1 Biαβτ and Cαβτ = Cµ . Claim (1) is true by construction, as C′ =

Cµ and Eτ = Cµ imply C′ = Eτ . Claim (2) is also true by construction, as E =
Cαβ . For claims (3) and (4), A � E is I-all-true, because it has the I-all-true
constrained ground instance C′, and all its literals are either I-true or I-false by
construction; it is a conflict clause, as all its literals depend on the side premises,
which also means that it is not disposable; and can be added by SGGS-extension
with I-all-true conflict clause.

(II) If C′ has I-false literals, let {Q1, . . . ,Qk} be the set of literals of C such that
Qiµ , 1 ≤ i ≤ k, is I-false. Since I[Γ] 6|= C′, for all i, 1 ≤ i ≤ k, either Qiµ de-
pends on an I-true selected literal in Γ = d p(Γ), or at(Qiµ) 6∈ at(Ip(Γ)). As-
sume that for all i, 1≤ i≤ k, Qiµ depends on an I-true selected literal in d p(Γ).
Then there are clauses H1 �F1[P1], . . . ,Hk �Fk[Pk] in d p(Γ), such that for all i,
1≤ i≤ k, Pi is I-true and ¬Qiµ ∈ pcgi(Hi�Pi,Γ). The latter condition means that
there exist substitutions ρi, 1 ≤ i ≤ k, such that |= Hiρi and ¬Qiµ = Piρi. Since
vars(Hi �Pi)∩vars(H j �Pj) = /0, for all 1≤ i 6= j ≤ k, this also means that there
exists a single substitution ρ such that |= Hiρ and ¬Qiµ = Piρ , for all i, 1≤ i≤ k.
We show that there exists an extension substitution for (

∧n
i=1 Biαβ)�Cαβ in Γ .

Recall that C′ = Cµ is a constrained ground instance of (
∧n

i=1 Biαβ)�Cαβ ,
which means that for all i, 1 ≤ i ≤ k, Qiµ is a constrained ground instance
of (

∧n
i=1 Biαβ)�Qiαβ . Also, {Q1αβ , . . . ,Qkαβ} are all the I-false literals in

Cαβ , because {Q1µ, . . . ,Qkµ} are all the I-false literals in Cµ . Then, for all
i, 1 ≤ i ≤ k, (

∧n
i=1 Biαβ)�¬Qiαβ and Hi �Pi have a constrained ground in-

stance in common. Let λ be the most general substitution such that for all i,
1 ≤ i ≤ k, |= Hiλ and ¬Qiαβλ = Piλ . Such a substitution exists, because at
the very least it is the substitution λ such that Qiαβλ = Qiµ and Piλ = Piρ . In
practice, λ can be computed as the simultaneous most general unifier of ¬Qiαβ

and Pi for all i, 1 ≤ i ≤ k. Furthermore, λ is an extension substitution, because
by construction we have that for all i, 1 ≤ i ≤ k, ¬Gr(

∧n
i=1 Biαβλ �Qiαβλ) ⊆

pcgi(H �P,Γ). Let A�E = (
∧n

i=1 Biαβλ)�Cαβλ , and τ be the substitution
such that |=

∧n
i=1 Biαβλτ and Cαβλτ =Cµ . Claims (1) and (2) are true by con-

struction, as C′ =Cµ and Eτ =Cµ imply C′ = Eτ; and E =Cαβλ . For claims

SGGS: Inference System and Completeness 31

(3) and (4), A�E is a non-I-all-true conflict clause, because by construction all
its I-false literals depend on I-true selected literals in d p(Γ); it is not disposable;
and can be added by SGGS-extension with non-I-all-true conflict clause.

(III) Otherwise, there is a Qiµ in C′, for some i, 1 ≤ i ≤ k, such that at(Qiµ) 6∈
at(Ip(Γ)). Let A�E = (

∧n
i=1 Biαβ)�Cαβ , and τ be the substitution such that

|=
∧n

i=1 Biαβτ and Cαβτ = Cµ . Claims (1) and (2) are true by construction,
as in Case (I). For claims (3), (4), and (5), first we observe that since Qiµ is
a constrained ground instance of A�Qiαβ , at(Qiµ) 6∈ at(Ip(Γ)) implies that
at(Gr(A�Qiαβ)) 6⊆ at(pcgi(H �P,Γ)) for all selected literals H �P in Γ , so
that A�E has at least one literal, namely A�Qiαβ , that satisfies the condition to
be selected in SGGS-extension with non-conflicting clause. Then, let L be Qiαβ .
The condition at(Qiµ) 6∈ at(Ip(Γ)) also implies that A�L has at least a proper
constrained ground instance, namely Qiµ itself. Thus, A � E[L] has at least a
proper constrained ground instance, namely C′, it is not disposable, and can be
added by SGGS-extension with non-conflicting clause, which will be critical or
not depending on the existence of a proper prefix of Γ enabling a critical step. 2

Since α , β , and γ are most general substitutions, A�E is the most general clause
such that C′ ∈ Gr(A�E), E is instance of C, every literal in E is either I-true or
I-false, and if all I-false literals in E intersect I-true selected literals then they depend
on them. To exemplify the lifting theorem we continue Example 6:

Example 13 With S = {P(a),¬P(x)∨Q(f (y)),¬P(x)∨¬Q(z)}, and I all-negative,
we were left with Γ2 = [P(a)],¬P(a)∨ [Q(f (y))]. Since I[Γ2] |= P(a) and I[Γ2] |=
Q(f (t)) for all ground terms t, instance C′ = ¬P(a)∨¬Q(f (f (a))) of C = ¬P(x)∨
¬Q(z), with µ = {x← a,z← f (f (a))}, is false in I[Γ2]. An SGGS-extension with
I-all-true conflict clause extends Γ2 with E = ¬P(a)∨ [¬Q(f (w))], obtained by ap-
plying α = {x ← a,z ← f (w)} to unify the I-true literals of C with the two I-
false selected literals in Γ2. Clause C′ is a ground instance of E with τ = {w ←
f (a)}. Thus, we have Γ3 = [P(a)],¬P(a)∨ [Q(f (y))],¬P(a)∨ [¬Q(f (w))], where
¬P(a) is assigned to P(a), ¬Q(f (w)) is assigned to Q(f (y)), and ¬Q(f (w)) is se-
lected so that the selected literal in E is assigned rightmost. SGGS-move yields
Γ4 = [P(a)],¬P(a)∨ [¬Q(f (w))],¬P(a)∨ [Q(f (y))], and SGGS-resolution generates
Γ5 = [P(a)],¬P(a)∨ [¬Q(f (w))], [¬P(a)], where the last clause is I-all-true and in
conflict with I[Γ5]. SGGS-move gets Γ6 = [¬P(a)], [P(a)],¬P(a)∨ [¬Q(f (w))] and
SGGS-resolution closes the refutation with Γ7 = [¬P(a)],⊥,¬P(a)∨ [¬Q(f (w))].

Theorems 3 and 4 together ensure that the system can make progress. The fol-
lowing characterization of an SGGS-derivation ensures that it does:

Definition 32 (Sensible SGGS-derivation) Given set S of clauses and initial in-
terpretation I, an SGGS-derivation from S is sensible, if (i) no partitioning infer-
ence is trivial, (ii) SGGS-deletion is applied eagerly, (iii) SGGS-extension is applied
whenever I[Γ] 6|= S, ⊥6∈ Γ , and Γ = d p(Γ), and (iv) an inference other than SGGS-
extension is applied whenever I[Γ] 6|= S, ⊥6∈ Γ , and Γ 6= d p(Γ).

Indeed, there is no need to continue after success. An SGGS-strategy is sensible
if all its derivations are. From now on we consider sensible derivations and strategies.

32 M. P. Bonacina and D. A. Plaisted

6 Conflict Explanation and Conflict Solving in SGGS

In this section we complete the illustration of how SGGS handles conflicts and lifts
CDCL to first order. In Section 4 we saw how SGGS-move corresponds to back-
jumping, and admitting a former conflict clause to the disjoint prefix is the coun-
terpart of learning it. Here we add that SGGS-resolution explains a first-order con-
flict like propositional resolution does for a propositional one. We define explanation
inferences and solving inferences for a conflict clause, and we characterize a con-
flicting SGGS-extension as bundled, if it is followed by explanation and solving in-
ferences for its conflict clause. The name comes from the intuition that conflicting
SGGS-extension, possibly explanation inferences, and solving inferences are applied
in a bundle. In the second part of the section we introduce bundled splitting infer-
ences, and we expand the notions of sensible SGGS-derivation and SGGS-strategy
into those of bundled SGGS-derivation and SGGS-strategy.

A conflicting SGGS-extension appends a conflict clause A�E[L] to Γ . If E[L] is
I-all-true, the solving inferences use E to left-split the clause D that L is assigned to,
and then move E to the left of its representative in split(D,E), so that the truth value
in I[Γ] of the constrained ground instances of L is flipped, and the conflict is solved.
Preliminarly, the system checks whether SGGS-factoring applies to E, and if yes, it
is the factor that left-splits D and moves to the left to solve the conflict:

Definition 33 (Solving inferences) The solving inferences for I-all-true conflict clau-
se A�E[L] in Γ A�E[L], where L is assigned to B�D[M] in d p(Γ), consist of

1. SGGS-factoring applied to D and E until no longer applicable, and resulting in
factor E f , which is E itself, if no SGGS-factoring applies;

2. Left splitting applied to split D by E f , if applicable; and
3. SGGS-move applied to move E f to the left of its representative in split(D,E f), if

left splitting applied, or to the left of D otherwise.

Left splitting is not needed if at(L) and at(M) are identical as in the instances of
SGGS-move in Example 10, while every SGGS-move in Example 12 is preceded by
left splitting. If E[L] is not I-all-true, explanation inferences resolve away by SGGS-
resolution all I-false literals in E to get either ⊥ or an I-all-true clause:

Definition 34 (Explanation inferences) The explanation inferences for a non-I-all-
true conflict clause A�E[L] in Γ A�E[L], where H1 �F1[P1] is the I-all-true clause
in d p(Γ) such that A�L depends on H1 �P1, consist of a series of SGGS-resolution
steps
res(E[L],F1[P1],E1[L1])
res(E1[L1],F2[P2],E2[L2])
. . .
res(En−1[Ln−1],Fn[Pn],En[Ln])
where, for all i, 1 ≤ i < n, no Ei is I-all-true, Fi+1[Pi+1] is the I-all-true clause in
d p(Γ) such that Li depends on Pi+1, and En is either ⊥ or an I-all-true clause.

This series of SGGS-resolution steps corresponds to the propositional resolution
steps that either explain a conflict or find a refutation in CDCL (e.g., [49,51,48,46]).

SGGS: Inference System and Completeness 33

In CDCL, a propositional clause C is a conflict clause because for all its literals L, ¬L
appears in the trail; ¬L may be either decided or implied, justified by another clause
D, whose literals other than ¬L are falsified by the trail. Explanation resolves upon
L in C and ¬L in D, generating a new conflict clause. For SGGS, consider a conflict
clause E which is not I-all-true: by Definition 12 all I-true literals in E are assigned,
and by Definition 19 each I-false literal in E depends on an I-true selected literal in
d p(Γ). An I-true literal is selected in an I-all-true clause, and an I-all-true clause
in d p(Γ) is the justification of its selected literal: all its literals are assigned except
the selected literal which is the implied literal. Thus, SGGS explains the conflict by
resolving conflict clauses with justifications like CDCL: every SGGS-resolution step
in the series of explanation inferences resolves a conflict clause with a justification,
resolving upon an I-false literal in the conflict clause and the implied literal in the
justification. Every resolvent is a conflict clause that replaces the previous one at the
last index of the sequence. If the empty clause arises, a refutation is found. Otherwise,
the resulting I-all-true conflict clause is subject to the solving inferences:

Definition 35 (Bundled SGGS-extension) A conflicting SGGS-extension with I-
all-true conflict clause A�E[L] is bundled, if it is followed by the solving inferences
for A�E[L]. A conflicting SGGS-extension with non-I-all-true conflict clause A�

E[L] is bundled, if it is followed by the explanation inferences for A�E[L], and the
solving inferences for A′ � E ′[L′], if the explanation inferences for A� E[L] yield
non-empty I-all-true conflict clause A′�E ′[L′].

In CDCL, how many resolutions to do is a matter of heuristic. The last resolvent is
learned and used to modify the trail by backjumping: one of its literals switches from
false to true, and enters the trail as implied literal justified by the learned clause. In the
first unique implication point heuristic, the learned clause is called asserting clause.
In SGGS, explanation by resolution resolves away all I-false literals in the conflict
clause, because the application of the extension substitution (cf. Definition 19) en-
sures that they all depend on implied literals. Possibly after SGGS-factoring and
left-splitting, the resulting I-all-true conflict clause moves left and enters the dis-
joint prefix: this I-all-true clause corresponds to the asserting clause. In the following
we use bundled SGGS-extension (with extension clause E) for the macro inference
formed by conflicting SGGS-extension (with extension clause E), possibly explana-
tion inferences, and solving inferences. Deletion of disposable clauses applies at the
end rather than during a bundled SGGS-extension.

