
The CDSAT Method for Satisfiability Modulo
Theories and Assignment: an Exposition

Maria Paola Bonacina1[0000−0001−9104−2692]

Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy
mariapaola.bonacina@univr.it
https://mariapaola.github.io/

Abstract. Most SMT instances involve symbols from more than one
theory. The equality sharing method for combining theory satisfiabil-
ity procedures has been a standard for over forty years. For the Boolean
part, the equality sharing method is interfaced with the CDCL procedure
for SAT. CDCL guides the search by learning lemmas from conflicts be-
tween clauses and candidate model. In the standard integration of CDCL
and equality sharing, the conflict-driven reasoning remains propositional,
even if conflict-driven theory procedures exist. The MCSAT method inte-
grates CDCL with a single conflict-driven theory procedure. The CDSAT
method generalizes CDCL, MCSAT, and equality sharing, by allowing
the integration of multiple (conflict-driven or not) theory procedures.

Keywords: Conflict-driven satisfiability procedures · Satisfiability mod-
ulo theory and assignment · Combination of theories.

1 Introduction

Automated reasoning (AR) is a foundation of computer science, since the quest
for a formulation and a solution of the Entscheidungsproblem led Alan Turing to
invent Turing machines in 1936. AR is also a foundation of artificial intelligence
(AI), since machines that prove theorems have been a defining objective of AI
since the Dartmouth Conference in 1956. AR is also an essential methodology for
the analysis, verification, synthesis, and optimization of software. Logic proved
to be the calculus of computation, as predicted by John McCarthy in 1963 [9].
AR is applied to proving verification/synthesis conditions, refining abstractions
for model checking, generating tests for testing and examples for synthesis. Cur-
rent goals in this field include correct-by-construction software, provable privacy,
and verification of distributed protocols, distributed systems, and randomized
algorithms. While generative AI as in chatbots can be used by anyone, AR is cur-
rently used mostly by computer scientists and mathematicians. The integration
of AR and generative AI towards a better AI is a fascinating challenge (e.g., [3]).

Automated reasoning is concerned with the design and implementation of
computer programs that solve problems formulated as validity or satisfiability
queries in a logic or a theory. Validity queries are handled refutationally: a conjec-
ture is shown valid by showing that its negation is unsatisfiable. AR procedures



2 M. P. Bonacina

involve inference and search. In this paper we consider contexts where satisfia-
bility is decidable, the problem is quantifier-free, and written as a set of clauses.
We study conflict-driven reasoning procedures [4] that are at the heart of solvers
for propositional satisfiability (SAT) and satisfiability modulo theories (SMT).

Conflict-driven reasoning procedures search for a model (to establish satis-
fiability) and perform inferences (to prove unsatisfiability), in such a way that
search and inferences guide each other. The procedure searches for a model by
proposing assignments to terms and propagating their consequences. Inferences
are performed (almost) only when the procedure encounters a conflict or contra-
diction (e.g., one of the clauses to be satisfied is false in the current assignment).
The inferences explain the conflict, resulting in the generation of a lemma. These
inferences are steps towards a possible refutation. The lemma excludes the as-
signments that caused the conflict. Learning the lemma ensures that the model
search will not incur in the same conflict, and the lemma is used to drive the
search elsewhere. In a nutshell, the model search focuses the inferences on solving
conflicts, and the inferences allow the search to escape dead-end’s.

This paper gives an exposition of the CDSAT (Conflict-Driven SATisfia-
bility) method [6, 8, 7]: to the best of our knowledge, CDSAT is currently the
most general conflict-driven reasoning procedure. Its novel features include the
following. CDSAT decides the satisfiability of a set of clauses modulo a union
of theories and a possibly empty initial assignment (satisfiability modulo the-
ories and assignment). The initial assignment may contain both Boolean (e.g.,
L←true) and first-order (e.g., x←3) assignments to terms occurring in the prob-
lem. The answer is sat, if there exists a satisfying assignment that includes the
initial one, and unsat otherwise. CDSAT combines theories, not black-box theory
procedures. The CDSAT transition system coordinates theory modules (theory
inference systems), which collaborate as peers over a trail representing a can-
didate model by Boolean and first-order assignments. Since conflict-driveness is
provided by CDSAT, the distinction between theory with conflict-driven proce-
dure and theory without fades. CDSAT does not need the traditional architecture
with the SAT solver at the center and the theory procedure(s) as satellite(s).
Propositional logic is one of the theories, the Boolean theory denoted Bool.

The proceeding sections interleave outlines of conflict-driven reasoning proce-
dures with examples, describing how CDSAT encompasses the other procedures.
The CDSAT transition rules are described informally showing their behavior
in the examples. A complete presentation with formal definitions, results, and
proofs can be found in [6, 8]. More references can be found in [4–6, 8].

2 From CDCL to CDSAT

The CDCL (Conflict-Driven Clause Learning) procedure [23, 22] for SAT (the
problem of deciding the satisfiability of a set S of propositional clauses) evolved
from the DPLL (Davis-Putnam-Logemann-Loveland) procedure [10], which in
turn evolved1 from the DP (Davis-Putnam) procedure [11]. CDCL was called
1 A historical account can be found in [21].



The CDSAT Method: an Exposition 3

DPLL or DPLL-CDCL until it was agreed that the two procedures deserve dis-
tinct names. The DP procedure featured rules incorporating resolution (clauses
C ∨ L and D ∨ L resolve upon complementary literals L and L to generate
resolvent C ∨D), its special case unit resolution (L and D ∨L resolve to gener-
ate D), and subsumption (L subsumes C ∨ L, and D subsumes D ∨ L). DPLL
replaced resolution with splitting: consider assignment L←true (written L), prop-
agate its consequences, and if a conflict arises, backtrack to L←false or L←true
(written L). DPLL demphasized inference in favor of backtracking search over
partial models, represented as a trail of Boolean assignments. Propagation was
unit propagation viewed as unit resolution and subsumption: if L is on the trail,
clause C ∨ L is deleted, and clause D ∨ L is replaced by D. A conflict arises if
S contains {L, L}. A splitting is done if no propagation is possible. The trail is
organized as a stack: backtracking consists of popping L and pushing L.

