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Abstract

In this paper we apply category theory to formalize the basic concepts of automated theo-

rem proving. A theorem proving strategy is given by a set of inference rules and a search

plan. For the inference rules, we propose a new characterization of inference rules as natural

transformations. Traditionally, inference rules are presented either as functions or as rules

to transform sets of sentences. Neither description is completely satisfactory, especially if

contraction inference rules, i.e. rules that delete sentences, are involved. Our view of inference

rules as natural transformation couples the advantages of the two traditional approaches: it

applies to both expansion and contraction rules, while still saving the functional nature of

inference rules.

The search plan selects at each stage of a derivation the inference rule and the premises for

the next step. In most theorem proving strategies the search plans are described informally

or left altogether to the implementation phase. This is not satisfactory, since the actual

performance of a prover depends heavily on the search plan. We give a new, abstract definition

of search plan and we define precisely how the inference rules and the search plan cooperate

to generate a derivation. To our knowledge, this is the first mathematical definition of search

plan.

In our previous work on completion procedures, we characterized completion-based theorem

proving strategies by three properties: monotonicity, relevance and proof reduction. In fact,

these properties capture the essential aspects of any theorem proving process. We show that

they are functoriality properties: this result clarifies what part of the structure of a theory

a theorem proving derivation is required to preserve. We close the paper with a comparison

with related work and a discussion on further extensions of our categorical approach.
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1 Introduction

In this paper we extend the categorical approach to logic introduced in [24] to the framework for

automated theorem proving that we have developed in [8, 5, 6]. The idea of applying category

theory to logic appeared in the seminal work of F.W.Lawvere [21] on equational logic (see also [23,

27]). More recently, the growth of interest in automated theorem proving and logic programming

in the computer science community has spurred a new wave of attention for the application of

this tradition of thought to logic in computer science [12, 17, 24]. In [24], Meseguer presents an

axiomatization of logic in category theory, which focuses on those elements of logic that are most

relevant to computer science. In Section 2 of this paper we present the elements of the work in

[24] that we are going to use in our application to theorem proving.

Our research aims at extending the categorical approach in [24] from a description of logic for

computer science to a description of theorem proving methods, with a special interest in Knuth-

Bendix type completion procedures for theorem proving [20, 16, 2, 15, 3]. This interest is largely

justified by the remarkable successes that completion-based theorem provers have obtained in

recent years (see for instance [18, 1] and [10] for a survey). In [8, 5] we have given a new abstract

framework for these methods. According to this framework, a theorem proving problem is specified

by a pair (S;ϕ), where S is a set of sentences, the presentation of a theory, and ϕ is the theorem

to be proved from S, called the target. A theorem proving strategy C has two components, a set

of inference rules I and a search plan Σ. The inference rules determine what consequences can

be derived from a given set of sentences. The search plan decides which inference rule to apply

to which sentences at each step of a derivation

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . ..

At each stage (Si;ϕi) the problem is to prove the target ϕi from the presentation Si. The key

concept in our approach is to regard the problem of proving ϕi from Si as the problem of reducing

a minimal proof of ϕi in Si. A theorem proving derivation is a process of reduction: reduction of

proofs with respect to some well-founded proof ordering. The derivation is successful if it reaches

a stage where the proof of ϕi in Si is empty, i.e. ϕi is a trivially true theorem in Si. This idea of

proof reduction is the pivot of our entire approach and all other notions in theorem proving are

defined accordingly [8, 5, 6].

In this paper we reformulate our framework in terms of category theory. First we characterize

inference rules as natural transformations. The notion of natural transformation turns out to be

much more flexible than the more basic notion of function. It allows us to cover in an elegant

and uniform way both expansion inference rules, which derive new consequences, and contraction

inference rules, which delete or replace given sentences. Next, we turn our attention to the search

plan. The search plan selects at each stage of a derivation an inference rule and a tuple of premises

for the next step. Therefore, the search plan is the control that turns a set of non-deterministic

inference rules into a deterministic procedure. Traditionally, the inference rules are regarded as

the logical component of theorem proving, whereas the search plan is the procedural component.

As a consequence, search plans are often described informally or by giving algorithms. We feel

that the procedural nature of search mechanisms does not eliminate the need for a rigourous
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definition. Rather, search is such an essential component in theorem proving, that the problem of

giving a systematic treatment of search plans and their properties is very important. We propose

a definition of search plan as a pair of functions to choose an inference rule and a tuple of sentences

and we show how the inference rules and the search plan interact to generate a derivation. This

definition is the first mathematical definition of search plan that we are aware of and we regard

it as a very first step toward a theory of search plans.

A theorem proving derivation has two underlying categories: the category of the states of a

derivation, i.e. the pairs (Si;ϕi), and the category of the proofs that the derivation is reducing.