Also splitting inferences need to be followed by appropriate steps:

Definition 36 (Bundled splitting) A splitting inference is bundled, if it is followed
by either all applicable recursive partitioning steps or the deletion of all clauses with
literals assigned to the splitted clause.

As observed in Section 4 (cf. Definition 31), these deletions mirror a (partial)
restart in CDCL. Sensibility of a derivation ensures that SGGS makes progress; bun-
dledness specifies this further by ensuring that conflicts are solved eagerly:

Definition 37 (Bundled SGGS-derivation) An SGGS-derivation is bundled, if it
is sensible, all conflicting SGGS-extension inferences are bundled, and all splitting
inferences are bundled.

34 M. P. Bonacina and D. A. Plaisted

An SGGS-strategy is bundled if all its derivations are. To exemplify bundled
SGGS-extension, we continue Example 10:

Example 14 Suppose that the first SGGS-extension with non-I-all-true conflict clause
is applied, yielding Γ9 = [P(a)], [¬R(y,x)], [P(f (x))], [¬Q(x)], [¬P(a)]∨R(z, f (z))∨
Q(a). In a bundled SGGS-derivation, this conflict is handled prior to considering ap-
plying any other SGGS-extension. SGGS-resolution explains the conflict resolving
the only I-false literal in the conflict clause, namely ¬P(a), with the implied literal
P(a) in d p(Γ), yielding Γ10 = [P(a)], [¬R(y,x)], [P(f (x))], [¬Q(x)], [R(z, f (z))]∨
Q(a). The I-all-true resolvent [R(z, f (z))]∨Q(a) left-splits ¬R(y,x), generating Γ11 =
[P(a)], [¬R(y, f (y))], x 6≡ f (y)� [¬R(y,x)], [P(f (x))], [¬Q(x)], [R(z, f (z))]∨Q(a),
and then moves left, flipping the truth value of all ground instances of R(z, f (z))
in the induced interpretation: Γ12 = [P(a)], [R(z, f (z))]∨Q(a), [¬R(y, f (y))], x 6≡
f (y)� [¬R(y,x)], [P(f (x))], [¬Q(x)]. This completes the bundled inference. Note
that at this stage the second SGGS-extension with non-I-all-true conflict clause of
Example 10, namely SGGS-extension with ¬P(f (x))∨ R(z, f (z))∨Q(f (x)) is no
longer applicable, because, as an effect of the SGGS-move step, I[Γ12] satisfies this
clause. Next, SGGS-resolution amends the sequence with respect to the move, by
resolving [R(z, f (z))]∨Q(a) with [¬R(y, f (y))] to give Γ13 = [P(a)], [R(z, f (z))]∨
Q(a), [Q(a)], x 6≡ f (y)� [¬R(y,x)], [P(f (x))], [¬Q(x)]. The resolvent Q(a) is also
I-all-true and in d p(Γ), and therefore SGGS-resolves with [¬Q(x)] to close the refu-
tation: Γ14 = [P(a)], [R(z, f (z))]∨Q(a), [Q(a)], x 6≡ f (y)� [¬R(y,x)], [P(f (x))], ⊥.
Thus, a bundled SGGS-strategy finds a refutation without applying the second SGGS-
extension with non-I-all-true conflict clause.

By focusing on one conflict at a time, bundledness may help to focus on a proof
and apply SGGS-extension sparingly. During explanation and solving inferences up
to SGGS-move, the presence of a conflict clause at the rightmost end of the sequence
means that d p(Γ) 6=Γ , so that by sensibility SGGS-extension does not apply, and by
bundledness the explanation and solving inferences apply. In both CDCL and SGGS
conflict solving has priority over extension of the candidate model by decision or
SGGS-extension and literal selection, respectively. The following lemma shows how
bundled SGGS-extension effectively changes the SGGS clause sequence:

Lemma 9 Let Γ ′ be derived from Γ by a bundled SGGS-extension with extension
clause E in a bundled SGGS-derivation. Then either Γ ′ contains ⊥, or there exists
an index i, i > 0, such that Γ = Γ1DΓ2, where πi(Γ) = D[M], Γ ′ = Γ1CΓ3, where
πi(Γ

′) =C, and D[M] and C are not equivalent.

Proof The initial conflicting SGGS-extension transforms Γ into Γ E. If E is not I-
all-true, let E ′ be the clause resulting from the explanation inferences for E. By Def-
inition 34, E ′ is either ⊥ or I-all-true. If E is I-all-true, let E ′ be E itself. Either way,
E ′ is either ⊥ or I-all-true. If E ′ is ⊥, Γ ′ contains ⊥ and the claim holds. Otherwise,
all literals in tlits(E ′) are assigned, because all those in tlits(E), if any, are assigned
by Definition 12, and SGGS-resolution lets resolvents inherit assignments (cf. Def-
inition 26). Let I ′ be the set of indices which the literals in tlits(E ′) are assigned
to, and let i be its maximum. Since all literals in tlits(E ′) are assigned (E ′ is an I-
all-true conflict clause), the selected literal of E ′ is assigned, and since the assigned

SGGS: Inference System and Completeness 35

literal is assigned rightmost (cf. Definition 9), i is the index which the selected lit-
eral of E ′ is assigned to. Let D[M] be πi(Γ). Note that the explanation inferences,
if any, transform Γ E into Γ E ′, so that Γ is unaffected. Let E f be the I-all-true con-
flict clause resulting from the SGGS-factoring steps in the solving inferences for E ′.
If no SGGS-factoring step applies, let E f be E ′ itself. All literals in tlits(E f) are
assigned, because all those in tlits(E ′) are, and SGGS-factoring lets factors inherit
assignments (cf. Definition 27). In particular, the selected literal of E f is still as-
signed to i, and i is still the largest index which some literal in tlits(E f) is assigned
to. The left splitting in the solving inferences applies to D[M] and E f , replacing D[M]
by split(D[M],E f) = D1 . . .Dk, so that D1 has index i. Let D j be the representative
of E f in split(D[M],E f): the SGGS-move in the solving inferences moves E f to the
left of D j. There are two cases:

– If D j is D1, Γ ′ has E f at index i, so that the clause C of the claim is E f . This
case covers also the situation where left splitting does not apply and E f moves
to the left of D[M]. Then C and D[M] are not equivalent, because it cannot be
Gr(C) = Gr(D[M]), since C is I-all-true, which means its constrained ground
instances are I-all-true, whereas M is I-false, which means the constrained ground
instances of D[M] are not I-all-true.

– If D j is not D1, Γ ′ has D1 at index i, so that C is D1. Then C and D[M] are not
equivalent, because Gr(C) ⊂ Gr(D[M]), since the splitting step that generated
D1 . . .Dk is not trivial, as the derivation is bundled. 2

From now on we consider bundled derivations and strategies.

7 Constraints: Standardization and Splitting

This section presents constraint manipulation rules to reduce constraints to standard
form and split a clause by another one. These rules are sound, meaning that premise
and conclusion represent the same set of constraint ground instances. A conclusion
of the form A1 �C1, . . . ,An �Cn is understood as disjunction, so that the set of rep-
resented constraint ground instances is

⋃n
i=1 Gr(Ai �Ci). If a constraint is found un-

satisfiable, the result is a clause of the form f alse�C, that has no constraint ground
instances (Gr(f alse�C) = /0) hence is trivially true, so that it can be read as >.

7.1 Standardization

The rules for reduction to standard form comprise rules for identity and rules for top
symbol. The rules for identity eliminate or decompose all identity constraints, except
those in the form x 6≡ y:

Definition 38 (Rules for identity) The rules for identity are:

– The ElimId1 rule eliminates a constraint between variable and term:
1. If x 6∈ vars(s), then:

(A∧ x≡ s)�C
(A�C){x← s}

36 M. P. Bonacina and D. A. Plaisted

2. If x ∈ vars(s) and s is not a variable, then:

(A∧ x≡ s)�C
f alse�C

(A∧ x 6≡ s)�C
(A�C)

– The ElimId2 rule detects a conflict: if f 6= g, m≥ 0, n≥ 0, then:

(A∧ f (s1, . . . ,sn)≡ g(t1, . . . , tm))�C
f alse�C

– The ElimId3 rule eliminates a satisfied constraint: if f 6= g, m≥ 0, n≥ 0, then:

(A∧ f (s1, . . . ,sn) 6≡ g(t1, . . . , tm))�C
A�C

– The ElimId4 rule decomposes an identity: if n≥ 0, then:

(A∧ f (s1, . . . ,sn)≡ f (t1, . . . , tn))�C
(A∧ s1 ≡ t1∧ . . .∧ sn ≡ tn)�C

– The ElimId5 rule decomposes a negated identity: if n≥ 0, then:

(A∧ f (s1, . . . ,sn) 6≡ f (t1, . . . , tn))�C
(A∧ (s1 6≡ t1∨ . . .∨ sn 6≡ tn))�C

– The ElimId6 rule eliminates a negated identity between variable and non-variable
term:

(A∧ f (s1, . . . ,sn) 6≡ x)�C
A∧ top(x) 6= f �C, ((A∧ f (s1, . . . ,sn) 6≡ f (y1, . . . ,yn))�C){x← f (y1, . . . ,yn)}

where n≥ 0, and the yi’s, 1≤ i≤ n, are new variables;
– The ElimId7 rule detects a conflict: if s is a variable or constant, then:

(A∧ s 6≡ s)�C
f alse�C

If Case (1) of ElimId1 applies to x≡ y, one of the two possible replacements (e.g.,
x← y) is chosen. The ElimId5 rule calls for restoration of disjunctive normal form:

Definition 39 (DNF rules) The disjunctive normal form (DNF) rules are:

– The Equiv rule replaces a constraint A by its disjunctive normal form, denoted
dn f (A):

A�C
dn f (A)�C

– And the Div rule subdivides disjunction:

(A∨B)�C
A�C, B�C

SGGS: Inference System and Completeness 37

If every application of ElimId5 is followed by an application of the DNF rules,
first Equiv and then Div, (A∧ f (s1, . . . ,sn) 6≡ f (t1, . . . , tn))�C is replaced by A∧
s1 6≡ t1 �C, . . . ,A∧ sn 6≡ tn �C. The rules for top symbol eliminate all top symbol
constraints, except those in the form top(x) 6= f :

Definition 40 (Rules for top symbol) The rules for top symbol are

– The ElimTop1 rule detects a conflict in a positive constraint: if f 6= g, n≥ 0, then:

A∧ top(f (s1, . . . ,sn)) = g�C
f alse�C

– The ElimTop2 rule eliminates a satisfied positive constraint: if n≥ 0, then:

A∧ top(f (s1, . . . ,sn)) = f �C
A�C

– The ElimTop3 rule eliminates a satisfied negative constraint: if f 6= g, n≥ 0, then:

A∧ top(f (s1, . . . ,sn)) 6= g�C
A�C

– The ElimTop4 rule detects a conflict in a negated constraint: if n≥ 0, then:

A∧ top(f (s1, . . . ,sn)) 6= f �C
f alse�C

– The ElimTop5 rule eliminates a positive constraint: if n≥ 0, then:

A∧ top(x) = f �C
(A�C){x← f (x1, . . . ,xn)}

where the xi’s, 1≤ i≤ n, are new variables.

The combined effect of rules for identity and rules for top symbol is to standardize
any constraint:

Definition 41 (Standardization rules) The standardization rules comprise the rules
for identity and the rules for top symbol, with the provision that every application of
ElimId5 is followed by an application of the DNF rules, first Equiv and then Div.

The next example shows that the application of the identity rules may not termi-
nate, if literals are allowed to grow in size:

Example 15 Consider a clause (x 6≡ f (y) ∧ y 6≡ f (x)� P(x,y)): an application of
ElimId6 yields the two clauses (top(x) 6= f ∧ y 6≡ f (x))�P(x,y) and (f (z) 6≡ f (y)∧
y 6≡ f (f (z))� P(f (z),y)). Using ElimId5, the latter clause becomes (z 6≡ y∧ y 6≡
f (f (z))�P(f (z),y)), which by another application of ElimId6, yields the two clauses
(z 6≡ y∧ top(y) 6= f)�P(f (z),y)) and (z 6≡ f (w)∧ f (w) 6≡ f (f (z))�P(f (z), f (w))).
Using ElimId5 again, the latter clause becomes (z 6≡ f (w)∧w 6≡ f (z)�P(f (z), f (w))),
whose constraint is a variant of the original one, so that the entire process can be re-
peated, while the size of the constrained literal has increased.

38 M. P. Bonacina and D. A. Plaisted

On the other hand, the following lemma, invoked in the proof of Theorem 6 in
Section 8, shows that there is no non-termination without growth in size:

Lemma 10 Let C be a set of constrained literals under a fixed upper bound in size:
C = {A�L : |L| ≤ n, n > 0}. If the standardization of A�L∈C does not terminate,
it must produce a constrained literal B�M 6∈ C .

Proof Let the size of a constraint A be given by the number of occurrences of constant
and function symbols in A. By inspection, the application of standardization rules to
A�L is guaranteed to terminate, because it reduces either the size of A or the size of
L, except for those rules that replace variables by terms, namely Case (1) of ElimId1,
ElimId6, and ElimTop5. However, these rules cannot be applied an unbounded num-
ber of times without generating eventually a literal that is not in C because its size
exceeds n. 2

We consider next the computation of clause splitting.