CDCL replaced chronological backtracking with backjumping and splitting
with decision: guess L, provided neither L nor L is on the trail. If chronolog-
ical backtracking is abandoned, L is not necessarily considered right after L,
and a tentative assignment is a decision, rather than a case in a case analysis.
Propagation replaced unit resolution and unit subsumption with detection of
implied literals and conflict clauses. If (C ∨ L) ∈ S and the trail contains Q for
every literal Q in C, literal L is implied and added to the trail with justification
C ∨ L. If C ∈ S and the trail contains Q for every literal Q in C, clause C is in
conflict. Every decision opens a new level on the trail, still organized as a stack.
All implied literals belong to the level of the most recent decision, except those
implied literals that are unit input clauses, which belong to level 0.

CDCL brought resolution back, applying it only to explain a conflict, by
resolving a conflict clause containing L with the justification of literal L on
the trail. One of the resolvents is retained as a lemma, and used to direct the
backjumping to a level of the trail where the lemma can be satisfied and the
search can restart. The choice of how much resolution to do and which resolvent
to learn is a matter of heuristic. The popular 1UIP heuristic prescribes to explain
the conflict by resolution until it generates an assertion clause, namely a conflict
clause C such that only one of its literals, the assertion literal L, is falsified by
the current level of the trail. After learning C, the procedure jumps back to the
smallest level where L is undefined, all other literals in C are false, and hence
the conflict is solved by placing L on the trail with C as justification.

In CDSAT clause C is viewed as an abbreviation of the assignment C←true.
There is no need to separate input set S and trail, and all input assignments sit
on the trail at level 0. Decisions are performed by a transition rule named Decide.
A decision is written as ?L to record that it is a guess. CDSAT requires that
every decision be acceptable. A Boolean decision ?L is acceptable if neither L nor
L is on the trail. The notion of implied literal is generalized to that of justified
assignment: if there is a clause C ∨L and the trail contains Q for every literal Q
in C, the justified assignment J⊢L is added to the trail, with J = {C ∨ L,¬C}
as justification. Propagations are performed by a transition rule named Deduce.
A justified assignment J⊢L belongs to the level of its justification J , which is the



4 M. P. Bonacina

maximum among the levels of the elements of J . Input assignments are justified
assignments with empty justification: input clause C is written as ∅⊢C. The trail
is not necessarily a stack, as J⊢L can be added after assignments of level higher
than that of J . In this case, J⊢L is called a late propagation.

In CDSAT the notion of conflict clause is replaced by that of conflicting as-
signment, or conflict tout court, meaning an unsatisfiable set E of assignments.
Resolve transitions explain E by replacing an element J⊢L of E with its justifi-
cation J . Explanation continues until E contains only one literal whose level m
is maximum in E. This is a generalization of 1UIP, because level m is not nec-
essarily the current one. A LearnBackjump transition learns a clause J⊢C, where
C = L1∨. . .∨Lk is the negation of a Boolean subset H = {L1, . . . , Lk} of conflict
E, and J is the rest of E, that is, E = J ⊎H. Indeed, if S ∪ (J ⊎H) |= ⊥, then
S∪J |= C. A conjunction, or set, of literals is called a cube. Then LearnBackjump
jumps back to a level that is strictly smaller than that of H, in order to quit
the conflict, and greater than or equal to that of J , so that J⊢C can be placed
on the trail. When LearnBackjump follows 1UIP, clause C is the first assertion
clause and the destination level is the one prescribed by 1UIP. LearnBackjump
can apply also other heuristics. Example 1 illustrates CDCL with 1UIP as done
by CDSAT. The only active module is that of theory Bool.

Example 1. Let S = {A∨B, A∨C∨E, B∨D, C∨D,A∨B∨E, B∨C, F∨E} be a
subset of the input, where A, B, C, D, E, and F are propositional variables [18].
The trail contains ∅⊢A ∨ B and all other input clauses at level 0. Suppose that
in order to satisfy other clauses a Decide transition adds ?F to the trail. Say
the trail already had n−1 levels prior to this decision, so that ?F opens level n.
The Bool-module infers by unit propagation {F ∨ E, ?F} ⊢Bool E and a Deduce
transition adds J⊢E to the trail with J = {F ∨ E, ?F}. The level of J⊢E is n,
because the level of J is n, since the level of ?F is n and that of F∨E is 0. Suppose
that two other Decide transitions create levels n+ 1 and n+ 2, and a third one
adds ?A opening level n+3. More unit propagations and Deduce transitions add
to the trail H⊢B with H = {A∨B, ?A}, I⊢C with I = {A∨C∨E, J⊢E, ?A}, and
K⊢D with K = {B ∨D,H⊢B}. All these justified assignments have level n+ 3.

The unit propagation {C ∨D, I⊢C} ⊢Bool D reveals a conflict, as K⊢D is on
the trail. The conflict is E0 = {C ∨D, I⊢C, K⊢D}. Clause C ∨D is the conflict
clause, but not an assertion clause. E0 contains two literals of maximum level,
namely I⊢C and K⊢D (both have level n+ 3). Resolve explains E0 by replacing
one of these two literals, say D, with its justification. The resulting conflict is
E1 = {C ∨D, I⊢C, B ∨D, H⊢B}. This unfolding of the conflict corresponds to
the resolution step that resolves C ∨ D and B ∨ D to yield B ∨ C. The literal
resolved upon D is the one explained away when going from E0 to E1. The new
conflict clause B ∨ C is the negation of the cube {H⊢B, I⊢C} in E1.

Since E1 does not have a unique literal of highest level (both I⊢C and H⊢B
belong to level n + 3), Resolve explains E1 by replacing I⊢C with I, yielding
E2 = {C∨D, A∨C∨E, J⊢E, ?A, B∨D, H⊢B}. This corresponds to resolving
B ∨ C and A ∨ C ∨ E upon C to yield conflict clause B ∨ A ∨ E, negation of
cube {H⊢B, ?A, J⊢E} in E2. Since E2 does not have a unique literal of highest



The CDSAT Method: an Exposition 5

level (both ?A and H⊢B belong to level n+3), Resolve explains E2 by replacing
H⊢B with H, yielding E3 = {C ∨D, A∨C ∨E, J⊢E, ?A, B ∨D, A∨B}. This
corresponds to resolving B ∨ A ∨ E and A ∨ B upon B to yield conflict clause
A ∨ E, negation of cube {?A, J⊢E} in E3.