Proof reduction is then expressed naturally as a functoriality property: a derivation is proof-

reducing if the function that associates to a state (Si;ϕi) a minimal proof of ϕi in Si is a functor

from the category of the states of the derivation to the category of the proofs. Similarly, mono-

tonicity and relevance, which are the soundness properties of a theorem proving derivation, consist

in the existence of functors from the category of the states of the derivation to other appropriately

defined categories.

We have used a surprisingly small number of notions of category theory: the reader who

is not familiar with categories, functors and natural transformations may find all the necessary

background in the first chapter of [22]. For the notation and terminology relative to completion

procedures we refer to [10].

2 Elements of a categorical approach to logic

We introduce those elements of the categorical approach to logic in [24] that we are going to use

in the following. The interested reader may find in [24] a full account of this approach.

The data of a theorem proving computation are sentences made of symbols from some signa-

ture. For instance in first order logic, a signature Θ is a pair (F,P ), where F is a set of function

symbols with their arities and P is a set of predicate symbols with their arities. For such signa-

tures, a morphism h: Θ → Θ′ has two components, two arity-preserving functions, mapping the

function symbols of Θ into function symbols of Θ′ and the predicate symbols of Θ into predicate

symbols of Θ′. Signatures and their morphisms form the category Sign. If there is a morphism

h: Θ → Θ′, a sentence ϕ on signature Θ can be translated into a sentence h(ϕ) on signature Θ′

by replacing each symbol in Θ by the corresponding symbol in Θ′. It is then possible to define a

functor sen:Sign → Set from the category of signatures to the category of sets: sen associates

to a signature Θ the set sen(Θ) of its sentences and to a morphism h: Θ → Θ′ the function

sen(h): sen(Θ) → sen(Θ′) translating sentences according to h.

Given signatures and sentences, the familiar logical notion of entailment is introduced as a

function ⊢, associating to each Θ in Sign its entailment relation ⊢Θ ⊆ P(sen(Θ))×sen(Θ), where

P is the power set functor P:Set → Set. For a set Γ of sentences and a sentence ϕ, both on

signature Θ, Γ⊢Θ ϕ means that ϕ is derivable from Γ. The category Sign, the functor sen and

the function ⊢ define what is called in [24] an entailment system (Sign, sen,⊢). Basically, an

entailment system contains all that is necessary to state assertions of the form Γ⊢Θ ϕ.

The next step is to define a category Th of theories: its objects are pairs (Θ,Γ), where Θ

3



is a signature and Γ is a set of sentences, Γ ⊂ sen(Θ). A morphism of theories, h:S → S′,

for S = (Θ,Γ) and S′ = (Θ′,Γ′) is a morphism of signatures h: Θ → Θ′ with the property that

Γ′ ⊢Θ
′ h(Γ). In other words, the new theory entails the old one. If the old axioms are preserved, i.e.

h(Γ) ⊆ Γ′, the morphism is said to be axiom-preserving. The subcategory that has all the objects

of Th and only axiom-preserving morphisms is denoted by Th0. The functor sign:Th → Sign,

defined by sign(Θ,Γ) = Θ, extracts the signature of a given theory. The functor sen:Sign → Set

can be extended to a functor sen:Th→ Set by defining sen(S) = sen(sign(S)). The function ⊢

can also be extended to theories: it associates to a theory S = (Θ,Γ) the relation ⊢S defined by

∆⊢S ϕ if and only if ∆ ∪ Γ⊢Θ ϕ.

One of the motivations for this definition of theory morphisms in [24] is its application to

the definition of programs in a declarative language. In equational programming languages such

as those of the OBJ family [11, 13, 19], a program is a collection of modules and a module

is an equational theory, that is a signature and a set of equations. The process of defining

modules proceeds by extensions: one may start with a small set of symbols and equations and

extend it with new symbols and equations as the need of adding new operators arises. Such

an enlargement is justified as a theory morphism mapping the old module into the new, larger

one. Also, axiom-preserving morphisms are often sufficient in this context, since new, larger

modules simply include the previously defined ones. Interestingly, we shall see in the following

that this notion of theory morphism and especially of axiom-preserving morphisms does not

have an immediate application in theorem proving. The intuitive reason is that the incremental

definition of programs is a process of enlarging theories, whereas theorem proving is inherently a

process of reduction. Theory morphisms are defined to describe extensions of theories rather than

reductions. However, category theory allows us to express both kinds of processes by using the

notion of opposite category. We shall show that as the category Th is well suited for programming,

its opposite Thop, i.e. the category which is identical to Th except that all arrows are inverted,

is better suited for theorem proving.