7.2 Splitting and Difference

In order to compute split(C,D), for A�C〈L〉 and B�D[M] as in Definition 14, we
need to compute the representative of D in split(C,D), and the other clauses in the
partition of C: we call the latter difference, denoted C−D.

Example 16 For C = true�P(x,y) and D = true�P(f (w),g(z)) as in Example 8,
the difference C−D is {top(x) 6= f �P(x,y), top(y) 6= g�P(f (x),y)}.

The representative of D in split(C,D) is Aσ ∧Bσ �C〈L〉σ , where σ is the most
general unifier of at(L) and at(M) and (A∧B)σ is satisfiable. Thus, split(C,D) =
{Aσ ∧Bσ �C[L]σ}∪ (C−D). If at(L) and at(M) do not unify, or (A∧B)σ is un-
satisfiable, there is no intersection between A�L and B�M and no point in splitting
A �C〈L〉 by B � D[M]. For brevity, let H � F denote Aσ ∧ Bσ �C〈L〉σ , so that
split(C,D) = {H�F}∪(C−D). By definition of splitting, split(C,D) = split(C,F)
and split(C,F) = {H �F}∪ (C−F), so that (C−D) = (C−F). In other words, in
order to compute the difference between C and D it suffices to compute the differ-
ence between C and F . Thus, we only need to compute clause differences of the form
C−Cσ , where the second clause is an instance of the first. In the following, we call
clauses similar, if they are made identical by a substitution that replaces variables by
variables, but may replace distinct variables by the same:

Definition 42 (Rules for clause difference) Given clauses A�C and B�D, such
that D =Cσ for some substitution σ , the rules for clause difference are:

– If for some x ∈ vars(C) and new variables xi, 1 ≤ i ≤ n, x← f (x1, . . . ,xn) ∈ σ ,
the DiffSim rule applies {x← f (x1, . . . ,xn)} to make C similar to D and on the
other hand adds top(x) 6= f to make them different:

(A�C)− (B�D)
(A�C){x← f (x1, . . . ,xn)}− (B�D), A∧ (top(x) 6= f)�C

SGGS: Inference System and Completeness 39

– If C and D are similar, and for distinct variables x,y ∈ vars(C), x← y ∈ σ , the
DiffVar rule applies {x← y} to make C a variant of D and on the other hand adds
x 6≡ y to make them different:

(A�C)− (B�D)
(A�C){x← y}− (B�D), (x 6≡ y∧A)�C

– If C and D are variants but not identical, the DiffId rule makes them identical:

(A�C)− (B�D)
(A�C)σ − (B�D)

– And the DiffElim rule replaces difference by negation:

(A�C)− (B�C)
(A∧¬B)�C

Since B is a conjunction of constraints, ¬B is a disjunction of their negations,
and therefore every application of DiffElim is followed by restoration of disjunctive
normal form by the DNF rules.

Example 17 Assume that we split P(x,y) by P(a,y), where P(a,y) is an instance
of P(x,y) with σ = {x← a}. P(a,y) is its own representative in the splitting, and
the difference P(x,y)−P(a,y) is computed by an application of DiffSim that pro-
duces {P(a,y)−P(a,y), top(x) 6= a�P(x,y)}, hence {top(x) 6= a�P(x,y)}. Thus,
the splitting is {P(a,y), top(x) 6= a�P(x,y)}. Symmetrically, if we split P(x,y) by
top(x) 6= a�P(x,y), which is its own representative in the splitting, the difference
P(x,y)− top(x) 6= a�P(x,y) is computed by an application of DiffElim that yields
top(x) = a�P(x,y), that is, P(a,y).

Example 18 If we split P(x,y) by P(a,b), where P(a,b) is an instance of P(x,y) with
σ = {x← a,y← b}, P(a,b) is its own representative in the splitting, and the dif-
ference P(x,y)−P(a,b) is computed by two applications of DiffSim, that produce
first {P(a,y)−P(a,b), top(x) 6= a�P(x,y)} and then {P(a,b)−P(a,b), top(y) 6=
b�P(a,y), top(x) 6= a�P(x,y)}, hence {top(y) 6= b�P(a,y), top(x) 6= a�P(x,y)}.
Thus, the splitting is {P(a,b), top(x) 6= a�P(x,y), top(y) 6= b�P(a,y)}. If we split
P(x,y) by top(y) 6= b�P(a,y), which is its own representative in the splitting, the
difference P(x,y)− top(y) 6= b�P(a,y) is computed by an application of DiffSim
that generates {P(a,y)− top(y) 6= b�P(a,y), top(x) 6= a�P(x,y)}, and an appli-
cation of DiffElim that yields {top(y) = b�P(a,y), top(x) 6= a�P(x,y)}, that is,
{P(a,b), top(x) 6= a�P(x,y)}.

The following theorem shows that the computation of clause difference halts, so
that pathological cases such as Example 15 cannot arise in splitting inferences:

Theorem 5 Given A�C and B�D, such that D =Cσ , and A and B are in standard
form, any application of the clause difference rules to C−D, where (1) any applica-
tion of DiffElim or ElimId5 is followed by conversion to DNF, and (2) all constraints
are restored to standard form after every application of a clause difference rule, is
guaranteed to terminate.

40 M. P. Bonacina and D. A. Plaisted

Proof First we show that the rules for clause difference do not cause non-termination.
DiffId and DiffElim can be applied only once. DiffVar can be applied only a finite
number of times, because each application decreases the number of variables in C.
Each DiffSim step applies to C a substitution {x← f (x1, . . .xn)} from σ : since σ con-
tains finitely many such pairs, DiffSim can be applied only a finite number of times.
Then we prove that standardization between an application of a clause difference rule
and the next is guaranteed to terminate:

1. DiffId only renames variables, which does not enable any other rule.
2. DiffVar adds an x 6≡ y, which is in standard form, and applies a substitution {x←

y}, whose only effect may be to replace an x 6≡ y by an x 6≡ x, eliminated by
ElimId7.

3. DiffSim adds a top(x) 6= f , which is in standard form, and applies a substi-
tution {x← f (x1, . . . ,xn)}, which may have two effects. One is to replace the
occurrence of x in a constraint top(x) 6= g by f (x1, . . . ,xn). This enables either
ElimTop3 or ElimTop4, which terminate. The other is to transform an x 6≡ y into
an f (x1, . . . ,xn) 6≡ y, or y 6≡ f (x1, . . . ,xn), since ≡ is symmetric, which enables
ElimId6. This rule adds a top(x) 6= f , which is in standard form, and applies
another substitution of the same form, so that eventually a subset of the vari-
ables may be replaced by terms f (x1, . . . ,xn) where the xi’s are new. This can
only be done a finite number of times, because the new variables will never
be replaced in this way. If two such substitutions are applied to a z 6≡ w, an
f (x1, . . . ,xn) 6≡ f (y1, . . . ,yn) may arise. ElimId5 applies to such a constraint, fol-
lowed by conversion to DNF. The result is a disjunction of constrained clauses,
each containing in its constraint an xi 6≡ yi, for some i, which is in standard form.

4. DiffElim yields (A∧¬B)�C, followed by conversion to DNF. The effect may be
to add x ≡ y (negation of x 6≡ y in B) or top(x) = f (negation of top(x) 6= f in
B). In the first case, ElimId1 applies {x← y}, covered in Case (2) of this proof.
In the second case, ElimTop5 applies {x← f (x1, . . . ,xn)}, covered in Case (3) of
this proof. 2

8 Completeness and Goal-Sensitivity

In this section we prove that SGGS is model complete and refutationally complete,
regardless of the choice of initial interpretation. These results involve a convergence
ordering, denoted >c, on SGGS clause sequences. Its key property is that it is well-
founded on sequences of bounded length; as a special case, it is well-founded on
sequences of fixed length, so that there is no infinite descending chain of sequences
all of the same length. It follows that every fixed length prefix of the sequences in an
SGGS-derivation that is a non-ascending chain (i.e., Γ0 ≥c Γ1 ≥c . . .Γj ≥c . . .) even-
tually reaches a limit, meaning that it does not change anymore. Such a derivation
admits limiting sequence. The convergence ordering is also used to define fairness of
an SGGS-derivation, as an extension of bundledness. A central result is the descend-
ing chain theorem, which proves that a fair SGGS-derivation forms a descending
chain, so that it has limiting sequence. The model completeness theorem shows that if

SGGS: Inference System and Completeness 41

S is satisfiable, the interpretation induced by the limiting sequence of any fair SGGS-
derivation from S is a model. The refutational completeness theorem shows that if S
is unsatisfiable, any fair SGGS-derivation from S is a refutation: if the empty clause
is not generated, the derivation is infinite and without limiting sequence, because
there is always another SGGS inference that modifies the sequence, contradicting
the existence of a limiting sequence. We close the section by showing that SGGS is
goal-sensitive, if the initial interpretation is goal-sensitive.

8.1 Convergence Ordering and Fairness

We construct an ordering on SGGS clause sequences. Since the purpose is to com-
pare sequences in a derivation, all sequences to be compared have the same initial
interpretation I. Let Λ be a new 0-ary predicate symbol that will be used as a sort of
sentinel value in the definition of the ordering. We begin by associating a measure to
every clause in a sequence:

Definition 43 (Clause measure) Given Γ = A1 �C1[L1], . . . ,An �Cn[Ln], for all i,
1≤ i≤ n, the measure of clause Ai�Ci[Li] in Γ , denoted Vi(Γ), is defined as follows:

Vi(Γ) =



0 if Ai �Ci[Li] is ⊥,
1 if pcgi(Ai �Ci[Li],Γ) 6= /0∧Li ∈ tlits(Ci),
2 if pcgi(Ai �Ci[Li],Γ) 6= /0∧Li ∈ f lits(Ci),
3 if pcgi(Ai �Ci[Li],Γ) = /0∧ ccgi(Ai �Ci[Li],Γ) 6= /0∧Li ∈ tlits(Ci),
4 if pcgi(Ai �Ci[Li],Γ) = /0∧ ccgi(Ai �Ci[Li],Γ) 6= /0∧Li ∈ f lits(Ci),
5 if pcgi(Ai �Ci[Li],Γ) = /0∧ ccgi(Ai �Ci[Li],Γ) = /0∧Li ∈ tlits(Ci),
6 if pcgi(Ai �Ci[Li],Γ) = /0∧ ccgi(Ai �Ci[Li],Γ) = /0∧Li ∈ f lits(Ci),

and Vi(Γ) = 4.5 if πi(Γ) = Λ .

Since a smaller measure is preferable, the empty clause is most preferred; next
come clauses with proper constrained ground instances; next come clauses with com-
plementary constrained ground instances; and disposable clauses come last; clauses
with I-true selected literal are preferred within each category. Thus, justifications
have measure 1; clauses with I-false selected literals contributing proper constrained
ground instances to Ip(Γ) have measure 2; I-all-true conflict clauses have measure 3;
non-I-all-true conflict clauses have measure 4; Vi(Γ)≥ 5 if and only if Ai �Ci[Li] is
disposable in Γ ; and Λ has measure larger than non-disposable clauses and smaller
than disposable ones. Then, we define the measure of a sequence at an index. Let
uU denote the greatest lower bound of a non-empty set U of ground literals in the
SGGS-suitable ordering ≺, and let uU = M∞, if U = /0. For a non-empty set the
greatest lower bound exists because ≺ is total and well-founded.

Definition 44 (Sequence measure) For Γ = A1 �C1[L1], . . . ,An �Cn[Ln], the mea-
sure of Γ at index i, for all i, 1≤ i≤ n, is the 6-tuple

W (Γ , i) = (uUi,Vi(Γ), | f lits(Ci)|,uXi,uYi,Gr(Ai �Li))

where Ui = pcgi(Ai �Li,Γ),

42 M. P. Bonacina and D. A. Plaisted

– Xi =

{
ccgi(Ai �Li,Γ) if Ui = /0,
/0 otherwise;

– Yi =

{
Gr(Ai �Li) if Ui = Xi = /0,
/0 otherwise;

and W (Γ , i) = (M∞,4.5,0,M∞,M∞, /0) if πi(Γ) = Λ .

Thus, if pcgi(Ai�Li,Γ) 6= /0, then uUi = pcmin(Ai�Li,Γ) and uXi =uYi = M∞;
if pcgi(Ai �Li,Γ) = /0 and ccgi(Ai �Li,Γ) 6= /0, then uUi = M∞, uXi = ccmin(Ai �

Li,Γ) and uYi =M∞; if pcgi(Ai�Li,Γ) = ccgi(Ai�Li,Γ) = /0, then uUi =uXi =M∞

and uYi = cmin(Ai �Li). If π(Γ) =⊥, then W (Γ , i) = (M∞,0,0,M∞,M∞, /0). Let �6
be the quasi-ordering given by the lexicographic combination of ≺ for the first com-
ponent, the ordering < on the non-negative rational numbers for the second com-
ponent, the ordering < on the natural numbers for the third component, again ≺
for the fourth and fifth components, and the subset ordering ⊆ for the sixth com-
ponent. Note that �6 is a quasi-ordering, that is, it is not strict, because ⊆ is a
quasi-ordering. If πi(Γ) = Λ , then W (Γ , i)�6 W (Γ ′, i), if πi(Γ

′) is not disposable,
and W (Γ , i) ≺6 W (Γ ′, i), if πi(Γ

′) is disposable. Next, we define sequence quasi-
orderings that compare two sequences at any index i they both have:

Definition 45 (Sequence quasi-ordering) For all SGGS clause sequences Γ and Γ ′,
for all i, 1 ≤ i ≤ min(|Γ |, |Γ ′|), the sequence quasi-ordering ≥i and its equivalence
relation ≈i are defined as follows:

– Γ ≥i Γ ′ if W (Γ , i)�6 W (Γ ′, i), and
– Γ ≈i Γ ′ if Γ ≥i Γ ′ and Γ ′ ≥i Γ .