As ?A is the only literal of maximum level in E3 (and A ∨ E is the first
assertion clause), 1UIP prescribes to learn A ∨ E (we learn that no model of S
can contain A and E), and backjump to the smallest level where A is undefined
and E is still false. This level is n. LearnBackjump takes us back to level n,
clearing levels n+ 1, n+ 2 and n+ 3, and adding lemma G⊢A ∨ E to the trail,
where G = {C ∨ D, A ∨ C ∨ E, B ∨ D, A ∨ B}. Level n contains ?F , J⊢E,
and G⊢A ∨ E. Deduce performs unit propagation adding to the trail M⊢A with
M = {A ∨ E, J⊢E}, N⊢B with N = {A ∨ B ∨ E, M⊢A, J⊢E}, and P⊢C with
P = {B∨C,N⊢B}. The trail contains a model of S, namely {E, A, B, C}, and
the search can continue to take care of the other input clauses.

Several authors approached the SMT problem (deciding the satisfiability
of a set of clauses in a first-order theory T ) by integrating in CDCL a deci-
sion procedure for the T -satisfiability of a set of T -literals. This integration
was systematized in the DPLL(T ) framework [26], later renamed CDCL(T ).
In this framework, CDCL works on a propositional abstraction of the first-
order problem, where T -atoms are replaced with propositional variables. The
T -satisfiability procedure detects theory conflicts and contributes theory prop-
agations. Suppose that literals L1, . . . , Ln are on the trail. If the T -procedure
detects that {L1, . . . , Ln} is T -unsatisfiable, it signals a T -conflict with conflict
clause C = L1 ∨ . . .∨Ln. If the T -procedure detects that {L1, . . . , Ln} entails L
in T , where L appears in the input problem, L is added to the trail with C ∨ L
as justification. The model search, the reasoning about disjunction, and the ex-
planation of conflicts remain propositional and are left to the CDCL procedure.

3 From the Equality Sharing Method to CDSAT

In many problems the theory T is the union of a few theories T1, . . . , Tn. The
equality sharing or Nelson-Oppen scheme combines procedures for the satisfi-
ability of sets of literals in the member theories to yield a procedure for the
T -satisfiability of a set S of T -literals [25] (see [9, Ch. 10] and [5, Sect. 3] for
a modern presentation). The theories are assumed to be disjoint, meaning that
equality is the only shared symbol, stably infinite, meaning that every Ti admits
models of infinite cardinality, and endowed with Ti-satisfiability procedures Pi

for i = 1, . . . , n. Since the theories are disjoint, they only need to agree on equal-
ities between shared terms and on the cardinalities of shared sorts. The latter
point is solved by the stable infiniteness assumption.

Since the input literals mix symbols from the signatures of the theories, each
theory Ti treats as a variable every term whose top symbol belongs to another
theory. The equality sharing method features a separation phase where new
variable symbols are introduced, and the set S of literals is separated into sets
S1, . . . , Sn sharing only equality and variables.



6 M. P. Bonacina

Example 2. Consider literal f(2, y)≃ f(x, y), where f is a function in the theory
of Equality with Uninterpreted Functions (EUF or UF) [9, Ch. 9], constant symbol
2 comes from a fragment of arithmetic, say LIA for linear integer arithmetic, and x
and y are variables. For EUF, term 2 is a variable, because 2 is a foreign symbol for
EUF. For LIA, terms f(2, y) and f(x, y) are variables, because f is a foreign sym-
bol for LIA. The set of shared terms is Vsh(S) = {f(2, y), 2, f(x, y)}. Separation
yields SEUF = {w1≃ f(w2, y), w3≃ f(x, y), w1≃ w3}, SLIA = {w2≃ 2, w1≃ w3},
and a set of shared terms containing only variables: Vsh(S) = {w1, w2, w3}.

The equality sharing method reduces a T -satisfiability problem to Ti-satis-
fiability problems. The reduction rests on whether the theories can agree on a
partition of Vsh(S), where two terms are equal iff they are in the same equivalence
class. A partition is expressed as a set of equalities and disequalities called an ar-
rangement: arrangement α contains u≃ v, if u and v are in the same equivalence
class, and u ̸≃ v otherwise. Set S is T -satisfiable iff there exists an arrangement
α of Vsh(S) such that Si ∧ α is Ti-satisfiable for i = 1, . . . , n.

In order to determine whether an arrangement exists, each Pi deduces from
Si equalities between shared variables. Such equalities are shared by all Pi’s
and each Pi may use them to deduce more equalities. If a procedure Pi derives
a contradiction in this process, no successful arrangement exists, and the T -
procedure returns unsat. Otherwise, let E be the final set of deduced and shared
equalities, meaning that no more can be deduced by any of the Pi’s. Set E
represents the arrangement αE that contains u≃ v, if (u≃ v) ∈ E , and u ̸≃ v
otherwise. Since no more equalities can be deduced, Si ∧ αE is Ti-satisfiable for
i = 1, . . . , n, and the T -procedure returns sat.

Having procedure Pi deduce equalities between shared variables suffices if
theory Ti is convex. A theory is convex if whenever a conjunctive formula (in our
case a set of literals) implies a disjunction of equalities, one of the equalities is also
implied. Otherwise, procedure Pi must be capable of deducing disjunctions of
equalities between shared variables. Whenever a disjunction

∨m
j=1 uj ≃ vj is de-

duced, the T -procedure should split it and call itself recursively on each subprob-
lem obtained by adding one of the disjuncts to the current set of shared equalities.
In practice, the reasoning about disjunction is entrusted to the CDCL procedure
(e.g., [1]). In the extension of the CDCL(T ) framework to the case where the T -
procedure is an equality-sharing combination [1, 19], the T -procedure is allowed
to send to CDCL (the propositional abstraction of) any disjunction

∨m
j=1 uj ≃ vj

that a procedure Pi may derive. The CDCL procedure treats such a disjunction
as a clause to be satisfied. The T -procedure considers the case where uj ≃ vj is
shared, when CDCL puts (the propositional literal standing for) uj ≃ vj on the
trail. Therefore, the only new (i.e., non-input) literals that can be T -propagated
are propositional abstractions of equalities between shared variables.