The model theoretic counterpart of an entailment system is an institution [12]. Since our

following treatment deals exclusively with proof theory and not with model theory, we introduce

just one component of an institution, v.i.z. the function |= that associates to each signature Θ its

satisfaction relation |=
Θ
. Similar to entailment, satisfaction can be extended to theories: ∆ |=

S
ϕ

for S = (Θ,Γ), if and only if ∆∪ Γ |=
Θ
ϕ. An entailment system and an institution define a logic,

provided the following soundness property holds: for all Θ ∈ Sign, Γ ⊂ sen(Θ) and ϕ ∈ sen(Θ),

Γ⊢Θ ϕ implies Γ |=
Θ
ϕ. If the opposite implication also holds, the logic is said to be sound and

complete. In the following we shall always assume that the logic underlying our theorem proving

problem is sound and complete.

An entailment system defines entailment, but it does not provide any information about

the structure of proofs. The structure of proofs is determined by giving a proof calculus. A

proof calculus is presented as a 6-tuple PC = (Sign, sen,⊢, P, Pr, theorem) 1. The first three

components form an entailment system. The fourth component is a functor P :Th0 → StructP

1A proof calculus is denoted by P in [24], but we use PC in order to reserve P for the power set functor. Also

the element that we call theorem is called π in [24], but we use theorem to avoid any potential confusion with the

projection functions πni.
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that associates to a theory its proof structure. The category StructP is replaced by a concrete

category when a specific proof calculus is given. For instance a proof calculus for equational logic

is obtained in [24] by instantiating StructP to Cat, the category of all categories. Then for an

equational theory (Θ, E), P ((Θ, E)) is the category whose objects are all the terms on signature

Θ and whose morphisms p: s → t are the proofs s↔∗
E t made of steps of equational replacement

by the equations in E.

The fifth component of a proof calculus is a functor Pr:StructP → Set such that Pr◦P :Th0 →

Set associates to a theory S the set of all the proofs in S. The composition Pr ◦ P is called

proofs, so that proofs(S) is the set of all the proofs in S. Finally, theorem: proofs ⇒ sen is

a natural transformation from the functor proofs to the functor sen: for all theories S, there

exists a function theoremS : proofs(S) → sen(S) that extracts from a proof its theorem. It is

important to remark [24] that P and therefore proofs are functors on Th0 but not on Th. In

other words, they can preserve axiom-preserving morphisms only. This is explained as follows:

in order to be a functor on Th, proofs should associate to each theory morphism h:S → S′ a

function proofs(h): proofs(S) → proofs(S′) mapping proofs in S into proofs in S′. It can be

easily observed that if h is not axiom-preserving, proofs(h) is not well defined. Let h:S → S′ be

a theory morphism which is not axiom-preserving, ψ be an axiom of S such that h(ψ) 6∈ S′ and

Υ be a proof of a theorem ϕ in S, where ψ is used as axiom. Furthermore we can assume for

simplicity that ψ is the only axiom of S used in Υ such that h(ψ) 6∈ S′. The natural choice for

proofs(h)(Υ) is the proof which is identical to Υ, with all sentences in Υ translated according to

h and the occurrence of ψ replaced by a proof of h(ψ) in S′. The definition of theory morphism

ensures that a proof of h(ψ) in S′ exists. However, the proof of h(ψ) in S′ is not unique in general

and therefore proofs(h)(Υ) is not uniquely defined. In the following, we use proofs as a function

proofs:Th→ Set, keeping in mind that only its restriction to Th0 is a functor.

This categorical approach allows us to present the concepts of our framework for theorem

proving abstracting from any specific logic. We do not have to choose a logic a priori. We simply

use those categories, such as Sign and Th, that capture those elements that are common to all

logics. This generality is especially valuable to us, since our framework for theorem proving is

independent of the logic.

3 A categorical approach to theorem proving

In this section we define in terms of basic concepts of category theory the components of a

theorem proving strategy C =< I; Σ >, where I is the set of inference rules and Σ is the search

plan, together with their properties.

3.1 The inference rules

Inference rules are usually written in the form

f : ψ1 . . .ψn
ψ
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which says that given premises ψ1 . . .ψn, the rule f yields ψ. A classical way of interpreting this

notation is to regard f as a function that, applied to n elements of types ψ1 . . .ψn, gives as result

an element of type ψ, written as f :ψ1 . . .ψn → ψ [14, 17].