As usual, Γ ′ ≤i Γ if Γ ≥i Γ ′; Γ >i Γ ′ if Γ ≥i Γ ′ and Γ ′ 6≥i Γ ; and Γ ′ <i Γ if
Γ >i Γ ′. We term sequence ordering the strict relation >i. The comparison consid-
ers first pcmin(Ai �Li,Γ) and pcmin(A′i �L′i,Γ

′), and orders them by �. Since this
ordering extends the size ordering, the sequence quasi-orderings favor proper con-
strained ground instances of smaller size. Intuitively, SGGS tries to build a model
using smaller literals first, or, dually, it concentrates on small literals to avoid missing
a proof. If pcmin(Ai � Li,Γ) = pcmin(A′i � L′i,Γ

′), which includes the case where
both are M∞ because pcgi(Ai �Li,Γ) = pcgi(A′i �L′i,Γ

′) = /0, then Vi(Γ) and Vi(Γ
′)

are considered. If Γ and Γ ′ cannot be ordered at index i by the clause measure, first
the numbers of I-false literals in Ci and C′i are compared, then the minimal comple-
mentary constrained ground instances of Li and L′i, if they have no proper ones; then
the minimal constrained ground instances of Li and L′i, if they have neither proper nor
complementary ones; and last their sets of constrained ground instances. As expected,
the sequence orderings are consistent with disposability:

Lemma 11 For all SGGS clause sequences Γ and Γ ′, for all i, 1≤ i≤min(|Γ |, |Γ ′|),
if πi[Γ] is disposable in Γ and πi[Γ

′] is not disposable in Γ ′, then Γ >i Γ ′.

Proof By hypothesis, pcgi(πi[Γ],Γ) = ccgi(πi[Γ],Γ) = /0. If pcgi(πi[Γ
′],Γ ′) 6= /0,

the claim holds. If pcgi(πi[Γ
′],Γ ′) = /0, the clause measures are compared, and since

Vi(Γ)≥ 5 and Vi(Γ
′)< 5, the claim holds. 2

SGGS: Inference System and Completeness 43

For any clause sequence Γ , let Γ + denote the sequence Γ Λ . By applying the se-
quence orderings to prefixes, we obtain an ordering >c to compare whole sequences:

Definition 46 (Convergence ordering) For all SGGS clause sequences Γ and Γ ′,
the convergence ordering >c and its equivalence relation ≈c are defined as follows:

1. Γ ≈c Γ ′ if |Γ |= |Γ ′| and ∀i, 1≤ i≤ |Γ |+1, Γ + ≈i (Γ
′)+;

2. Γ >c Γ ′ if ∃i, 1 ≤ i ≤ |Γ |+ 1, i ≤ |Γ ′|+ 1 such that Γ +|i−1 ≈c (Γ ′)+|i−1 and
Γ + >i (Γ

′)+.

Furthermore, Γ ′ <c Γ if Γ >c Γ ′. The convergence ordering is basically a lexico-
graphic combination of sequence orderings, where clause sequences are ordered by
the smallest index at which they are not equivalent. If a clause sequence is equivalent
to a prefix of the other, then Λ makes the difference: the shorter sequence is larger,
if the next clause in the longer sequence is not disposable, and it is smaller, if the
next clause in the longer sequence is disposable (e.g., Γ A�C <c Γ , if A�C is not
disposable, but Γ A�C >c Γ , if A�C is disposable). Intuitively, continuing a se-
quence with a non-disposable clause may be useful and therefore it makes the longer
sequence smaller; continuing it with a disposable clause is useless, and therefore it
makes the longer sequence larger. The addition of Λ allows us to achieve this effect
while keeping the ordering simple.

The next theorem establishes the well-foundedness of the sequence orderings;
since it orders sequences by comparing their measures at a given index i, such an
ordering is well-founded on the set of sequences whose length is at least i:

Theorem 6 For all i ≥ 1, the sequence ordering >i is well-founded on the set of
SGGS clause sequences R = {Γ : |Γ | ≥ i}.

Proof By way of contradiction, suppose that Γ 1 >i Γ 2 >i Γ 3 . . . is an infinite de-
scending chain of sequences in R. Let the i-th clause in Γ j be A j

i �C j
i [L

j
i]. Since

the first five components of the quasi-ordering �6 are well-founded, there exists a
p, such that for all j, j ≥ p, the first five components of W (Γ j, i) are the same as
the first five components of W (Γ j+1, i). Let p be the smallest such index. In other
words, the first five components of W (Γ j, i) are constant for all j, j ≥ p. In the con-
stant tuple made of these first five components, by definition of sequence measure,
one of uU j

i , uX j
i , and uY j

i is not M∞. Let L∗ be this literal. Because the first five
components are constant, in order to have an infinite descending chain, it must be
Gr(A j+1

i �L j+1
i)⊂Gr(A j

i �L j
i), for all j ≥ p. It follows that for all j and k such that

j≥ p, k≥ p, and j 6= k, literals A j
i �L j

i and Ak
i �Lk

i cannot be variants, because if they
were, their sets of constrained ground instances would be equal. However, L j

i �s L′

for all L′ ∈ Gr(A j
i � L j

i), and therefore L j
i �s L∗. In other words, all literals L j

i for
j ≥ p are upper bounded in size by L∗, and therefore there cannot be infinitely many
of them, excluding variants. Neither can there be infinitely many inequivalent literals
A j

i �L j
i for finitely many L j

i . Indeed, for any L j
i there are finitely many constraints in

standard form, as vars(L j
i) is finite and the signature is finite. By Lemma 10, any con-

straint that is not in standard form can be transformed into an equivalent constraint
that either is in standard form or cannot be modified further by the standardization

44 M. P. Bonacina and D. A. Plaisted

rules without violating the upper bound in size. This means that there are finitely
many inequivalent constrained literals under a fixed upper bound in size. Thus, the
chain Γ 1 >i Γ 2 >i Γ 3 . . . must be finite. 2

It follows that a descending chain of sequences of bounded length is finite:

Corollary 2 If Γ 1 >c Γ 2 >c . . .Γ j >c Γ j+1 >c . . ., where for all j ≥ 1, |Γ j| ≤ n, for
some n≥ 0, then the chain Γ 1 >c Γ 2 >c . . .Γ j >c Γ j+1 >c . . . is finite.

Proof Since for all j ≥ 1, |Γ j| ≤ n, the ordering >c is a lexicographic combination
of orderings >i for 1 ≤ i≤ n. Since such orderings are well-founded by Theorem 6,
>c is well-founded. 2

For most of the following results except refutational completeness, bundledness
suffices. For refutational completeness, fairness adds a provision which rules out infi-
nite derivations that reduce longer prefixes ignoring the possibility of reducing shorter
ones. First, the index of an inference is the shortest prefix that an inference can reduce
in the convergence ordering:

Definition 47 (Index of an inference) The index of an SGGS inference Γ `Γ ′ is the
smallest i such that Γ |i >c Γ ′|i and it is infinite if no such i exists.

Then, the index of a sequence is the shortest prefix at which a sequence can be
reduced by any applicable inference:

Definition 48 (Index of a sequence) The index of an SGGS clause sequence Γ , de-
noted index(Γ), is the minimum index of an SGGS inference applicable to Γ .

Fairness says that any SGGS inference that is infinitely often possible is done
eventually:

Definition 49 (Fairness) An SGGS-derivation Γ0 ` Γ1 ` . . .Γj ` . . . is fair, if it is
bundled, and ∀i, i> 0, whenever there are infinitely many Γj’s such that index(Γj)≤ i,
for infinitely many Γj’s the inference applied to Γj has index less than or equal to i.

An SGGS-strategy is fair if all its derivations are. For instance, the minimal index
SGGS-strategy that always selects an inference of minimal index is trivially fair. From
now on we consider fair derivations and strategies.

8.2 Completeness

We begin by defining the notion of limiting sequence:

Definition 50 (Limiting sequence) An SGGS-derivation Γ0 ` Γ1 ` . . . ` Γj ` . . . ad-
mits limit if there exists an SGGS sequence Γ , such that for all i, i≤ |Γ |, there is an
ni such that for all j, j ≥ ni, if |Γj| ≥ i then Γj|i ≈c Γ |i. The longest such sequence,
denoted Γ∞, is the limiting sequence of the derivation.

SGGS: Inference System and Completeness 45

Note that both the derivation and Γ∞ may be finite or infinite, and if the deriva-
tion halts at stage k, Γ∞ is Γk. Corollary 2 applies to sequences of bounded length.
The length of sequences in a derivation is not bounded. However, if we consider
their prefixes, we have sequences of bounded length. The following theorem applies
Corollary 2 to the prefixes of the sequences in an SGGS-derivation:

Theorem 7 Let Γ0 `Γ1 ` . . .`Γj ` . . . be an SGGS-derivation. If Γ1≥c Γ2≥c . . .Γj ≥c

Γj+1 ≥c . . ., then the derivation admits limit. Furthermore, if its limiting sequence Γ∞

has finite length, then at most finitely many of the inequalities in the chain are strict.

Proof By hypothesis, and by the definition of convergence ordering, for all i, i ≥ 0,
Γ1|i ≥c Γ2|i ≥c . . .Γj|i ≥c Γj+1|i ≥c Since the Γj|i’s are sequences of bounded
length, by Corollary 2, at most finitely many of these inequalities can be strict. Thus,
for all i, there exists an ni, such that for all j ≥ ni, Γj|i ≈c Γj+1|i. Let Γ∞ be the
sequence defined by Γ∞|i = Γni |i for all i: Γ∞ is a limiting sequence. For the second
part of the claim, if |Γ∞| is finite, let N be max<{ni : i ≤ |Γ ∞|}. Then, for all j ≥ N
and all i≤ |Γ ∞|, Γj|i ≈c Γ∞|i. Thus, for all j ≥ N, Γj ≈c Γ∞. 2

The descending chain theorem is a main result that connects the inference rules
of the SGGS inference system with the convergence ordering, showing that a fair
SGGS-derivation forms a descending chain:

Theorem 8 (Descending Chain Theorem) If Γ0 ` Γ1 ` . . .Γj ` . . . is a fair SGGS-
derivation, then for all j, j ≥ 0, Γj >

c Γj+1.

Proof We consider each kind of inference in turn. For all cases, if i is the smallest
index where Γj and Γj+1 differ, we have (Γj)|i−1 ≈c (Γj+1)|i−1 because (Γj)|i−1 =
(Γj+1)|i−1.

1. If Γj ` Γj+1 by SGGS-extension with extension clause A�E[L], since the deriva-
tion is fair, hence bundled, hence sensible, the hypotheses of the lifting theo-
rem holds, and therefore A�E[L] is not disposable by the lifting theorem. If the
SGGS-extension is conflicting or non-conflicting non-critical, Γj+1 =ΓjA�E[L],
and since A�E[L] is not disposable, Γj >

c Γj+1 holds. If the SGGS-extension
is critical (cf. Definition 21), Γj = Γ 1J � N[O]Γ 2, Γj+1 = Γ 1A � E[L]Γ 2, and
pcmin(A�L,Γ 1A�E[L]) ≺ pcmin(J �O,Γ 1J �N[O]). If i is the index of J �
N[O] in Γj and of A�E[L] in Γj+1, we have Γj >i Γj+1 hence Γj >

c Γj+1.
2. If Γj ` Γj+1 is a partitioning inference, Γj is Γ A�C〈L〉Γ ′ and Γj+1 is Γ A1 �

C1〈L1〉, . . . ,An �Cn〈Ln〉Γ ′, for C1, . . . ,Cn a partition of C. Since the derivation is
bundled, n > 1, and C is not disposable (if it were, it would be deleted rather
than partitioned). Therefore, C has either pcgi’s or ccgi’s or both. By definition of
partitioning inferences (cf. Definitions 23, 24, 27 and 31), C1 is the preferred
clause in the partition. Thus, if pcgi(C,Γj) 6= /0, then pcgi(C1,Γj+1) 6= /0 and
pcmin(L1,Γj+1) = pcmin(L,Γj) 6= M∞; if pcgi(C,Γj) = /0 and ccgi(C,Γj) 6= /0,
then pcgi(C1,Γj+1) = /0, ccgi(C1,Γj+1) 6= /0, pcmin(L1,Γj+1) = pcmin(L,Γj) =
M∞, and ccmin(L1,Γj+1) = ccmin(L,Γj) 6= M∞ (∗). Since the Lk’s, 1 ≤ k ≤ n,
are chosen consistently with L, L1 ∈ tlits(C1) if and only if L ∈ tlits(C) and
L1 ∈ f lits(C1) if and only if L ∈ f lits(C) (∗∗). Let i be the index of C in Γj and of