The equality sharing method is not conflict-driven. Rather, it resembles a
saturation process, as it expects each theory procedure to be capable of deducing
all (disjunctions of) equalities between shared variables that follow in the theory
from its subproblem. Indeed, also superposition can emulate the equality sharing
method, under suitable conditions and if superposition is a decision procedure



The CDSAT Method: an Exposition 7

for each component theory (see [5, Sect. 7] for an overview of superposition-based
results and references). In equality sharing the theory procedures are combined as
black-boxes, which communicate only by broadcasting (disjunctions of) equalities
between shared variables. In the integration of equality sharing in the CDCL(T )
framework, the broadcasting remains hidden within the T -procedure.

CDSAT does not apply separation, so that the shared terms are not neces-
sarily variables. CDSAT lets each theory module place on the trail its decisions
and the results of its inferences. If CDSAT emulates equality sharing, the ar-
rangement is built on the shared trail. The theory module inferences are not
used only to deduce equalities between shared terms, but also to detect conflicts
as shown in the next example. Regardless of whether Bool is a member of the
union, every theory has the sort prop of the Boolean values.

Example 3. Consider the set of literals {x ≤ y, y ≤ (x + g(x)), P (h(x) −
h(y)), ¬P (0), g(x)≃ 0}, involving theories LIA and EUF [5]. It is customary to
remove free predicate symbols by introducing new free function symbols and a
new free constant symbol with an arbitrary name, say •. The resulting set S =
{x ≤ y, y ≤ (x+g(x)), f(h(x)−h(y))≃ •, f(0) ̸≃ •, g(x)≃ 0} is equisatisfiable.2
The set of shared terms is Vsh(S) = {x, y, g(x), h(x), h(y), h(x)− h(y), 0}.

Suppose a Decide transition puts ?(x ̸≃ y) on the trail opening level 1. The
LIA-module infers {y ≤ x + g(x), g(x)≃ 0} ⊢LIA y ≤ x and a Deduce transition
posts J⊢(y ≤ x) on the trail with J = {y ≤ x + g(x), g(x)≃ 0}. This is a late
propagation as J⊢(y ≤ x) belongs to level 0 and the trail contains level 1. The LIA-
module infers by antisymmetry {x ≤ y, J⊢(y ≤ x)} ⊢LIA x≃ y, revealing conflict
E0 = {?(x ̸≃ y), x ≤ y, J⊢(y ≤ x)}. Since ?(x ̸≃ y) is the only assignment of
highest level in E, a LearnBackjump transition takes us back to level 0 adding to
the trail lemma H⊢(x≃ y) with H = {x ≤ y, J⊢(y ≤ x)}.

The EUF-module infers by congruence H⊢(x≃ y) ⊢EUF h(x)≃ h(y), and a
Deduce transition posts I⊢(h(x)≃ h(y)) on the trail with I = {H⊢(x≃ y)}. The
LIA-module infers I⊢(h(x)≃ h(y)) ⊢LIA h(x)− h(y)≃ 0, and a Deduce transition
posts K⊢(h(x) − h(y)≃ 0) on the trail with K = {I⊢(h(x)≃ h(y))}. Then the
EUF-module infers {f(h(x) − h(y))≃ •, K⊢(h(x) − h(y)≃ 0)} ⊢EUF f(0)≃ •,
which is the complement of f(0) ̸≃ • on the trail. Since conflict E1 = {f(h(x)−
h(y))≃ •, K⊢(h(x) − h(y)≃ 0), f(0) ̸≃ •} is on level 0 (there is nowhere to
backjump to), a Fail transition returns unsat.

If the procedure Pi for a component theory Ti builds a candidate model
Mi, the equality sharing method can be implemented in CDCL(T ) by model-
based theory combination (MBTC) [12]. This variant of equality sharing allows
procedure Pi to share equalities that are true in Mi, even if they are not Ti-
entailed by Si and the already shared equalities. Such an equality is placed
on the CDCL(T ) trail as a decision. If it turns out to cause a conflict, it gets
retracted by the CDCL backjumping. CDSAT generalizes the concept of MBTC,
because in CDSAT every theory Ti can place a decision on the shared trail by
a Decide transition. In CDCL(T ) with MBTC a Ti-model Mi remains private
2 Assuming trivial models of cardinality 1 are excluded.



8 M. P. Bonacina

to procedure Pi. In CDSAT the Ti-module share Mi on the trail, as all theory
modules share assignments publicly on the trail.

Another variant of the equality sharing method is polite theory combination,
where a non-stably-infinite theory can be combined with a polite theory. A polite
theory satisfies stronger requirements about the cardinalities of models (e.g., [5,
Sect. 4-6]). CDSAT has a different approach to the issue of agreement on the
cardinalities of shared sorts. Theories are not required to be stably infinite. It
suffices that there exists a leading theory that has all the sorts in the union
of theories, and all the information about their cardinalities (e.g., at-most-m
constraints) [8, Sect. 4.5]. This is because in the proof of completeness of CDSAT
an agreement among all the Ti’s is reached by having each Ti agree with the
leading theory. It is not even necessary that the leading theory is one of the Ti’s.
If all the theories in the union are stably infinite, the leading theory is a fictional
theory TN, whose models interpret all sorts except prop as having the cardinality
of the set N of the natural numbers [6, Sect. 8].

4 From GCDCL and MCSAT to CDSAT

The success of CDCL for SAT led to several conflict-driven reasoning procedures
(e.g., for linear rational arithmetic [24], linear integer arithmetic [16], non-linear
arithmetic [17]). In these procedures, the candidate model is a T -model (for the
respective fragment T ), assignments include first-order assignments (e.g., x←2),
propagation consists of inexpensive theory deductions, such as term evaluation
(e.g., if the trail contains assignment x←2 for a free variable x, then the term
x+1 evaluates to 3), and the inference rules for conflict explanation are relatively
more expensive theory inferences.