The functional nature of inference rules is not the only aspect that is relevant in theorem

proving. At each step of a theorem proving derivation an inference rule f is applied to transform

the current data base (S;ϕ). The tuple of premises ψ1 . . .ψn is selected from (S;ϕ). Then f infers

ψ from ψ1 . . .ψn and adds ψ to (S;ϕ). The above functional notation does not show explicitly

that ψ is added to the data base. More importantly, the effect of f does not necessarily consists

in adding ψ: f may replace by ψ one or more of the premises ψ1 . . .ψn. For instance the rule

Simplification [26] applies an equation to reduce a sentence to a simpler form: given premises2 ψ[s]

and s ≃ t, ψ[s] is deleted and replaced by ψ[t] if ψ[s] ≻ ψ[t] for some well-founded ordering ≻. If

we write simplification in the functional form, it says that ψ[t] is derived from ψ[s] and s ≃ t, but

it does not describe the full effect of the inference, that is the replacement of ψ[s] by ψ[t]. Since

the replacement of expressions by simpler and equivalent ones is the essence of simplification,

the functional formalism does not convey the meaning of simplification. Even worse, there are

inference rules that do not add any sentence, but simply delete one: for example Subsumption [9]

deletes a clause which is logically implied by another clause in the set. The functional description

does not apply to such rules.

We have called the inference rules that add new sentences expansion inference rules and those

that may delete sentences contraction inference rules [8]. Simplification and subsumption are

contraction inference rules. Resolution [25] is a classical example of an expansion inference rule.

The functional view of inference rules applies naturally to expansion rules, but not to contraction

rules. Since contraction rules, and especially simplification, are the most important rules in

completion based methods, a different way of describing inference rules has been adopted for

completion based strategies [2]. Inference rules are presented as rules to transform sets:

f : S
S′

where S and S′ are sets of sentences. The rule says that given S, the set S′ can be inferred. Then,

the general forms of expansion and contraction inference rules are respectively:

f : S
S′ where S ⊂ S′

and

f : S
S′ where S 6⊆ S′.

For example simplification can be written as

S ∪ {ψ[lσ], l ≃ r}
S ∪ {ψ[rσ], l ≃ r}

ψ[lσ] ≻ ψ[rσ],

where σ denotes a substitution. An inference step on (S;ϕ) may expand or contract S or derive

a new target ϕ′ from ϕ and S.

2The notation ψ[s] indicates a sentence ψ where s appears as subterm.
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The main advantage of displaying inferences as transformations of sets is to show the global

effect of an inference step on the data base. It emphasizes whether the data base is expanded

or contracted. However, in this formalism the functional aspect of inference rules is not visible,

because inference rules are not functions of sets. Given a set of sentences and an inference rule, the

inference rule can be applied to different selections of premises in the given set, yielding different

sets as result. Only after the premises have been selected the result is uniquely determined.

Category theory allows us to give a definition of inference rules that captures both the functional

and sets transformation aspects. We start by observing what inference rules have in common.

An inference rules has a tuple of premises and it indicates a set of new elements to be added and

a set of elements to be deleted. For example, in binary resolution the tuple of premises is the

pair of parents, the resolvent is added and no clause is deleted. Simplification also has a pair of

premises, an equation s ≃ t and a sentence ψ[s]: the effect of the step is to delete ψ[s] and to add

ψ[t]. Thus, we would like inference rules to be functions from tuples of sentences, the premises,

to pairs of sets of sentences, the set to be added and the set to be deleted. Furthermore, inference

rules are independent from the signature: for every signature there is the appropriate instance of

the inference rule. In order to abstract from the signature, we define inference rules as natural

transformations from tuples of sentences to pairs of sets of sentences:

Definition 3.1 Given an entailment system (Sign, sen,⊢), an inference rule fn of arity n is a

natural transformation

fn:Ln ◦ sen⇒ (P ◦ sen) × (P ◦ sen),

where Ln:Set → Set is the functor that maps a set into the set of its tuples.

By definition of natural transformation [22], this means that for all signatures Θ we have a function

fnΘ:Ln ◦ sen(Θ) → (P ◦ sen(Θ)) × (P ◦ sen(Θ))

from tuples of sentences to pairs of sets of sentences of Θ. For an input tuple x̄, the first

component3 of the output π21(f
n
Θ(x̄)) is the set of sentences to be added and the second compo-

nent π22(f
n
Θ(x̄)) is the set of sentences to be deleted. It is trivial to verify that the commutativity

property required by the definition of natural transformation is satisfied, since an inference step

commutes with a signature morphism h: Θ → Θ′:

-

?

?

-

///

fnΘ

Ln◦sen(h) (P◦sen)2(h)

(P ◦ sen)2(Θ)

Ln ◦ sen(Θ′) (P ◦ sen)2(Θ′)

Ln ◦ sen(Θ)

fnΘ′

The following example shows how this scheme applies to simple steps of resolution, simplification

and subsumption:

Example 3.1 resolution(P (0),¬P (x) ∨ P (s(x))) = ({P (s(0))}, ∅),

simplification(x+ 0 ≃ x, P (s(x) + 0)) = ({P (s(x))}, {P (s(x) + 0)}),

3We use πni to denote the projection that extracts the i-th element of a tuple.
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subsumption(P (x), P (s(y))) = (∅, {P (s(y))}).