46 M. P. Bonacina and D. A. Plaisted

C1 in Γj+1. We compare W (Γj, i) and W (Γj+1, i). For the first component, either
pcmin(L,Γj) = pcmin(L1,Γj+1) 6= M∞ or pcmin(L,Γj) = pcmin(L1,Γj+1) = M∞

by (∗). For the second component, Vi(Γj) = Vi(Γj+1) by (∗) and (∗∗). For the
third component, | f lits(C)| ≥ | f lits(C1)|, because an instance of a clause may
have fewer, but not more, I-false literals. For the fourth component, by (∗) we
have either M∞ on both sides or ccmin(L,Γj) = ccmin(L1,Γj+1) 6= M∞. The fifth
component is M∞ on both sides by (∗). For the sixth component, Gr(A1 �L1) ⊂
Gr(A � L), because the partition is not trivial. Altogether we have Γj >i Γj+1
hence Γj >

c Γj+1.
3. If Γj ` Γj+1 by SGGS-move, Γj is Γ 1CΓ 2DΓ 3 and Γj+1 is Γ 1DCΓ 2Γ 3, where

C and D abbreviate A�C[L] and B�D[M], A�C[L] is in d p(Γ), B�D[M] is
I-all-true, and M is assigned to A�C[L], which means L is I-false. Let i be the
position of C in Γj and of D in Γj+1. We compare W (Γj, i) and W (Γj+1, i). By
Lemma 4, A � L and B � M have the same pcgi’s with opposite sign, so that
pcmin(A�L,Γj) = ¬pcmin(B�M,Γj+1). Since the ordering � ignores sign, the
first components of W (Γj, i) and W (Γj+1, i) are equal. For the second component,
Vi(Γj) = 2 and Vi(Γj+1) = 1, so that Vi(Γj)>Vi(Γj+1), Γj >i Γj+1 and Γj >

c Γj+1.
4. If Γj ` Γj+1 by SGGS-resolution, Γj has the form Γ 1DΓ 2CΓ † and Γj+1 has the

form Γ 1DΓ 2Res(C,D)Γ ††, where C and D abbreviate A�C[L] and B�D[M], and
Res(C,D) = A�R and everything else is as in the definition of SGGS-resolution
(cf. Definition 26). Since the derivation is bundled, C is not disposable (if it were,
it would be deleted rather than resolved upon). Thus, by Lemma 6, A�R is either
⊥ or not disposable in Γj+1. By Lemma 5, pcgi(A�L,Γj) = /0, hence pcmin(A�

L,Γj) = M∞. Let i be the position of C in Γj and of A�R in Γj+1. We compare
W (Γj, i) and W (Γj+1, i). For the first component, assume first that A�R 6=⊥ and
L1 is its selected literal. If pcgi(A�L1,Γj+1) 6= /0, pcmin(A�L,Γj)� pcmin(A�

L1,Γj+1) and Γj >i Γj+1. If pcgi(A� L1,Γj+1) = /0 or A�R =⊥, we have M∞

on both sides and we compare Vi(Γj) and Vi(Γj+1). Because C is not disposable
in Γj, ccgi(A�L,Γj) 6= /0. Since L ∈ f lits(C) (cf. Definition 26), it follows that
Vi(Γj) = 4. If A�R =⊥, Vi(Γj+1) = 0, Vi(Γj) > Vi(Γj+1) and Γj >i Γj+1. If A�

R 6=⊥, A�R is not disposable in Γj+1, and ccgi(A�L1,Γj+1) 6= /0. If L1 ∈ tlits(R),
then Vi(Γj+1) = 3, so that Vi(Γj)>Vi(Γj+1) and Γj >i Γj+1. If L1 ∈ f lits(R), then
Vi(Γj) = Vi(Γj+1) and we compare | f lits(C)| and | f lits(R)|. Since B�D[M] is
I-all-true and L ∈ f lits(C), by construction of R (cf. Definition 26), | f lits(R)| ≤
| f lits(C)|−1 and Γj >i Γj+1. In all cases we have Γj >i Γj+1 hence Γj >

c Γj+1.
5. If Γj ` Γj+1 by SGGS-sorting, Γj is Γ 1CDΓ † and Γj+1 is Γ 1DCΓ ††, where C

and D abbreviate A�C[L] and B�D[M], and everything is as in the definition
of SGGS-sorting (cf. Definition 29). Let i be the position of C in Γj and of D in
Γj+1. By Definition 29, pcmin(A�L,Γj)� pcmin(B�M,Γj), and both C and D
are in d p(Γj), so that both C and D are in d p(Γj+1), and pcmin(B�M,Γj+1) =
pcmin(B�M,Γj), hence pcmin(A� L,Γj) � pcmin(B�M,Γj+1). Thus, by the
first component of the sequence measure, Γj >i Γj+1 and Γj >

c Γj+1.
6. If Γj ` Γj+1 by SGGS-deletion, Γj+1 is Γj with all disposable clauses deleted.

Let B�D[M], abbreviated D, be the leftmost disposable clause in Γj, that is, Γj
is Γ 1DΓ 2, where Γ 1 does not contain disposable clauses. Then Γj+1 is Γ 1Γ ′,
where Γ ′ is Γ 2 with all disposable clauses deleted. If Γ ′ is empty, then Γj >

c Γj+1

SGGS: Inference System and Completeness 47

by definition of convergence ordering. Otherwise, let i be the index of D in Γj,
and let H �N[P], abbreviated N, be the clause occurring at index i in Γj+1, or,
equivalently, the leftmost clause in Γ ′. Since H �N[P] is not disposable, Γj >i
Γj+1 by Lemma 11, hence Γj >

c Γj+1. 2

Since the convergence ordering is well-founded only on SGGS clause sequences
of bounded length, the descending chain theorem is perfectly compatible with the
semi-decidability of first-order logic: SGGS clause sequences in a derivation are not
bounded in length, and infinite derivations with sequences of ever increasing length
are possible. The following observations proceed from Theorems 7 and 8:

Corollary 3 If an SGGS-derivation is fair, then (i) it has limiting sequence, and (ii)
every inference has finite index.

Because SGGS is model-based, model completeness is fairly straightforward:

Theorem 9 (Model Completeness Theorem) For all input sets S of clauses, initial
interpretations I, and fair SGGS-derivations (S; I;Γ0) ` (S; I;Γ1) ` . . .(S; I;Γj) ` . . .,
if S is satisfiable, then I[Γ∞] |= S.

Proof By way of contradiction, assume that I[Γ∞] 6|= S. Since the derivation is fair,
hence bundled, hence sensible, an SGGS-inference applies to Γ∞. By Theorem 8, this
inference reduces Γ∞, which is impossible, because it is a limiting sequence.

Refutational completeness requires a preliminary theorem which shows that if a
bundled or critical SGGS-extension applies to a sequence, it applies also when the
sequence occurs as a prefix of a longer one:

Theorem 10 If a bundled or critical SGGS-extension derives Γ ′ from Γ in a fair
SGGS-derivation, then for all Γ †, the same SGGS-extension derives Γ ′Γ † from Γ Γ †.

Proof Since SGGS-extension derives Γ ′ from Γ in a fair, hence bundled, hence sen-
sible derivation, d p(Γ) = Γ , which implies that d p(Γ) is a prefix of d p(Γ Γ †). (If
d p(Γ) 6= Γ , then d p(Γ Γ †) = d p(Γ), so that d p(Γ) is a prefix of d p(Γ Γ †) anyway.)
Thus, if Γ satisfies the requirements of the SGGS-extension inference scheme with
side premises B1 �D1[M1], . . . ,Bn �Dn[Mn] and extension clause E, so does Γ Γ †.
Let I be the set of indices of the side premises in d p(Γ).

– If the SGGS-extension is critical, then Γ ′ = Γ 1EΓ 2, where Γ 1 is the shortest
prefix of Γ that enables the critical inference, and Γ 2 6= ε . The same SGGS-
extension applied to Γ Γ † yields Γ ′Γ †, because if Γ 1 is the shortest prefix of Γ

that enables the inference, it is also the shortest such prefix of Γ Γ †.
– If the SGGS-extension is bundled, its initial conflicting SGGS-extension trans-

forms Γ into Γ E. If E is I-all-true, SGGS-extension with I-all-true conflict clause
has no additional requirements on top of those of the SGGS-extension inference
scheme. If E is not I-all-true, SGGS-extension with non-I-all-true conflict clause
additionally requires that there are clauses H1 �F1[P1], . . . ,Hk �Fk[Pk] in d p(Γ)
such that P1, . . . ,Pk are I-true, and the literals in f lits(E) depend on the H1 �

P1, . . . ,Hk �Pk. Let K be the set of indices of the clauses H1 �F1[P1], . . . ,Hk �

48 M. P. Bonacina and D. A. Plaisted

Fk[Pk] in d p(Γ). Since d p(Γ) is a prefix of d p(Γ Γ †), these clauses occur also in
d p(Γ Γ †) and at the same indices. Thus, the conflicting SGGS-extension applies
to Γ Γ † and yields Γ Γ †E with the literals in tlits(E) assigned to the indices in I
and the literals in f lits(E) depending on the literals at the indices in K . Γ ′ is the
result of applying to Γ E the explanation and solving inferences of the bundled
SGGS-extension. By Lemma 9, either Γ ′ contains ⊥, or there exists an index i,
i > 0, such that Γ = Γ1DΓ2 with πi(Γ) = D[M], Γ ′ = Γ1CΓ3 with πi(Γ

′) = C,
and D[M] and C are not equivalent. Furthermore, we know from the proof of
Lemma 9 that i is the maximum element of the set I ′ of the indices which the
literals in tlits(E ′) are assigned to, where E ′ is E, if E is I-all-true (and in this case
I ′ =I), or is the result of the explanation inferences for E, if E is not I-all-true.
The clauses involved in the explanation inferences for E are precisely those at the
indices in K . Since E, K , and I are the same regardless of whether the SGGS-
extension is applied to Γ or Γ Γ †, it follows that the explanation inferences, E ′,
I ′, i, and the solving inferences are also the same. Therefore, the result of the
explanation and solving inferences applied to Γ Γ †E is Γ ′Γ †. 2

Since in a fair derivation all conflicting SGGS-extensions are bundled, Theo-
rem 10 covers all SGGS-extensions except non-conflicting non-critical ones. In the
next theorem a non-conflicting non-critical SGGS-extension that applies to a prefix
is covered by a critical SGGS-extension that applies to the whole sequence:

Theorem 11 (Refutational Completeness Theorem) For all input sets S of clauses
and initial interpretations I, if S is unsatisfiable, any fair SGGS-derivation (S; I;Γ0) `
(S; I;Γ1) ` . . .(S; I;Γj) ` . . . is a refutation.

Proof By way of contradiction, assume that for all j ≥ 0, Γj does not contain ⊥. Be-
cause the derivation is fair, hence bundled, hence sensible, SGGS-deletion is applied
eagerly, and therefore without loss of generality we can consider any Γj without dis-
posable clauses. For all j ≥ 0, since S is unsatisfiable, I[Γj] 6|= S. Since the derivation
is sensible, if Γj 6= d p(Γj), an inference other than SGGS-extension applies to Γj; and
if Γj = d p(Γj), an SGGS-extension applies to Γj. It follows that the derivation is infi-
nite, and, by the descending chain theorem, it forms a chain Γ0 >

c Γ1 >
c . . .Γj >

c
By Theorem 7, the derivation admits limit, and its limiting sequence Γ∞ is infinite,
because the derivation is a chain that features infinitely many strict inequalities. Let
Γ∞ be C1[L1], . . . ,Cn[Ln], . . ., where we omit the constraints for brevity. The selected
literals Li’s of Γ∞ must all be disjoint, because otherwise, by Lemma 8, an SGGS
inference would apply and decrease Γ∞ by Theorem 8, contradicting the fact that Γ∞

is the limiting sequence. This implies that Γ∞ = d p(Γ∞) and we have infinitely many
disjoint literals L1, . . . ,Ln, The latter implies that the Li’s become arbitrarily large
in the size ordering and therefore in the SGGS-suitable ordering �.
Let S′ be a finite unsatisfiable set of ground instances of clauses in S. Such a set exists
by Herbrand’s theorem because S is unsatisfiable. Let Q be the largest literal in S′ ac-
cording to the ordering �. Say that a literal L is small, if L�Q, and large otherwise.
Because the Li’s are disjoint, there are only finitely many Li’s that are small. Let r,
where r ≥ 1, be the largest index in Γ∞, such that the selected literal Lr is small. Let
Γ small be (Γ∞)|r: all selected literals of Γ∞ that are small occur in Γ small , but also large

