
Future directions of automated deduction:

Strategy analysis for theorem proving

Maria Paola Bonacina
∗

Department of Computer Science

University of Iowa

Iowa City, IA 52242-1419, USA

bonacina@cs.uiowa.edu

Keywords: theorem proving, search strategies, complexity measures, strategy analysis.

A new direction for research in automated deduction is the development of mathematical

tools for the analysis and evaluation of theorem-proving strategies. We propose the name strategy

analysis, by analogy with algorithm analysis. In the following, we give some motivation, mention

some of the difficulties of this research, describe briefly current and future work, and comment on

its impact on the field.

Motivation The motivation is a long-standing gap between the theory and the practice of theo-

rem proving. On one hand, there are indeed theorem-proving strategies whose implementations

are capable of solving significant problems (e.g., [1, 2, 4, 5, 6]). On the other hand, there is no

theory of “strategy analysis”, comparable to algorithm analysis, for evaluating these strategies.

As a consequence, theorem-proving strategies are usually evaluated by benchmarking of their im-

plementations. While benchmarking is eventually necessary, it is unsatisfactory that it is the only

available approach, because its results are specific (depending on the input data, the implementa-

tion, the software and hardware environment), and coarse (theorem provers are complex objects

made of many components, and it is difficult to establish quantitatively how different components

contributed to the observed performances).

The challenge of strategy analysis Theorem-proving problems usually have infinite search

spaces. The main reason for the absence of “strategy analysis” is the lack of formal tools to

analyze the complexity of problems involving search in an infinite search space. There are several

obstacles in analyzing the complexity of search in an infinite space, including the following:

• The methodology of traditional complexity analysis is not suitable, because it is concerned

mainly with the asymptotic analysis of finite objects, with time and space the two dominating

measures. Given that the search space is infinite, it is no longer meaningful to discuss about

average case analysis, much less worst case.

∗Supported in part by the National Science Foundation with grant CCR-94-08667.

1



• In a finite problem the time and space complexities can usually be treated as functions of a

measure of the input. But for first-order logic, for instance, the difficulty of finding a proof

is not related to the size of the input set of clauses. A source of the problem is that a set

of first-order clauses represents more than itself: it represents the infinite set of the ground

instances of the clauses. Thus, any measure based on the input alone is not sufficient.

• Neither is the complexity of a search strategy related to its output. In theorem proving,

the output is the computed proof, if a proof is produced. The size of the proof is generally

not indicative of the difficulty of finding the proof, since one may find a short proof after an

extensive traversal of the search space.

Thus, a more accurate notion of complexity should be how difficult the process of finding the

proof is, rather than either the input or the output of the computation.

An approach towards strategy analysis In recent and continuing work [3], we have pro-

posed a new way of analysis to reason about and to compare theorem-proving strategies. Our

methodology is based on a model for representing search in theorem proving. A primary goal

in designing this model has been to accurately describe the behaviour of contraction inferences,

such as subsumption and simplification, which have been used successfully in theorem proving.

Unlike the usual expansion inference rules, such as resolution, which merely visit the search space,

contraction inferences visit and modify the search space at the same time. Our model captures

this dynamic behaviour by introducing a notion of marking into the search graph, which allows

us to describe the search plan of a strategy as well as its inference mechanism.

Based on the concept of marked search graph, we have introduced a notion of complexity

measure for analyzing and evaluating the behaviour of strategies. Unlike the conventional com-

plexity measures which work with finite objects, we need to deal with infinite search graphs and

derivations which may not halt. Our notion of complexity analysis, based on well-founded order-

ings instead of natural numbers, captures both the present and the future of a possibly infinite

derivation. To do this properly, we have defined notions of ancestor-graph and dynamic distance

to replace the conventional notions of path and path-lengh. This allows us to “finitize” the fu-

ture, the portion of the infinite search graph not yet discovered, into a sequence of finite search

graphs within bounded distances. We have shown the applicability of our framework by using it

to compare contraction-based strategies of different contraction power, showing how they affect

the evolution of the respective search spaces during the derivation.

Future work Since our work has only recently shown even the possibility of strategy analysis

in infinite spaces, the development of this subarea of automated deduction lies almost completely

in the future. Possible directions include the following:

• Extension to other classes of strategies. The analysis in [3] concentrated on forward-

reasoning, contraction-based strategies. We feel that the main ideas in our work may capture

essential aspects of infinite search, and therefore may be applied to other classes of strategies,

such as backward-reasoning strategies, in automated deduction or artificial intelligence.

2



• Analysis of search plans. Theorem-proving strategies may differ in many parameters. As

a first cut, one may distinguish between comparing strategies that have the same inference

system and different search plans, and comparing strategies that have the same search plan

and different inference systems. In [3], we considered an instance of the second type of

problem. Thus, another direction is to compare strategies that have different search plans.

• Analysis of parallel/distributed strategies. An additional motivation to work on the mo-

delling of the complexity of search came to us from our work on distributed automated

deduction. Strategy analysis is a prerequisite to address the question of how parallelism

may reduce the search complexity of theorem proving.

Impact The impact of developing a theory of strategy analysis may be far-reaching. Classical

algorithm analysis applies to decidable problems. On the other hand, many subfields of computer

science deal with problems that are not decidable in their general formulation. Nonetheless, non-

trivial classes of instances of such problems are solved mechanically, witness the field of theorem

proving. This is mainly because the existence of an infinite search space may not require an

infinite amount of computational resources, since it is not necessary to traverse the entire search

space to find a solution. In principle, the availability of tools for strategy analysis may have on all

these problems an impact similar to that of algorithm analysis on finite problems. For instance,

if strategy analysis establishes that strategy A has smaller search complexity than strategy B on

the problems in a certain class, then researchers may concentrate on improving and implementing

strategy A, or, at least, strategies with the features that differentiate A from B. Better and more

specialized strategies will then impact positively all applications of automated deduction.

References

[1] Anantharaman, S. and Hsiang, J., Automated proofs of the Moufang identities in alternative rings,

J. Automated Reasoning 6(1) (1990) 76–109.

[2] Astrachan, O. L. and Loveland, D. W., METEORs: High performance theorem provers using model

elimination, in R. S. Boyer, (ed.), Automated Reasoning: Essays in Honor of Woody Bledsoe, Kluwer

Academic Publisher, Dordrecht, The Netherlands, 1991, pp. 31–60.

[3] Bonacina, M. P. and Hsiang, J., On the modelling of search in theorem proving – Towards a theory

of strategy analysis, submitted for publication and available as technical report, Department of

Computer Science, University of Iowa, December 1995.

[4] Kapur, D. and Zhang, H., RRL: a Rewrite Rule Laboratory, in E. Lusk, R. Overbeek (eds.), Proc.

Nineth International Conference on Automated Deduction, Argonne, Illinois, May 1988, Lecture

Notes in Computer Science 310, Springer-Verlag, New York, 1988, pp. 768–770.

[5] McCune, W. W., Otter 3.0 Reference Manual and Guide, Technical Report ANL-94/6, Mathematics

and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, January 1994.

[6] Stickel, M. E., A Prolog Technology Theorem Prover: Implementation by an Extended Prolog

Compiler, J. Automated Reasoning 4 (1988) 353-380.

3