The distinction between expansion and contraction rules can be formalized as follows:

Definition 3.2 An inference rule fn is an expansion inference rule if for all signatures Θ and

inputs x̄ ∈ Ln ◦ sen(Θ), π22(f
n
Θ(x̄)) is empty. It is a contraction inference rule otherwise.

An inference rule may not apply to a given input sentence. For instance resolution does not apply

to two parents such that no pair of their literals unify. Our definition covers this case without

resorting to partial functions: if the inference rule does not apply to the given input, both output

sets are empty. This reflects what happens in a theorem proving derivation: if the search plan

has selected an inference rule and a tuple of premises such that the inference rule does not apply

to the premises, the attempted application fails and the data base remains unchanged.

To summarize, the above description of inference rules as natural transformations has three

basic advantages: it is independent of the signature, it expresses both expansion and contraction

and it covers also the situation where the inference rule does not apply to the selected premises.

These three properties are all very important in the theorem proving context. Abstraction from

the signature is obviously desirable. Expansion versus contraction is a key issue in theorem

proving. In logic it is sufficient to describe an inference rule by specifying how and under which

conditions the inferred sentences are constructed from the premises. From the point of view of

logic, one is mainly concerned with the existence of proofs and their structure. All inferences can

be regarded as expansion inferences; the distinction between expansion and contraction is not

relevant. In automated theorem proving we are also concerned with how much memory space

and how much time a procedure needs to prove theorems. Given that a proof exists, the problem

usually bogs down to whether the strategy will halt with a proof or will run out of memory. Since

expansion steps consume space while contraction steps free space, it is important in theorem

proving to classify them separately.

Finally, the problem of incorporating in the definition of inference rules the case where the

inference rule fails to apply to the chosen premises is also related to the concrete experience

of theorem proving. Each successful step in a derivation may be preceded in general by many

failed attempts: for instance the program may have selected simplification as inference rule and

it may have tried many pairs of premises before it finds one such that simplfication does indeed

apply. Therefore it is important that inference rules are well defined even when their applicability

conditions are not satisfied by the selected premises.

3.2 The derivations

A theorem proving derivation by C =< I; Σ > is a sequence

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

where at each stage i the problem is to prove ϕi from Si. The pair (Si;ϕi) is the state of the

derivation at stage i. Since the states of a derivation are pairs (S;ϕ), we introduce a set States,

whose elements are all the pairs (S;ϕ), with S ∈ Th and ϕ ∈ sen(S). The set States contains the
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states of all possible derivations. During a derivation, a state is transformed by inference steps.

Therefore, inference steps are a natural choice for morphisms of states. If a set of inference rules

I is given, the set States becomes a category States with morphisms induced by I:

Definition 3.3 Given an entailment system (Sign, sen,⊢) and a set of inference rules I, the

category States has as objects all the pairs (S;ϕ), with S ∈ Th and ϕ ∈ sen(S). For all (S;ϕ)

and (S′;ϕ′) in States, there is a morphism d: (S;ϕ) → (S′;ϕ′) if and only if there exists a

derivation (S;ϕ)⊢∗
I(S

′;ϕ′) by I. A morphism d: (S;ϕ) → (S′;ϕ′) is a function such that

d(ϕ) = ϕ′ and

for all ψ in S, d(ψ) =

{

ψ if ψ ∈ S′

ϕ′ otherwise.

A morphism of states d: (S;ϕ) → (S′;ϕ′) preserves the target by mapping ϕ into ϕ′. For the

presentation, d is identity everywhere except on those sentences of S that have been deleted

by contraction steps in the process of deriving S′ from S. These sentences have been deleted

because they are not necessary to prove the target ϕ′. Thus the morphism d maps them into

ϕ′, which is the “justification” of their deletion. Transitivity and reflexivity of ⊢∗
I induce identity

and composition of morphisms: the identity morphism maps every state into itself by an empty

derivation and composition of morphisms corresponds to the concatenation of inference steps.

The category States describes all the derivations by the inference mechanism I. If a specific

theorem proving problem (S0;ϕ0) is given, the application of I to (S0;ϕ0) defines a subcategory

of States. This subcategory contains all and only the states that can be derived from (S0;ϕ0)

by I and their morphisms. In [8, 5] we have represented this subcategory by the I-tree rooted at

(S0;ϕ0). The nodes of the tree are labeled by states, with the initial state (S0;ϕ0) at the root.