SGGS: Inference System and Completeness 49

selected literals may be in Γ small . Let C∗ be a clause in S′ such that I[Γ∞] 6|=C∗. Such
a clause exists because S′ is unsatisfiable. We show that I[Γ small] 6|= C∗, because all
literals in C∗ are small. Indeed, first we observe that if a literal L is small and depends
on a literal M, then M also is small. Then we consider that I[Γ∞] 6|=C∗ means that for
all literals L in C∗, either L is I-true and depends on an I-false selected literal M in
Γ∞, or L is I-false and depends on an I-true selected literal M in Γ∞, or L is I-false
and at(L) 6∈ at(Ip(Γ∞)). In the first two cases, M must be small and therefore it is
in Γ small ; in the third case, at(L) 6∈ at(Ip(Γ∞)) implies at(L) 6∈ at(Ip(Γ small)). Thus,
I[Γ small] 6|=C∗.
Let C be a clause in S such that C∗ is instance of C: since all literals in C∗ are small
and � extends the size ordering, it follows that all literals in C are small. Let j be
the smallest index in the derivation such that (Γj)|n = (Γ∞)|n, for some n such that
n > r and (Γj)|n is the longest prefix of Γj for which (Γj)|n = (Γ∞)|n. Then Γj has
the form C1[L1], . . . ,Cn[Ln],D1[M1], . . . ,Dk[Mk], for some k > 0, where C1, . . . ,Cn is
(Γj)|n = (Γ∞)|n, but C1, . . . ,Cn,D1 is not a prefix of Γ∞, Lr is small, Lr+1, . . .Ln are
all large, and L1, . . . ,Lr−1,M1, . . .Mk can be either small or large. From Γ∞ = d p(Γ∞)
and (Γj)|n = (Γ∞)|n, it follows that (Γj)|n = d p((Γj)|n). Since all literals of C∗ are
small, and I[Γ small] 6|=C∗, it follows that I[(Γj)|n] 6|=C∗, because I[(Γj)|n] may differ
from I[Γ small] only on large literals. By the lifting theorem, there is a constrained
clause A�E[L] such that E is an instance of C, C∗ is a constrained ground instance
of A�E[L], and A�E[L] can be added to (Γj)|n by SGGS-extension. By applying to
E and C∗ the same reasoning applied above to C and C∗, we have that all literals in
E are small. If the SGGS-extension of (Γj)|n with A�E[L] is bundled or critical, by
Theorem 10 it applies also to Γj.
Otherwise, it is a non-conflicting non-critical SGGS-extension. We show that a crit-
ical SGGS-extension extends Γj with A � E[L], by showing that Γj has the form
Γ 1N[O]Γ 2, required by a critical SGGS-extension (cf. Definition 21), with Γ 1 given
by Γ small . First, since the SGGS-extension of (Γj)|n with A�E[L] is non-conflicting
non-critical, A�E[L] is not I-all-true, and at(Gr(A�L)) 6⊆ at(pcgi(H�P,Γ)) for all
selected literals H �P in (Γj)|n. It follows that at(Gr(A�L)) 6⊆ at(pcgi(H �P,Γ))
for all selected literals H �P in Γ small . Second, Γ small contains all side premises of
the inference: indeed, the I-true literals of E, that are small because all literals of
E are, depend on the selected literals of the side premises: this means that the se-
lected literals of the side premises are also small, and therefore must be in Γ small .
Third, Γ small is the shortest prefix enabling the inference, by the way r is defined
(e.g., a shorter prefix may not contain all side premises). Fourth, N[O] is Cr+1[Lr+1],
for which pcmin(L,Γ 1E[L]) ≺ pcmin(Lr+1,Γ

1Cr+1[Lr+1]), because Lr+1 is large,
whereas L is small. Fifth, Γ 2 is Cr+2[Lr+2], . . . ,Cn[Ln],D1[M1], . . . ,Dk[Mk], where
Γ 2 6= ε , because n > r > 1.
Thus, in all cases, SGGS-extension with A�E[L] applies to Γj. Since j is the smallest
index such that (Γj)|n = (Γ∞)|n, there are infinitely many Γj’s such that index(Γj) ≤
n+1, and therefore by fairness the inference applied to Γj has index less than or equal
to n+ 1. By Theorem 8, SGGS-extension with A�E[L] decreases strictly (Γj)|n in
the convergence ordering, contradicting the fact that (Γj)|n = (Γ∞)|n and (Γ∞)|n, being
a prefix of the limiting sequence, cannot be reduced. 2

50 M. P. Bonacina and D. A. Plaisted

This proof elucidates the rôle of critical SGGS-extensions: they are needed to
avoid overlooking proofs made of “small” ground instances in a system that does not
enumerate ground instances.

8.3 Goal Sensitivity

An input set of clauses S is typically generated from transforming into clausal form
a set of formulae, considered as assumptions, and the negation ¬ϕ of a formula ϕ

considered as conjecture. A theorem-proving method is goal-sensitive, if it only per-
forms inferences that involve clauses in, or deduced from, the clausal form of ¬ϕ . Let
S = T] iSOS, where iSOS is the set of clauses obtained from the transformation into
clausal form of ¬ϕ and T is its complement. The acronym iSOS stands for input set
of support, which is the traditional name of this subset of clauses in theorem proving.
We show that SGGS is goal-sensitive, if I is properly chosen:

Definition 51 (Goal sensitivity) An initial interpretation I is goal-sensitive for input
set S = T] iSOS, if I |= T and I 6|= iSOS.

If T is consistent, and S is unsatisfiable, goal-sensitive interpretations are guaran-
teed to exist.

Definition 52 (Ground link) Two ground clauses C and D are linked, denoted C

D, if there exist literals L1 of C and L2 of D, such that L1 = ¬L2.

Let
∗ be the reflexive transitive closure of
. Ground clauses C and D are
connected if C
∗ D. Let Gr(S) = {C′ : C′ ∈ Gr(C), C ∈ S}.

Definition 53 (Closure) Given a set of clauses S, a set G of ground clauses is connec-
tion-closed with respect to S, if for all C ∈ G and D ∈Gr(S), C
∗ D implies D ∈ G ;
it is closed with respect to resolution, if C,D ∈ G implies R ∈ G for all resolvents R
of C and D.

For an SGGS clause sequence Γ of length n, let Gr(Γ) =
⋃n

i=1 Gr(πi(Γ)).

Definition 54 (Goal-relevance) Given input set S = T] iSOS, the set GS of goal-
relevant clauses is the ⊆-smallest set of ground clauses such that (i) for all C ∈ iSOS,
Gr(C)⊆ GS, (ii) GS is connection-closed with respect to S, and (iii) GS is closed with
respect to resolution.

A constrained clause A�C is goal-relevant for S, if Gr(A�C) ⊆ GS. An SGGS
clause sequence Γ is goal-relevant for S, if Gr(Γ) ⊆ GS. An SGGS-derivation Γ0 `
Γ1 ` . . .Γj ` . . . from S is goal-sensitive, if ∀ j, j ≥ 0, Γj is goal-relevant for S.

Theorem 12 (Goal-sensitivity Theorem) For all input sets S of clauses and initial
interpretations I, if I is goal-sensitive, any SGGS-derivation (S; I;Γ0) ` (S; I;Γ1) `
. . .(S; I;Γj) ` . . . is goal-sensitive.

SGGS: Inference System and Completeness 51

Proof The proof is by induction on the length of the derivation. Base case: Γ0 =
ε is vacuously goal-relevant for S. Induction hypothesis: Γn is goal-relevant for S.
Induction step: we consider all possible SGGS inferences Γn ` Γn+1:

– If Γn `Γn+1 is an SGGS-deletion or SGGS-sorting step, goal-relevance is trivially
unaffected.

– If Γn ` Γn+1 is a partitioning inference, it replaces a clause C by a partition
C1, . . . ,Cn, where Gr(Ci) ⊆ Gr(C) for all i, 1 ≤ i ≤ n. Since by induction hy-
pothesis Gr(C)⊆ GS, it follows that Gr(Ci)⊆ GS for all i, 1≤ i≤ n.

– For SGGS-resolution, we observe that all cgi’s of a resolvent are resolvents of
cgi’s of the parents. Consider clauses C∨L and D∨M, where C and D are dis-
junctions of literals, and Lϑ = ¬Mϑ with most general unifier ϑ , so that the re-
solvent is R = (C∨D)ϑ . For all Rα ∈ Gr(R), Rα is a resolvent of (C∨L)ϑα ′ ∈
Gr(C∨ L) and (D∨M)ϑα ′ ∈ Gr(D∨M), where α ′ is α ∪σ , and σ is a sub-
stitution that replaces with ground terms all variables in (vars(L) \ vars(C))∪
(vars(M) \ vars(D)), if any, and is empty otherwise. If Γn ` Γn+1 is an SGGS-
resolution step with parents C and D and resolvent R, by induction hypothesis
Gr(C)⊆ GS and Gr(D)⊆ GS, and Gr(R)⊆ GS follows, because GS is closed with
respect to resolution.

– If Γn ` Γn+1 is an SGGS-extension step with extension clause E, we distinguish
two cases. If tlits(E) = /0, E is an I-all-false instance of a clause in S. Since I is
goal-sensitive by hypothesis, no instance of a clause in T can be I-all-false. Thus,
E is an instance of a clause in iSOS, and therefore Gr(E) ⊆ GS. If tlits(E) 6= /0,
every L ∈ tlits(E) is assigned to a side premise D[M] and depends on M, so that
every cgi of E is connected to a cgi of D. Since the side premises are clauses of
Γn, by induction hypothesis, Gr(D) ⊆ GS. Since E is an instance of a clause in
S, Gr(E) ⊆ Gr(S). Since GS is connection-closed with respect to S, Gr(E) ⊆ GS
also holds. 2

In practice, identifying iSOS with the clausal form of a negated conjecture may
not be always helpful or even possible. For example, if S is a knowledge base and the
problem is to detect inconsistencies, goal sensitivity may still be useful, by taking as
T the largest consistent subset of S and as iSOS its complement S\T .

9 Discussion

9.1 Related work

Since SGGS-extension generates instances of input clauses, SGGS is related to in-
stance-based reasoning [12,4], the theorem-proving paradigm most directly inspired
by Herbrand’s theorem. The basic idea is to generate ground instances of input clauses,
and test them for propositional unsatisfiability. The first such procedure was Gilmore
method (e.g., [19]), followed much later by SATCHMO [47], and hyper-linking [39],
the latter at the beginning of the renewed interest for the DPLL procedure [26,25,19]
for propositional satisfiability. Proceeding instance-based strategies, such as CLINS-
S [20,21], ordered semantic hyperlinking (OSHL) [55,54], Inst-Gen [30,31,37,36],

52 M. P. Bonacina and D. A. Plaisted

as well as methods that hybridize instance generation and tableaux, such as the dis-
connection calculus [11,40–42] and hypertableaux [2,10], progressively emphasized
model-driven instance generation, where the procedure maintains a candidate model,
generates ground instances to exclude it, updates it to satisfy them, and continues
until a contradiction arises. Surveys on instance-based theorem proving appeared in
[33,35], where these systems are classified depending on whether the interleaving of
instance generation and ground reasoning is coarse or fine grained. While SGGS de-
velops the idea of model-driven instance generation issued from this line of research,
both its inference system and its model representation approach are different from
all their predecessors. The instances generated by SGGS-extension are not ground
in general, and SGGS does not interleave instance generation and propositional or
ground reasoning.

Several methods generalize features of DPLL to first-order logic. One thread of
research [50,61,57,29,32,28] pursued endowing resolution and superposition with
a first-order splitting mechanism, which decomposes a clause into subdisjunctions
that do not share variables: for example, clause A(x)∨B(y) yields two cases, one
with A(x) and one with B(y), to be explored via backtracking. A motivation was to
improve the performance of resolution and superposition on long non-Horn clauses.
First-order splitting was inspired by viewing DPLL splitting as clause decomposition,
rather than as a guess of a truth value as in CDCL decision, since resolution and
superposition are not model-based.

Clearly, one cannot decompose as above A(x)∨B(x), because there is a variable
in common. Breaking clauses apart is a native feature of tableaux, whose well-known
downside is given by rigid variables: the procedure has to use backtracking to undo
substitutions global to the tableau. Thus, backtracking is used to go from a tableau
to another tableau, rather than from a branch to another branch of a tree as in DPLL.
The comparison between resolution (proof confluent) and tableaux (not proof con-
fluent) led to define proof confluence as used in this article (cf. Section 8 of [18] for
a discussion). An approach to this problem was offered by the already mentioned
disconnection [11,40–42] and hypertableaux [2,10] calculi, which refrain from in-
stantiating tableau variables and add instances to the set of clauses.

A different approach was suggested in FDPLL [3] and developed in the model-
evolution calculus [5,6,8,9,7]: the candidate model is represented by a sequence
of first-order literals; splitting A(x)∨B(x) yields a branch with A(Y) and one with
¬A(Y), where Y is a parameter, as parameters are introduced to avoid as much as
possible using Skolem constants. Model evolution is considered a faithful lifting of
DPLL to first-order logic, originally motivated by lifting splitting. SGGS lifts CDCL
to first-order logic. DPLL [26,25,19] and CDCL [49,51,48,46] are regarded as two
distinct methods,1 and both model representation and inferences in SGGS differ from
those of model evolution.

Another research line investigated pipelining [13] or integrating [27,15] resolu-
tion and superposition based engines with solvers for satisfiability modulo theories,

1 An early forerunner of CDCL was the semantic tree method with lemma generation (cf. pages 284–
288 in [53]).

SGGS: Inference System and Completeness 53

that build theories on top of a CDCL-based SAT-solver. The AVATAR architecture
[56] inherits from both first-order splitting [57,32] and integration as in [27,15].