Let T be linear rational arithmetic (LRA). The input is a set S of LRA-
clauses, whose satisfiability is to be determined. An LRA-clause is a disjunction
of literals of the form t1 ⋖ t2, where t1 and t2 are LRA-terms, and ⋖ ∈ {<,≤}.
An LRA-term is either a rational constant c or a sum c1 ·x1+ . . .+ cn ·xn, where
ci is a rational constant and xi is a rational variable for i = 1, . . . n. Since the
ordering on the rational numbers is total, (t1 < t2) and (t1 ≤ t2) can be replaced
by t2 ≤ t1 and t2 < t1, respectively. An equality t1≃ t2 can be rewritten as
t1 ≤ t2 and t2 ≤ t1. If variable x appears in a literal with positive (negative)
coefficient, the literal can be rearranged into an upper bound x⋖ t (lower bound
t⋖ x), where x does not occur in t.

Consider for example the Generalized DPLL (GDPLL) procedure [24], here
renamed GCDCL for consistency. This procedure explains conflicts by the shadow
rule, which is a generalization of Fourier-Motzkin (FM) resolution [20, 18] from
literals to clauses. The shadow rule collapses to FM-resolution if both premises
are unit clauses. Given premises t1 ⋖1 x and x ⋖2 t2, FM-resolution generates
t1 ⋖3 t2, where ⋖1,⋖2,⋖3 ∈ {<,≤}, and ⋖3 is < if either ⋖1 or ⋖2 is < and ≤
otherwise. For example, given clauses (b < d) ∨ (c < d) and d < a, the shadow
rule generates clause (b < a) ∨ (c < a). If FM-resolution is applied system-
atically to eliminate one variable at a time as in the original Fourier-Motzkin



The CDSAT Method: an Exposition 9

algorithm [20], termination is guaranteed, but the algorithm is very inefficient
(e.g., [18] and [8, Sect. 4.4]). The GCDCL procedure applies the shadow rule
only to explain conflicts, and it ensures termination by additional restrictions. A
fixed total ordering ≺LRA on rational variables is assumed, and the shadow rule
is applied only if the variable resolved upon is ≺LRA-maximal in both premises.

Abstract requirements for a conflict-driven procedure for the T -satisfiability
of T -clauses for an arbitrary theory T were sketched in [24]: (1) embed reason-
ing about disjunction into theory reasoning, by generalizing to clauses a theory
reasoning rule for literals; (2) apply the generalized rule only to explain conflicts;
(3) devise additional restrictions to ensure termination.

The problem of how to generalize CDCL from propositional clauses to T -
clauses was reformulated as the problem of how to integrate in CDCL a conflict-
driven T -procedure for sets of T -literals [13]. In this reformulation the reasoning
about disjunction remains entrusted to CDCL, so that inference rules for T -
clauses are not necessary, and a T -procedure for sets of T -literals suffices. The
reformulated problem was solved by the MCSAT method, where MCSAT stands
for Model Constructing SATisfiability [13, 15]. Unlike in CDCL(T ), in MCSAT
the T -procedure also is conflict-driven, has access to the trail, proposes assign-
ments to first-order terms, computes propagations, and explains T -conflicts by
T -inferences that can generate new (i.e., non-input) literals. For termination, it
suffices to ensure that the new literals come from a finite basis [13]. As observed
in [24], in CDCL(T ) the T -procedure only derives clauses that are T -valid. A
conflict-driven T -procedure (and MCSAT) can derive clauses that are logical
consequences of the Boolean assignment on the trail (including the input), but
are false under the first-order assignment on the trail and hence exclude it.

The discussion in [24] posed the open problem of how to generalize conflict-
driven reasoning to a generic combination of theories. MCSAT is not a com-
bination calculus, and the open problem was solved by CDSAT, generalizing
MCSAT. In CDSAT, multiple theory modules have access to the trail, propose
assignments, compute propagations, and explain conflicts by inferences that can
generate new (i.e., non-input) literals. The modules have finite local bases, from
which a finite global basis for termination is constructed [6, 8].

For CDSAT a set of T -clauses is a problem in a union of theories, namely T
and Bool. In the next example, the LRA-module in CDSAT applies FM-resolution
to explain LRA-conflicts. The LRA-module restricts FM-resolution by the restric-
tion proposed in [24] for the shadow rule: assume a fixed total ordering ≺LRA on
rational variables, and allow FM-resolution only if the variable resolved upon is
≺LRA-maximal in both premises. This restriction is used to obtain a finite basis
for the LRA-module [8, Sect. 4.4]. The next example portrays also acceptability
of first-order assignments. A first-order decision ?(t←c) is acceptable if the trail
does not contain an assignment to term t, and t←c does not trigger an inference
J ∪ {t←c} ⊢ L for L a literal on the trail and J a subset of the trail. This
condition excludes a first-order assignment that triggers an immediate conflict
from which nothing can be learned.



10 M. P. Bonacina

Example 4. Consider the clause set S = {x < y, x < z, (y < w)∨ (z < w), w <
x}, where x, y, z and w are rational variables [24]. Let x ≺LRA y ≺LRA z ≺LRA w
be the ordering on variables. Suppose that the CDSAT derivation starts with
a series of three decisions by the LRA-module. A first Decide transition adds
?(x←0) to the trail (level 1). A second Decide transition adds ?(y←1) on level
2. Note that ?(y←0) is not acceptable, as it would enable the LRA-evaluation
inference {x←0, y←0} ⊢LRA (x < y) when x < y is on the trail. A third Decide
transition adds ?(z←1) to the trail (level 3), whereas ?(z←0) is not acceptable
with x < z and ?(x←0) on the trail. At this point there is no acceptable value
for w, because any rational value would create an immediate conflict with either
{x←0, w < x} or {y←1, z←1, (y < w) ∨ (z < w)}.