A node (S;ϕ) has a child (S′;ϕ′) if (S′;ϕ′) can be derived from (S;ϕ) in one step by I. Thus

branches in the tree correspond to single inference steps and paths in the tree, called I-paths,

correspond to derivations. If a search plan Σ is also given, the unique derivation computed by

C =< I; Σ > starting from (S0;ϕ0) is determined. A search plan Σ is a mechanism to select a

path in an I-tree: the derivation from input (S0;ϕ0) controlled by Σ is the I-path selected by Σ

in the I-tree rooted at (S0;ϕ0). This specific derivation Der

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

is the subcategory of States that has as elements all the states (Si;ϕi), i ≥ 0, generated during

the derivation, and as morphisms all the sequences of inferences steps that are subsequences of

the derivation. To summarize, a set of inference rules I induces the morphisms of States; the

set I and an initial state (S0;ϕ0) specify an I-tree; if I, Σ and (S0;ϕ0) are all given, a unique

derivation is determined. In the next subsection we describe how a search plan selects this unique

derivation.

3.3 The search plan

Given an input problem (S0;ϕ0), let (S;ϕ) be a node in the I-tree rooted at (S0;ϕ0). The node

(S;ϕ) has many children in general, because I can be applied to modify (S;ϕ) in many ways,
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depending on which inference rule in I is used and which tuple of premises in (S;ϕ) it is applied to.

If (S;ϕ) is the state (Si;ϕi) reached at stage i of a derivation, anyone of its children is a candidate

to be the successor (Si+1;ϕi+1). The search plan selects only one of them to be (Si+1;ϕi+1) by

selecting the inference rule to be applied and the premises for the application of the rule. Thus

a search plan has two components, Σ =< ζ, ξ >, a function ζ to choose the inference rule and

a function ξ to choose the tuple of premises. The domains of ζ and ξ contain the elements

based on which the choice is made. It is very natural to require that the choice depends on the

current state and therefore ζ and ξ are functions of the state. However, the actual state of the

derivation represents only local information, it does not say anything about the past history of

the derivation. For instance a derivation may reach a state (S;ϕ) after 100 steps, whereas another

derivation may reach the same state (S;ϕ) after 10, 000 steps. If ζ and ξ were functions of the

state only, it would be impossible to define a search plan that makes different choices in state

(S;ϕ) depending on whether (S;ϕ) has been reached after 100 steps or 10, 000 steps. Therefore,

it is desirable to have in the domain of ζ and ξ a component representing some global information

about the derivation. For instance, this component may be the length of the derivation generated

so far. Different choices may be possible. However, it is not realistic to assume that a strategy

may save in memory a large amount of information about the history of the derivation. A search

plan which requires the strategy to do so is likely to increase its chances of running out of memory.

Therefore it is sufficient to define ζ to be

ζ:States× IN → I

meaning that ζ((S;ϕ),m) = fn is the inference rule selected in state (S;ϕ) after m steps of

derivation. Since ξ selects a tuple of sentences, its domain has an additional element n, which

indicates the number of sentences to be chosen. Thus the domain of ξ is States × IN × IN and

ξ((S;ϕ),m, n) indicates the choice of n elements from (S;ϕ) at stage m of the derivation. The

codomain of ξ cannot be simply a set of tuple of sentences, because we want ξ to be independent

from the signature. As codomain of ξ we give a set of natural transformation:

ξ:States× IN × IN → {αn | αn:P ◦ sen⇒ Ln ◦ sen,∀n ≥ 1}.

By the definition of natural transformation applied to αn:P ◦ sen ⇒ Ln ◦ sen, for all signatures

Θ ∈ Sign there is a function

αnΘ:P ◦ sen(Θ) → Ln ◦ sen(Θ)

that associates to a set of sentences a tuple of sentences. If ξ((S;ϕ),m, n) = αn and S = (Θ,Γ),

then in state (S;ϕ) after m steps, the search plan selects the tuple αnΘ(Γ ∪ {ϕ}). The following

definition of search plan summarizes these elements:

Definition 3.4 Given an entailment system (Sign, sen,⊢) and a set of inference rules I, a search

plan Σ for I is a pair of functions Σ =< ζ, ξ > of types

• ζ:States× IN → I and

• ξ:States× IN × IN → {αn | αn:P ◦ sen⇒ Ln ◦ sen,∀n ≥ 1}.
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We now have all the elements to define how the inference rules and the search plan cooperate to

determine the steps of a derivation. First, we extend the functors sign and sen on Th to functions

on States by defining sign((S;ϕ)) = Θ for S = (Θ,Γ) and sen((S;ϕ)) = sen(sign(S)).