DPLL(S X) [52] and NRCL [1] generalize CDCL to effectively propositional
logic (EPR). This fragment of first-order logic, also known as the Bernays-Schönfinkel
class, allows only formulæ of the form ∃∗∀∗ϕ , where ϕ is quantifier-free and function-
free, while constant symbols are permitted. EPR satisfiability reduces to SAT by re-
placing existentially quantified variables by Skolem constants, replacing universally
quantified variables by constants in all possible ways, and abstracting ground first-
order atoms to propositional atoms. DPLL(S X) avoids exhaustive grounding by
decorating EPR clauses with sets of substitutions, that are manipulated by operations
similar to those of relational algebra. CDCL is lifted to EPR by adding factoring and
making all CDCL operations aware of the substitution sets. NRCL, that stands for
Non-Redundant Clause Learning, employs a sequence of constrained EPR literals to
represent a candidate partial model, and guarantees that no learned conflict clause is
redundant. Also SGGS has this property, since a clause that enters the disjoint prefix
with an SGGS-move is the justification of its selected literal, and therefore it is not
disposable. SGGS recreates CDCL in a semi-decision procedure for full first-order
logic, handling also possibly infinite Herbrand bases.

For the part on constraints, we recall that an equational problem is a first-order
formula with equality as the only predicate symbol. Equalities between terms inter-
preted in the Herbrand universe are known as Herbrand constraints. Solved forms for
equational problems, inference rules for reduction to solved form, and their termina-
tion were investigated independently in [44,45,23], yielding procedures to decide the
validity of an equational problem in the Herbrand universe. The work in [44,45,23]
was motivated primarily by logic programming; a survey of this kind of research was
given in [22]. SGGS constraints are a variant of Herbrand constraints: by featuring
atomic constraints in the form top(t) = f , they allow SGGS to avoid quantifiers in
constraints. Indeed, top(t) = f replaces ∃x1 . . .∃xn. t ≡ f (x1, . . . ,xn), and top(t) 6= f
replaces ∀x1 . . .∀xn. t 6≡ f (x1, . . . ,xn). As a consequence, our notion of standard form
is different from the solved forms studied in [23] for equational problems, that feature
quantifiers. Our inference rules for constraints, and our results on the termination of
their application, are tailored for SGGS. The interested reader may find additional
material on related work in [14,18].

9.2 Summary of contributions and future work

We presented and proved refutationally complete a new theorem-proving method,
called SGGS, that lifts to first-order logic the conflict-driven clause learning (CDCL)
procedure of propositional SAT solving [49,51,48,46]. SGGS has the possibly unique
property of being simultaneously model-based, semantically guided, goal-sensitive,
and proof confluent. It searches for a model of the input set S of clauses, starting
from a given initial interpretation I = I[Γ0], and building interpretations I[Γ1], I[Γ2],
I[Γ3] . . ., represented by SGGS clause sequences, or sequences of constrained clauses
with selected literals, that make an SGGS-derivation Γ0 ` Γ1 ` Γ2 ` Γ3 `

54 M. P. Bonacina and D. A. Plaisted

The main operations of CDCL are decision, Boolean clausal propagation, con-
flict explanation by propositional resolution, learning a conflict clause, and conflict
solving by backjumping. The analogue of decision in SGGS is selection of a literal
in every clause in an SGGS clause sequence Γ , since selected literals differentiate
I[Γ] from Γ . First-order clausal propagation in SGGS relies on the concepts of uni-
form falsity and dependence. A literal is uniformly false in an interpretation, if all its
ground instances are false in that interpretation; for I, a literal is I-true if it is true in
I, and I-false if it is uniformly false in I. A literal L depends on a selected literal M,
if M precedes L in Γ , and all ground instances of L appear negated among the proper
constrained ground instances of M, or those that M contributes to I[Γ], so that M’s
selection makes L uniformly false in I[Γ].

All SGGS operations work modulo semantic guidance by I, because the system
endeavours to make I[Γ] different from I, since I 6|= S (otherwise, the problem is
solved). Thus, it is the I-false selected literals in Γ that differentiate I[Γ] from I;
it is the dependence of I-true literals on I-false selected literals that is recorded by
assignments; and it is I-all-true clauses, or clauses whose literals are all I-true, that
are conflict clauses or justifications of implied literal. When all literals of an I-all-
true clause are assigned, it means that in an attempt to diversify I[Γ] from I to satisfy
other clauses, the system made that I-all-true clause uniformly false in I[Γ]. When
all literals of an I-all-true clause but one are assigned, the non-assigned one must be
selected, and it is an implied literal, as all its ground instances must be true in I[Γ] to
satisfy the clause. Clauses whose selected literals contribute all their ground instances
to I[Γ] form the disjoint prefix d p(Γ), that is, the best part of Γ .

The SGGS inference system includes SGGS-extension, SGGS-splitting, SGGS-
resolution, SGGS-move, and SGGS-deletion. We gave SGGS-extension and SGGS-
splitting as inference schemes, each instantiated into four inference rules. SGGS-
extension is an instance generation mechanism, and it is a hyperinference, like hy-
perresolution [58], hyperlinking [39], and hypertableaux extension [2], in that it ap-
plies a simultaneous most general unifier of possibly multiple pairs of literals from
an input clause and the current Γ . It further instantiates the clause with a new kind
of substitution, called most general semantic falsifier, to maintain the invariant that
all literals in Γ are either I-true or I-false. This invariant ensures that all ground in-
stances of a literal in an SGGS clause sequence are in harmony with respect to I.
Most general semantic falsifiers are empty if I is all-positive or all-negative.

SGGS-splitting of clause C by clause D replaces C by a partition, where all
ground instances that a specified literal in C has in common with D’s selected lit-
eral are confined to one element. This enables SGGS-resolution or SGGS-deletion
to remove such an intersection, ridding the candidate model of duplications or con-
tradictions. SGGS-resolution is a restricted form of first-order resolution, where an
implied literal in a justification resolves away a literal that depends on it: for this rea-
son it uses matching rather than unification, and allows the resolvent to replace the
non-I-all-true parent. SGGS-deletion removes disposable clauses that are satisfied by
the interpretation induced by the clauses on their left in Γ .

SGGS-extension extends the sequence Γ and the candidate model I[Γ], while
the other inference rules amend or shrink them, so that all inferences are model-
based. This behavior is captured by the lifting theorem (cf. Theorem 4), which shows

SGGS: Inference System and Completeness 55

that if I[Γ] 6|= S and d p(Γ) = Γ , SGGS-extension applies, and its companion (cf.
Theorem 3), which shows that if d p(Γ) 6= Γ , another inference rule applies.

If SGGS-extension adds a clause in conflict with I[Γ] the first-order CDCL mech-
anism of SGGS is brought to bear. It comprises explanation and solving inferences.
If the conflict clause includes I-false literals, SGGS-resolution explains the conflict
by resolving away those I-false literals with implied literals in d p(Γ). An SGGS-
extension adding such a clause makes sure that this is possible by applying an ex-
tension substitution. The explanation inferences yield either the empty clause or an
I-all-true conflict clause, which is then subject to the solving inferences. If the con-
flict clause does not include I-false literals, only the solving inferences are employed:
the conflict clause is moved to the left of the clause which its selected literal is as-
signed to. This SGGS-move solves the conflict by flipping the truth value in I[Γ] of all
ground instances of this literal. It corresponds to backjumping from a branch of the
tree to another one in CDCL. The candidate model is thus amended with no need to
undo steps and return to previous states, so that SGGS is proof confluent. The moved
clause is learned in the sense that it enters d p(Γ) as justification of its selected literal.
Prior to the move, splitting inferences may apply to make the selected literal of the
clause to be moved so precise, that the move will indeed flip the truth value of all its
ground instances. Every SGGS-extension with a conflict clause is bundled with the
explanation and solving inference that solve the conflict.

Refutational completeness is established by exhibiting a convergence ordering
on SGGS clause sequences, that is well-founded on sequences of bounded length.
The length of sequences in a first-order SGGS-derivation is not bounded. However,
this well-foundedness property allows us to compare the prefixes of the sequences
in a derivation and define its limiting sequence: it is the longest sequence Γ∞ such
that for all lengths i, i≤ |Γ∞|, there exists a stage of the derivation beyond which the
prefix of length i of every sequence in the derivation is equivalent to that of Γ∞. We
proved a descending chain theorem (cf. Theorem 8) which shows that SGGS infer-
ences reduce SGGS clause sequences in the convergence ordering. It follows that any
SGGS-derivation admits limiting sequence Γ∞ (cf. Theorem 7), and if the input set
S is satisfiable, I[Γ∞] is a model of S (cf. Theorem 9). The refutational completeness
theorem (cf. Theorem 11) shows that whenever the input set is unsatisfiable, any fair
SGGS-derivation is guaranteed to generate the empty clause: otherwise, we would
have an infinite derivation with infinite Γ∞, and SGGS inferences that reduce a prefix
of Γ∞, contradicting that it is the limiting sequence.

The inception of SGGS opens many directions for future research. The first one
is to implement SGGS, which involves designing algorithms to compute efficiently
its operations, and devising strategies for efficient inference control. Literal selection
and literal assignment (cf. Definition 9) are examples of heuristic choice. Heuristics
for literal selection in SGGS may take inspiration from activity-based heuristics for
decision in CDCL, that count how many times a propositional variable is resolved
upon and favor most active variables. Performance evaluation of an implementation
can be complemented with complexity analyses of SGGS actions, such as splitting a
clause by another, and, for an I not based on sign, computing most general semantic
falsifiers and checking that literals are I-false or I-true. Feed-back from an imple-
mentation may lead to simplify SGGS, and a simpler or more abstract presentation

56 M. P. Bonacina and D. A. Plaisted

may be sought also at the theoretical level. Redundancy criteria and contraction in-
ference rules that delete or replace redundant clauses are well-known to be of crucial
importance for first-order theorem proving. They are typically based on well-founded
orderings (e.g., the subsumption ordering). SGGS has a model-based redundancy cri-
terion, namely disposability, which includes forward subsumption. SGGS also fea-
tures a well-founded total ordering on ground literals, that is used to replace a clause
by another one in critical SGGS-extensions, and to sort clauses by SGGS-sorting. In
the context of a more abstract study of SGGS, model-based and ordering-based re-
dundancy could be unified. SGGS may also delete some of the clauses produced by
SGGS-splitting, as well as clauses including literals assigned to a partitioned clause
or to the non-I-all-true parent of an SGGS-resolution step. While such deletions re-
semble a partial restart in CDCL parlance, it may be possible to cover them also in a
study of redundancy for model-based reasoning.

Further topics include extending SGGS with theory reasoning, beginning with
equality, and determining whether it is a decision procedure for decidable fragments.
In its search for a model of the input set, SGGS guesses I-false literals and learns
I-true implied literals: if I is based on sign (e.g., all-negative), this means guessing
literals of opposite sign (e.g., positive) and learning literals of the same sign (e.g.,
negative). A major issue is how to give initial interpretations not based on sign. This
theme is connected with theory reasoning, because a way to capture an interpretation
is to say that it is a model of a theory, either presented by a set of axioms, or built into
a solver that constructs a model and acts as oracle for truth in that model. Examples
include fragments of set theory or lattice theory, fragments of algebra, Boolean logic,
implicational logic, and theories of data structures such as lists. While state-of-the-
art theorem provers are very sophisticated (e.g., [5,62,37,38,59]), SGGS propounds
a semantically-oriented style of theorem proving, that may be rewarding for hard
problems or new domains, whose identification is also an objective. If SGGS had on
first-order theorem proving an effect even partially similar to that of CDCL on SAT,
the impact could be far-reaching.

Acknowledgements An abstract of an early version of this work was presented at the Meeting of the IFIP
Working Group 1.6 on Rewriting at the Sixth Federated Logic Conference (FLoC) at the Vienna Summer
of Logic in July 2014. This article was completed when the first author was an international fellow at the
Computer Science Laboratory of SRI International in Menlo Park, and also during a visit at Microsoft
Research in Redmond: the support of both institutions is gratefully acknowledged. We thank the reviewers
for their comments that helped us improve our manuscript.

References

1. Gábor Alagi and Christoph Weidenbach. NRCL – a model building approach to the Bernays-
Schönfinkel fragment. In Carsten Lutz and Silvio Ranise, editors, Proceedings of the 10th Inter-
national Symposium on Frontiers of Combining Systems (FroCoS), volume 9322 of Lecture Notes in
Artificial Intelligence, pages 69–84, Berlin, 2015. Springer.

2. Peter Baumgartner. Hyper tableaux – the next generation. In Harrie de Swart, editor, Proceedings
of the 7th International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX), volume 1397 of Lecture Notes in Artificial Intelligence, pages 60–76, Berlin,
1998. Springer.

SGGS: Inference System and Completeness 57

3. Peter Baumgartner. FDPLL – a first-order Davis-Putnam-Logeman-Loveland procedure. In David
McAllester, editor, Proceedings of the 17th International Conference on Automated Deduction
(CADE), volume 1831 of Lecture Notes in Artificial Intelligence, pages 200–219, Berlin, 2000.
Springer.