The system needs to perform inferences to explain this LRA-conflict. Since
clause (y < w)∨(z < w) is involved, a case analysis is necessary. Suppose that the
Bool-module places ?(y < w) on the trail (level 4) with another Decide transition.
At this point the LRA-module can explain the conflict by FM-resolution. The
FM-resolution inference {?(y < w), ∅⊢(w < x)} ⊢LRA y < x is allowed as w
is the ≺LRA-maximal variable in both y < w and w < x. A Deduce transition
adds J⊢(y < x) to level 4 of the trail with J = {?(y < w), ∅⊢(w < x)}. The
FM-resolution inference {∅⊢(x < y), J⊢(y < x)} ⊢LRA x < x is also allowed as
y is the ≺LRA-maximal variable in both x < y and y < x. A Deduce transition
adds I⊢(x < x) to level 4 of the trail with I = {∅⊢(x < y), J⊢(y < x)}. Now
E0 = {I⊢(x < x)} is an LRA-conflict. Two Resolve transitions unfold E0 into
E1 = {∅⊢(x < y), J⊢(y < x)} and E1 into E2 = {∅⊢(x < y), ?(y < w), ∅⊢(w <
x)}. At this point a LearnBackjump transition allows the system to learn y < w
as H⊢(y < w), with H = {∅⊢(x < y), ∅⊢(w < x)}, and jump back to level 0,
which is the smallest level where y < w is undefined.

The unit propagation {H⊢(y < w), ∅⊢((y < w) ∨ (z < w))} ⊢Bool z < w
supports a Deduce transition that adds G⊢(z < w) to level 0 with justification
G = {H⊢(y < w), ∅⊢((y < w) ∨ (z < w))}. The shadow rule to work with
clause (y < w)∨ (z < w) is unnecessary: it suffices to let the Bool-module break
apart the non-unit clause by decision and unit propagation, so that the LRA-
module can reason about literals with FM-resolution. The FM-resolution step
{G⊢(z < w), ∅⊢(w < x)} ⊢LRA z < x is allowed as w is the ≺LRA-maximal
variable in both z < w and w < x. A Deduce transition adds K⊢(z < x) to the
trail (at level 0) with K = {G⊢(z < w), ∅⊢(w < x)}. The FM-resolution step
{∅⊢(x < z), K⊢(z < x)} ⊢LRA x < x is allowed as z is the ≺LRA-maximal variable
in both x < z and z < x. The Deduce transition adding M⊢(x < x) (at level 0),
with M = {∅⊢(x < z), K⊢(z < x)}, exposes LRA-conflict E3 = {M⊢(x < x)}.
Since the level of E3 is 0, a Fail transition returns unsat.

The Deduce transition in CDSAT covers both propagation and conflict ex-
planation. This allows CDSAT to apply theory inferences (e.g., congruence in
Example 3 and FM-resolution in Example 4) more liberally than MCSAT. This
flexibility spares the procedure from having to make decisions and create artifi-
cial conflicts only to enable inferences needed to discover unsatisfiability.



The CDSAT Method: an Exposition 11

5 More on CDSAT

In a first-order assignment t←c (e.g., x←1/2, f(y)←1), the left side is a first-
order (i.e., non-Boolean) term, and the right side is a value of the same sort.
Values are constant symbols that a conservative theory extension T +

i adds to the
signature of theory Ti in order to name the elements of the domains of a model of
Ti (one domain per sort). For example, if a theory has the sort of the integers, the
signature of the theory can be extended with infinitely many constant symbols
to name the integers. Since all the theories in a union are assumed to have the
sort prop, the Boolean values true and false are added to every theory’s signature.
An extension that adds only true and false is called trivial. CDSAT keeps terms
and values separate, because values are not terms. A term appears only on the
left of an assignment, whereas a value appears only on the right. An assignment
t←c cannot be replaced by the equality t≃ c, because such an equality cannot
be written, as c is not a constant symbol in the original signature.

The notion of theory view defines what each theory Ti sees of the shared trail.
Suppose that the theory of arrays Arr and LIA share the sort of the integers
(e.g., Arr interprets indices as non-negative integers). If the LIA-module decides
A1 = ?(x←3) and the Arr-module decides A2 = ?(y←3), the 3 in A1 is a LIA-
value and the 3 in A2 is a Arr-value. If the Arr-module also decides A3 = ?(z←4),
the LIA-view of the trail contains {A1, x≃ y, x ̸≃ z, y ̸≃ z}, and the Arr-view of
the trail contains {A2, A3, x≃ y, x ̸≃ z, y ̸≃ z}. In general, the Ti-view contains
the assignments of Ti-values and all equalities and disequalities that can be
gleaned from first-order assignments of a Ti-sort, even if made by another theory.
A Boolean assignment belongs to every theory view.

In addition to Decide, Deduce, Resolve, LearnBackjump, and Fail, the CD-
SAT transition system comprises the rules UndoClear and UndoDecide, which
solve conflicts due to first-order assignments. Rule UndoClear intervenes when
the assignment of highest level in the conflict is a first-order decision. Rule
LearnBackjump cannot apply, because a first-order assignment does not have a
complement that we can learn. Rule UndoClear applies instead, as shown in the
next example, which also portrays the independent concept of forced decision.

Example 5. Let the input contains {2x+ y≃ 1, 2x+ 2y≃ 1}. Suppose that the
LRA-module ventures decision ?(x←0), which is placed on level 1 by a Decide
transition. The inference {2x+y≃ 1, 2x+2y≃ 1} ⊢LRA y≃ 0 supports a Deduce
transition that adds J⊢(y≃ 0) to the trail with J = {2x+y≃ 1, 2x+2y≃ 1}. The
latter justified assignment belongs to level 0, and hence it is a late propagation.
The LRA-inference {?(x←0), J⊢(y≃ 0)} ⊢LRA 2x+ y ̸≃ 1 allows the LRA-module
to detect the conflict E = {?(x←0), J⊢(y≃ 0), 2x+y≃ 1}. Assignment ?(x←0)
has the highest level in the conflict. An UndoClear transition undoes ?(x←0) and
clears level 1, so that the trail only contains level 0. At this point ?(x←1/2) is
a forced decision, because 1/2 is the only acceptable value for x.

UndoClear incorporates backtracking from the level of the bad decision to the
previous level. The state has changed due to a late propagation. It is certain that



12 M. P. Bonacina

UndoClear fires after a late propagation, because the bad decision was acceptable
prior to the late propagation and it causes a conflict afterwards.