Definition 3.5 For all S0 ∈ Th and ϕ0 ∈ sen(S0), the derivation computed by a theorem proving

strategy C =< I,Σ >, with inference rules I and search plan Σ =< ζ, ξ >, on input (S0;ϕ0) is

the sequence

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

where, for all i ≥ 0, sign((Si;ϕi)) = Θ0 and, if

• ζ((Si;ϕi), i) = fn,

• ξ((Si;ϕi), i, n) = αn and

• αnΘ0
(Γi ∪ {ϕi}) = x̄, for Si = (Θ0,Γi),

then

(Si+1;ϕi+1) =











(Si;ϕ
′) if ϕi is in x̄, π21(f

n
Θ0

(x̄)) = {ϕ′} and

π22(f
n
Θ0

(x̄)) = {ϕi},

(Si ∪ π21(f
n
Θ0

(x̄)) − π22(f
n
Θ0

(x̄));ϕi) otherwise.

This definition requires that the signature does not change during a derivation: we assume that the

initial signature Θ0 provides the derivation with denumerable sets of predicate symbols, function

symbols and variable symbols, so that all the symbols which may be needed during a derivation

are available. The core of the definition is the interaction of I and Σ =< ζ, ξ >: if ζ chooses

the inference rule fn and ξ chooses the tuple of premises x̄, the application of fnΘ0
to x̄ gives two

sets of sentences, π21(f
n
Θ0

(x̄)) and π22(f
n
Θ0

(x̄)), with the meaning that the contents of π21(f
n
Θ0

(x̄))

should replace the contents of π22(f
n
Θ0

(x̄)). The replacement can be performed either on the

target or on the presentation. In the first case, the current target ϕi is among the premises,

π22(f
n
Θ0

(x̄)) contains ϕi and π21(f
n
Θ0

(x̄)) contains ϕ′, which becomes the new target. Otherwise,

the replacement is performed on the presentation. This distinction between presentation inference

steps and target inference steps should not be regarded as too strict. Indeed there are completion

procedures, such as the Linear Completion procedure for logic programming [7] and the completion

procedures for disproving inductive theorems [10], that are more conveniently described by allowing

inference steps to modify both the target and the presentation [8, 5]. Such steps are legal, as they

may be regarded as the composition of a target step and a presentation step.

3.4 Monotonicity and relevance

A theorem proving derivation is required to satisfy two basic soundness requirements, that we

have called in [8, 5] monotonicity and relevance. First of all we introduce a functor 4 th:Th→ Set,

such that for all theories S = (Θ,Γ), th(S) = {ψ | Γ |=
Θ
ψ,ψ ∈ sen(Θ)}. In other words, th(S) is

4The functoriality of th:Th→ Set is an immediate consequence of the definition of theory morphism, under the

assumption that the logic is sound and complete.
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the set of true theorems of S. Monotonicity expresses the requirement that inferences do not add

new elements which are not true in the theory:

Definition 3.6 A derivation

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

is monotonic if and only if ∀i ≥ 0, th(Si+1) ⊆ th(Si).

Since inference steps also transform the target, we need to require that if the target is modified,

the new target is relevant to solving the original problem:

Definition 3.7 A derivation

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

has the relevance property if and only if ∀i ≥ 0, ϕi+1 ∈ Th(Si+1) if and only if ϕi ∈ Th(Si).

Relevance ensures that a target inference step replaces the target by a new target in such a way

that proving the latter is equivalent to proving the former. Monotonicity and relevance indicate the

parts of the structure of a theory that theorem proving derivations need to preserve. Therefore

we are interested in rephrasing our definitions of monotonicity and relevance as functoriality

properties:

Theorem 3.1 A derivation Der

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

is monotonic if and only if the projection pres:States → Th, defined by pres((S;ϕ)) = S, is a

functor pres:Der → Thop.

Proof:

⇒) In order to prove that pres is a functor, we need to show that it associates to every morphism

d in Der a morphism pres(d) in Thop:

-

?

?

-

d

pres pres

(Sj+k;ϕj+k)

Sj Sj+k

(Sj ;ϕj)

pres(d)

A morphism d: (Sj ;ϕj) → (Sj+k;ϕj+k) in Der, is a subsequence (Sj ;ϕj)⊢
k
C(Sj+k;ϕj+k) of the

derivation. Let Sj be (Θ0,Γj) and Sj+k be (Θ0,Γj+k). By monotonicity, th(Sj+k) ⊆ th(Sj) holds.