4. Peter Baumgartner. Logical engineering with instance-based methods. In Frank Pfenning, editor,
Proceedings of the 21st International Conference on Automated Deduction (CADE), volume 4603 of
Lecture Notes in Artificial Intelligence, pages 404–409, Berlin, 2007. Springer.

5. Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing the model evolution calculus.
International Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.

6. Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Lemma learning in the model evolution
calculus. In Miki Hermann and Andrei Voronkov, editors, Proceedings of the 13th Conference on
Logic, Programming and Automated Reasoning (LPAR), volume 4246 of Lecture Notes in Artificial
Intelligence, pages 572–586, Berlin, 2006. Springer.

7. Peter Baumgartner, Björn Pelzer, and Cesare Tinelli. Model evolution calculus with equality – revised
and implemented. Journal of Symbolic Computation, 47(9):1011–1045, 2012.

8. Peter Baumgartner and Cesare Tinelli. The model evolution calculus as a first-order DPLL method.
Artificial Intelligence, 172(4–5):591–632, 2008.

9. Peter Baumgartner and Uwe Waldmann. Superposition and model evolution combined. In Renate
Schmidt, editor, Proceedings of the 22nd International Conference on Automated Deduction (CADE),
volume 5663 of Lecture Notes in Artificial Intelligence, pages 17–34, Berlin, 2009. Springer.

10. Markus Bender, Björn Pelzer, and Claudia Schon. E-KRHyper 1.4: extensions for unique names and
description logic. In Maria Paola Bonacina, editor, Proceedings of the 24th International Conference
on Automated Deduction (CADE), volume 7898 of Lecture Notes in Artificial Intelligence, pages
126–134, Berlin, 2013. Springer.

11. Jean-Paul Billon. The disconnection method. In Pierangelo Miglioli, Ugo Moscato, Daniele Mundici,
and Mario Ornaghi, editors, Proceedings of the 5th International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX), volume 1071 of Lecture Notes in Artificial
Intelligence, pages 110–126, Berlin, 1996. Springer.

12. Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Michael J. Wooldridge and
Manuela Veloso, editors, Artificial Intelligence Today – Recent Trends and Developments, volume
1600 of Lecture Notes in Artificial Intelligence, pages 43–84. Springer, Berlin, 1999.

13. Maria Paola Bonacina and Mnacho Echenim. Theory decision by decomposition. Journal of Symbolic
Computation, 45(2):229–260, 2010.

14. Maria Paola Bonacina, Ulrich Furbach, and Viorica Sofronie-Stokkermans. On first-order model-
based reasoning. In Narciso Martı́-Oliet, Peter Olveczky, and Carolyn Talcott, editors, Logic, Rewrit-
ing, and Concurrency: Essays Dedicated to José Meseguer, volume 9200 of Lecture Notes in Com-
puter Science, pages 181–204. Springer, Berlin, 2015.

15. Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On deciding satisfiability by
theorem proving with speculative inferences. Journal of Automated Reasoning, 47(2):161–189, 2011.

16. Maria Paola Bonacina and David A. Plaisted. Constraint manipulation in SGGS. In Temur Kutsia
and Christophe Ringeissen, editors, Proceedings of the 28th Workshop on Unification (UNIF), Tech-
nical Reports of the Research Institute for Symbolic Computation, pages 47–54. Johannes Kepler
Universität, July 2014. Available at http://vsl2014.at/meetings/UNIF-index.html.

17. Maria Paola Bonacina and David A. Plaisted. SGGS theorem proving: an exposition. In Stephan
Schulz, Leonardo De Moura, and Boris Konev, editors, Proceedings of the 4th Workshop on Practical
Aspects in Automated Reasoning (PAAR) (2014), volume 31 of EasyChair Proceedings in Computing
(EPiC), pages 25–38, July 2015.

18. Maria Paola Bonacina and David A. Plaisted. Semantically-guided goal-sensitive reasoning: model
representation. Journal of Automated Reasoning, 56(2):113–141, 2016.

19. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, Cambridge, 1973.

20. Heng Chu and David A. Plaisted. Model finding in semantically guided instance-based theorem
proving. Fundamenta Informaticae, 21(3):221–235, 1994.

21. Heng Chu and David A. Plaisted. CLINS-S: a semantically guided first-order theorem prover. Journal
of Automated Reasoning, 18(2):183–188, 1997.

22. Hubert Comon. Disunification: a survey. In Jean-Louis Lassez and Gordon Plotkin, editors, Com-
putational Logic – Essays in Honor of Alan Robinson, pages 322–359. The MIT Press, Cambridge,
1991.

58 M. P. Bonacina and D. A. Plaisted

23. Hubert Comon and Pierre Lescanne. Equational problems and disunification. Journal of Symbolic
Computation, 7:371–425, 1989.

24. Martin Davis. The Universal Computer. The Road from Leibniz to Turing. Mathemat-
ics/Logic/Computing Series. CRC Press, Taylor and Francis Group, 2012. Turing Centenary Edition.

25. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

26. Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7:201–215, 1960.

27. Leonardo de Moura and Nikolaj Bjørner. Engineering DPLL(T) + saturation. In Alessandro Armando,
Peter Baumgartner, and Gilles Dowek, editors, Proceedings of the 4th International Conference on
Automated Reasoning (IJCAR), volume 5195 of Lecture Notes in Artificial Intelligence, pages 475–
490, Berlin, 2008. Springer.

28. Arnaud Fietzke. Labelled superposition. PhD thesis, Max Planck Institut für Informatik, Saabrücken,
October 2013.

29. Arnaud Fietzke and Christoph Weidenbach. Labelled splitting. In Alessandro Armando, Peter Baum-
gartner, and Gilles Dowek, editors, Proceedings of the 4th International Conference on Automated
Reasoning (IJCAR), volume 5195 of Lecture Notes in Artificial Intelligence, pages 459–474, Berlin,
2008. Springer.

30. Harald Ganzinger and Konstantin Korovin. New directions in instantiation-based theorem proving. In
Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS), pages 55–64. IEEE
Computer Society Press, 2003.

31. Harald Ganzinger and Konstantin Korovin. Theory instantiation. In Miki Hermann and Andrei
Voronkov, editors, Proceedings of the 13th Conference on Logic, Programming and Automated Rea-
soning (LPAR), volume 4246 of Lecture Notes in Artificial Intelligence, pages 497–511, Berlin, 2006.
Springer.

32. Krystof Hoder and Andrei Voronkov. The 481 ways to split a clause and deal with propositional
variables. In Maria Paola Bonacina, editor, Proceedings of the 24th International Conference on
Automated Deduction (CADE), volume 7898 of Lecture Notes in Artificial Intelligence, pages 450–
464, Berlin, 2013. Springer.

33. Swen Jacobs and Uwe Waldmann. Comparing instance generation methods for automated reasoning.
Journal of Automated Reasoning, 38:57–78, 2007.

34. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Proceedings of the Conference on Computational Problems in Abstract Algebras, pages 263–
298. Pergamon Press, Oxford, 1970.

35. Konstantin Korovin. An invitation to instantiation-based reasoning: from theory to practice. In Renate
Schmidt, editor, Proceedings of the 22nd International Conference on Automated Deduction (CADE),
volume 5663 of Lecture Notes in Artificial Intelligence, pages 163–166, Berlin, 2009. Springer.

36. Konstantin Korovin. Inst-Gen: a modular approach to instantiation-based automated reasoning. In
Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays in Memory of
Harald Ganzinger, volume 7797 of Lecture Notes in Artificial Intelligence, pages 239–270. Springer,
Berlin, 2013.

37. Konstantin Korovin and Christoph Sticksel. iProver-Eq: An instantiation-based theorem prover with
equality. In Jürgen Giesl and Reiner Hähnle, editors, Proceedings of the 5th International Conference
on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence, pages
196–202, Berlin, 2010. Springer.

38. Laura Kovàcs and Andrei Voronkov. First order theorem proving and Vampire. In Natasha Sharygina
and Helmut Veith, editors, Proceedings of the 25th International Conference on Computer-Aided
Verification (CAV), volume 8044 of Lecture Notes in Computer Science, pages 1–35, Berlin, 2013.
Springer.

39. Shie-Jue Lee and David A. Plaisted. Eliminating duplication with the hyperlinking strategy. Journal
of Automated Reasoning, 9:25–42, 1992.

40. Reinhold Letz and Gernot Stenz. DCTP - a disconnection calculus theorem prover. In Rajeev P. Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of the 1st International Joint Conference
on Automated Reasoning (IJCAR), volume 2083 of Lecture Notes in Artificial Intelligence, pages
381–385, Berlin, 2001. Springer.

41. Reinhold Letz and Gernot Stenz. Proof and model generation with disconnection tableaux. In
Robert Nieuwenhuis and Andrei Voronkov, editors, Proceedings of the 8th International Conference
on Logic, Programming and Automated Reasoning (LPAR), volume 2250 of Lecture Notes in Artificial
Intelligence, pages 142–156, Berlin, 2001. Springer.

SGGS: Inference System and Completeness 59

42. Reinhold Letz and Gernot Stenz. Integration of equality reasoning into the disconnection calculus.
In Uwe Egly and Christian G. Fermüller, editors, Proceedings of the 15th International Conference
on Analytic Tableaux and Related Methods (TABLEAUX), volume 2381 of Lecture Notes in Artificial
Intelligence, pages 176–190, Berlin, 2002. Springer.

43. Michel Ludwig and Uwe Waldmann. An extension of the Knuth-Bendix ordering with LPO-like prop-
erties. In Nachum Dershowitz and Andrei Voronkov, editors, Proceedings of the 14th International
Conference on Logic, Programming and Automated Reasoning (LPAR), volume 4790 of Lecture Notes
in Artificial Intelligence, pages 348–362, Berlin, 2007. Springer.

44. Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees.
Technical report, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA, 1988.

45. Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees. In
Proceedings of the 3rd Annual IEEE Symposium on Logic in Computer Science (LICS), pages 348–
457. IEEE Computer Society Press, 1988.

46. Sharad Malik and Lintao Zhang. Boolean satisfiability: from theoretical hardness to practical success.
Communications of the ACM, 52(8):76–82, 2009.

47. Rainer Manthey and François Bry. SATCHMO: a theorem prover implemented in Prolog. In Ewing
Lusk and Ross Overbeek, editors, Proceedings of the 9th International Conference on Automated
Deduction (CADE), volume 310 of Lecture Notes in Computer Science, pages 415–434, Berlin, 1988.
Springer.

48. João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers. In
Armin Biere, Marjin Heule, Hans Van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 4, pages 131–153. IOS
Press, 2009.

49. João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfi-
ability. IEEE Transactions on Computers, 48(5):506–521, 1999.

50. William W. McCune. OTTER 3.0 reference manual and guide. Technical Report 94/6, MCS Division,
Argonne National Laboratory, 1994.

51. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: En-
gineering an efficient SAT solver. In Proceedings of the 39th Design Automation Conference (DAC),
pages 530–535, 2001.

52. Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. Deciding effectively propositional logic
using DPLL and substitution sets. Journal of Automated Reasoning, 44(4):401–424, 2010.

53. David A. Plaisted. Mechanical theorem proving. In Ranan B. Banerji, editor, Formal Techniques in
Artificial Intelligence, pages 269–320. Elsevier, Amsterdam, 1990.

54. David A. Plaisted and Swaha Miller. The relative power of semantics and unification. In Andrei
Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays in Memory of Harald
Ganzinger, volume 7797 of Lecture Notes in Artificial Intelligence, pages 317–344. Springer, Berlin,
2013.

55. David A. Plaisted and Yunshan Zhu. Ordered semantic hyper linking. Journal of Automated Reason-
ing, 25:167–217, 2000.

56. Giles Reger, Martin Suda, and Andrei Voronkov. Playing with AVATAR. In Amy P. Felty and
Aart Middeldorp, editors, Proceedings of the 25th International Conference on Automated Deduc-
tion (CADE), volume 9195 of Lecture Notes in Artificial Intelligence, pages 399–415, Berlin, 2015.
Springer.

57. Alexandre Riazanov. Implementing an efficient theorem prover. PhD thesis, Department of Computer
Science, The University of Manchester, July 2003.

58. J. Alan Robinson. Automatic deduction with hyper-resolution. International Journal of Computer
Mathematics, 1:227–234, 1965.

59. Stephan Schulz. System description: E 1.8. In Ken McMillan, Aart Middeldorp, and Andrei Voronkov,
editors, Proceedings of the 19th International Conference on Logic, Programming and Automated
Reasoning (LPAR), volume 8312 of Lecture Notes in Artificial Intelligence, pages 735–743, Berlin,
2013. Springer.

60. James R. Slagle. Automatic theorem proving with renamable and semantic resolution. Journal of the
ACM, 14(4):687–697, 1967.

61. Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robinson and An-
drei Voronkov, editors, Handbook of Automated Reasoning, volume 2, pages 1965–2012. Elsevier,
Amsterdam, 2001.

60 M. P. Bonacina and D. A. Plaisted

62. Christoph Weidenbach, Dylana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick
Wischnewski. SPASS version 3.5. In Renate Schmidt, editor, Proceedings of the 22nd International
Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence,
pages 140–145, Berlin, 2009. Springer.

63. Larry Wos, D. Carson, and G. Robinson. Efficiency and completeness of the set of support strategy
in theorem proving. Journal of the ACM, 12:536–541, 1965.