If a term t of a sort s occurs on the trail (including as a subterm of another
term), and theory Ti has values of sort s, then term t is said to be relevant to
Ti, because Ti can assign a value to t. Since all theories have the Boolean values,
Boolean terms are relevant to every theory. Suppose that Ti does not have values
of a sort s. If terms t1 and t2 of sort s occur on the trail, the equality t1≃ t2 is
relevant to Ti, even if t1≃ t2 itself does not appear on the trail. Indeed, Ti can
assign a Boolean value to t1≃ t2. For a decision to be acceptable, the term being
assigned must be relevant to the theory whose module is making the decision.

First-order assignments have impact on the equality inferences. In addition
to the inferences based on reflexivity, symmetry, and transitivity, the equality
inferences include inferences of the form {t1←c, t2←c} ⊢ t1≃ t2, where t1 and t2
are terms of sort s and c is a value of sort s, and {t1←c1, t2←c2} ⊢ t1 ̸≃ t2, where
c1 and c2 are distinct values of sort s. While the EUF-module (see Example 3)
is responsible for inferences based on instances of the congruence axiom scheme
for equality, all theory modules can perform equality inferences. When CDSAT
emulates equality sharing, equalities derived from first-order assignments can
contribute to build an arrangement.

The next example covers relevance, equality inferences, and the UndoDecide
transition rule. The latter applies when the assignment of highest level in the
conflict is a Boolean justified assignment L whose justification contains a first-
order decision from the same level. UndoDecide undoes the first-order decision,
backtracks, and puts L on the trail. A first-order assignment does not have a
complement, but its Boolean consequence does. In this case Resolve is forbidden,
because unfolding the conflict and undoing the first-order decision would lead
us back to a previous state without learning anything.

Example 6. Assume that the input set S contains the following clauses:
C1: (i ̸≃ j) ∨ (select(store(a, i, v), j) < select(a, j)),
C2: (select(a, j)− select(a, k))≃ 0, and
C3: (select(store(a, i, v), j) ̸< select(a, j)) ∨ (select(a, j) + select(a, k)≃ v).
The theories are Bool, LRA for 0, subtraction, and the ordering, and the theory
Arr of arrays, for the function symbols select and store. The select function takes
an array and an index and returns the value of the array at that index. Thus,
select(a, j) is the term that corresponds to the a[j] expression in programming
languages. The store function takes an array, an index, and a value, and returns
the array resulting from modifying the given array by writing the given value
at the given index. Suppose that array indices are interpreted as integers, which
means theory Arr has the sort of the integers. Suppose also that Arr has integer
values. Say that the CDSAT derivation starts with two Decide transitions: the
first one places ?(i←0) on level 1; the second one places ?(j←0) on level 2. Both
are acceptable, because i and j are relevant to Arr.

A Deduce transition supported by equality inference {i←0, j←0} ⊢Arr i≃ j
adds to level 2 assignment A1: J⊢(i≃ j) with J = {?(i←0), ?(j←0)}. Now unit
propagation infers {A1, C1} ⊢Bool select(store(a, i, v), j) < select(a, j). A Deduce



The CDSAT Method: an Exposition 13

transition puts assignment A2: I⊢(select(store(a, i, v), j) < select(a, j)) on level 2
with I = {A1, C1}. Next, unit propagation infers {A2, C3} ⊢Bool select(a, j) +
select(a, k)≃ v, so that assignment A3:H⊢(select(a, j) + select(a, k)≃ v) with
H = {A2, C3} is added to level 2 by a Deduce transition.

An axiom of the theory of arrays says that i≃ j → select(store(a, i, v), j)≃ v
for all indices i and j, arrays a, and values v. Thus, the Arr-module can infer
{A1, A2} ⊢Arr v < select(a, j). A Deduce transition adds A4:G⊢(v < select(a, j))
to level 2 with G = {A1, A2}. Suppose that the LRA-module infers {A3, C2} ⊢LRA
select(a, j)≃ v/2. A Deduce transition adds A5:M⊢(select(a, j)≃ v/2) to level 2
with M = {A3, C2}. At this point, there is an LRA-conflict E0 = {A4, A5}. A
series of four Resolve transition unfolds the conflict as follows:
E1 = {A4, A3, C2}, E2 = {A1, A2, A3, C2},
E3 = {A1, A2, C3, C2}, E4 = {A1, C1, C3, C2}.
The justified assignment of highest level in E4 is A1, which has level 2, so
that 2 is also the level of conflict E4. The justification of A1 is J , which con-
tains the first-order decision ?(j←0), whose level is also 2. Replacing A1 with
J = {?(i←0), ?(j←0)} and then undoing ?(j←0) would not help, because the
system would not learn that i and j cannot be equal. The UndoDecide transition
rule fires in this kind of situation: it undoes ?(j←0) clearing level 2 and going
back to level 1, and then it opens a fresh level 2 with the decision ?(i ̸≃ j). Now
clause C1 is satisfied. Three decisions by the LRA-module satisfy also clauses C2

and C3: for example, ?(select(a, j)←1) (level 3), ?(select(a, k)←1) (level 4), and
?(v←2) (level 5). Note that ?(select(a, k)←1) is a forced decision, because no
other value is acceptable for select(a, k) given clause C2 and ?(select(a, j)←1).

Suppose that theory Arr does not have values for array indices. Then terms
i and j are not relevant to Arr, and the derivation cannot start with decisions
that are first-order assignments to i and j. However, since i and j occur on the
trail, the equality i≃ j is relevant to Arr, and the derivation can start with a
Boolean decision ?(i≃ j) on level 1. The same inferences as before lead to a
conflict {?(i≃ j), C1, C3, C2}. A LearnBackjump transition solves this conflict
jumping back to level 0 and learning N⊢(i ̸≃ j) with N = {C1, C3, C2}. The
satisfiability of the clauses can be detected as before.

6 Current and Future Work on CDSAT

CDSAT as in [6, 8] is for a union of disjoint theories. We extended CDSAT to
unions of theories that share predicate symbols other than equality [7]. We ap-
plied this extension to the theory of arrays with abstract domain.3 Arrays are
interpreted as updatable functions. Arrays with abstract domain are interpreted
as updatable partial functions, that are defined only on those array indices that
are admissible. The domain is abstract, because the array indices are not neces-
sarily integers. We are currently working on theories of maps and vectors with
abstract domain. Since admissibility is defined by a shared predicate symbol,
these theories require the extension of CDSAT to the predicate-sharing case.
3 Named theory of arrays with abstract length in [7].



14 M. P. Bonacina

A main direction for future work is the implementation of CDSAT. In turn
this requires working on the design of the search plans and the architecture for
a CDSAT-based solver. The purpose of a search plan is to order the operations
of the theory modules. CDSAT leaves much flexibility in terms of both search
plan and architecture. The CDCL(T ) paradigm abstracted existing architectures
with the SAT solver at the center, and the theory solver as a satellite, also in
the case where T is a union of theories. CDSAT neither requires nor favors an
architecture with the SAT solver at the center, because it treats all theories as
peers. The concept of an architecture without SAT solver at the center was very
preliminarly explored in the context of MCSAT [2]. A prototype implementation
of CDSAT in the Rust programming language is ongoing [14].

References

1. Barrett, C.W., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on de-
mand in SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.)
Proc. LPAR-13. LNAI, vol. 4246, pp. 512–526. Springer, Heidelberg (2006).
https://doi.org/10.1007/11916277_35

2. Bobot, F., Graham-Lengrand, S., Marre, B., Bury, G.: Centralizing equality rea-
soning in MCSAT. In: D’Silva, V., Dimitrova, R. (eds.) Proc. SMT-16 (2018)

3. Bonacina, M.P.: Automated reasoning for explainable artificial intelligence. In:
Reger, G., Treytel, D. (eds.) Proc. ARCADE-1. EPiC Series in Computing, vol. 51,
pp. 24–28. EasyChair (2017). https://doi.org/10.29007/4b7h

4. Bonacina, M.P.: On conflict-driven reasoning. In: Shankar, N., Dutertre, B. (eds.)
Proc. 6th Workshop on Automated Formal Methods (AFM). Kalpa Publications,
vol. 5, pp. 31–49. EasyChair (2018). https://doi.org/10.29007/spwm

5. Bonacina, M.P., Fontaine, P., Ringeissen, C., Tinelli, C.: Theory combination: be-
yond equality sharing. In: Lutz, C., et al. (eds.) Description Logic, Theory Com-
bination, and All That, LNCS, vol. 11560, pp. 57–89. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22102-7_3

6. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiabil-
ity for theory combination: transition system and completeness. J. Autom. Rea-
son. 64(3), 579–609 (2020). https://doi.org/10.1007/s10817-018-09510-y, Confer-
ence version at CADE 2017.

7. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: CDSAT for nondisjoint the-
ories with shared predicates: arrays with abstract length. In: Hyvärinen, A.,
Déharbe, D. (eds.) Proc. SMT-20. CEUR Proceedings, vol. 3185, pp. 18–37. CEUR
WS-org, Aachen (2022), https://ceur-ws.org/Vol-3185/

8. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability
for theory combination: lemmas, modules, and proofs. J. Autom. Reason. 66(1),
43–91 (2022). https://doi.org/10.1007/s10817-021-09606-y, Conference version at
CPP 2018.

9. Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures
with Applications to Verification. Springer, Berlin (2007)

10. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

11. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7, 201–215 (1960). https://doi.org/10.1145/321033.321034



The CDSAT Method: an Exposition 15

12. de Moura, L., Bjørner, N.: Model-based theory combination. In: Krstić, S., Oliveras,
A. (eds.) Proc. SMT-5 (2007). ENTCS, vol. 198(2), pp. 37–49. Elsevier, Amsterdam
(2008). https://doi.org/10.1016/j.entcs.2008.04.079

13. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) Proc. VMCAI-14. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_1

14. Denis, X.: A baby CDSAT-based verified solver written in Rust (2025),
https://github.com/xldenis/cdsat, Accessed 13 January 2025

15. Jovanović, D., Barrett, C., de Moura, L.: The design and imple-
mentation of the model-constructing satisfiability calculus. In: Jobst-
man, B., Ray, S. (eds.) Proc. FMCAD-13. ACM and IEEE (2013).
https://doi.org/10.1109/FMCAD.2013.7027033

16. Jovanović, D., de Moura, L.: Cutting to the chase: solving linear integer arithmetic.
J. Autom. Reason. 51, 79–108 (2013). https://doi.org/10.1007/s10817-013-9281-x,
Conference version at CADE 2011.

17. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Proc. IJCAR-6. LNAI, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

18. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Texts in Theoretical Computer Science, Springer, Berlin (2008)

19. Krstić, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen
with DPLL. In: Konev, B., Wolter, F. (eds.) Proc. FroCoS-6. LNAI, vol. 4720, pp.
1–27. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74621-8_1

20. Lassez, J.L., Maher, M.J.: On Fourier’s algorithm for linear arithmetic constraints.
J. Autom. Reason. 9, 373–379 (1992). https://doi.org/10.1007/BF00245296

21. Loveland, D., Sabharwal, A., Selman, B.: DPLL: The core of modern satisfiability
solvers. In: Omodeo, E.G., Policriti, A. (eds.) Martin Davis on Computability,
Computational Logic, and Mathematical Foundations, OCL, vol. 10, pp. 315–335.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41842-1_12

22. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning
SAT solvers. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.)
Handbook of Satisfiability (2nd Edition), Frontiers in Artificial Intelligence
and Applications, vol. 336, pp. 133–182. IOS Press, Amsterdam (2021).
https://doi.org/10.3233/FAIA200987

23. Marques Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for
propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999).
https://doi.org/10.1109/12.769433

24. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics.
In: Bouajjani, A., Maler, O. (eds.) Proc. CAV-21. LNCS, vol. 5643, pp. 462–476.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_35

25. Nelson, G., Oppen, D.C.: Simplification by cooperating decision
procedures. ACM Trans. Prog. Lang. Syst. 1(2), 245–257 (1979).
https://doi.org/10.1145/357073.357079

26. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859