Then Γj+k ⊆ th(Sj), i.e. Sj |=Θ0
Γj+k, follows. By completeness of the underlying logic, we can

replace satisfaction by entailment and have Sj ⊢Θ0
Γj+k. According to the definition of theory

morphism, this is equivalent to say that there is a morphism pd:Sj+k → Sj in Th. For pres to

be a functor, the image pres(d) must have the same direction as d, whereas pd has the opposite

direction. Thus we define pres(d) = pdop:Sj → Sj+k and pres is a functor pres:Der → Thop.
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⇐) If pres is a functor pres:Der → Thop, then for every morphism d: (Sj ;ϕj) → (Sj+k;ϕj+k) in

Der there is a morphism pres(d):Sj → Sj+k in Thop. By definition of opposite category, pres(d)

is the opposite pdop of some morphism pd:Sj+k → Sj in Th. By definition of theory morphism,

this implies that Sj ⊢Θ0
Γj+k. Then we have Sj |=Θ0

Γj+k by soundness of the underlying logic

and finally th(Sj+k) ⊆ th(Sj). 2

Two remarks apply here. First we observe that pres cannot be a functor from Der to Th0,

the subcategory of Th that has only axiom-preserving morphisms. The steps of a derivation do

not induce axiom-preserving morphisms in general, because a derivation may include contraction

steps that delete axioms. It is certainly possible to define a function closure:States → Th such

that closure((S;ϕ)) = (Θ, th(S)), where Θ is the signature of S. Then monotonicity is trivially

equivalent to saying that closure is a functor closure:Der → Th
op
0 . However, we prefer to use

pres and Th rather than closure and Th0, because we want to emphasize the distinction between

S and th(S): S is the specific, finite presentation which is actually recorded in the data base

during the derivation, whereas th(S) is the unknown and often infinite set of all true theorems in

the theory. As we mentioned in Section 2, the restriction to axiom-preserving morphisms may be

desirable when theory morphisms are used to describe extensions of theories in the incremental

definition of equational programs [11, 13, 19, 24]. On the other hand, it does not seem to be ideal

in theorem proving because of contraction steps.

The second remark is that pres is a functor from Der to Thop and not to Th. This expresses

the fact that monotonicity requires that for all i ≥ 0, th(Si+1) ⊆ th(Si), but not vice versa.

In a theorem proving derivation the theory may become smaller, provided the theorem we are

interested in is preserved. Indeed, monotonicity is completed by relevance, to guarantee that

ϕi+1 ∈ Th(Si+1) if and only if ϕi ∈ Th(Si). In theorem proving one is interested only in proving

a specific target and therefore it is not necessary to preserve the other theorems as long as the

intended theorem is preserved.

For completion-based theorem proving strategies it is worth recalling that completion proce-

dures can also be used for a different purpose than theorem proving. Namely, they can generate

decision procedures [20]. In this kind of application no target is given and a derivation has the

form

(S0; ∅)⊢C(S1; ∅)⊢C . . . ⊢C(Si; ∅)⊢C . . ..

The derivation proceeds transforming the presentation until it obtains a presentation S such

that ϕ ∈ th(S) is decidable by applying C itself to (S;ϕ). We have called a presentation with

this property a decision procedure [8, 5]. For instance, confluent sets of rewrite rules are decision

procedures for equational theories, since they allow to decide the truth of an equation by rewriting

its sides. Knuth-Bendix type completion procedures may be used to generate a confluent set of

rewrite rules from a given presentation of an equational theory. For most theories, though, a finite

decision procedure does not exist and the derivation which tries to generate it does not halt. We

refer to [10] for a survey on these topics.

If the purpose of a derivation is to generate a decision procedure, monotonicity and relevance

are replaced by the following strong monotonicity property:
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Definition 3.8 A derivation

(S0; ∅)⊢C(S1; ∅)⊢C . . . ⊢C(Si; ∅)⊢C . . .

is strongly monotonic if and only if ∀i ≥ 0, th(Si+1) = th(Si).

Strong monotonicity is necessary to ensure that if the derivation halts, the generated decision

procedure is a decision procedure for the input theory.

Corollary 3.1 A derivation Der

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

is strongly monotonic if and only if the projection pres:States→ Th is a functor pres:Der → Th

that associates to every morphism in Der an isomorphism of theories.

Proof: it follows from Theorem 3.1 and the definition of strong monotonicity. 2

We close this section by giving the characterization of relevance as a functoriality property. In

order to do so we extend the function |= from Th to States. The function |=:Th→ Set associates

to a theory its satisfaction relation. Given a state (S;ϕ) in a theorem proving derivation, we are

only interested in knowing whether the target ϕ is a theorem of S. Therefore, we define |= on

States in such a way that |=((S;ϕ)), for S = (Θ,Γ), tells only whether Γ |=
Θ
ϕ:

Theorem 3.2 A derivation Der

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

has the relevance property if and only if the function |=:States→ Set defined by

|=(((Θ,Γ);ϕ)) =

{

{(Γ, ϕ)} if Γ |=
Θ
ϕ

∅ otherwise

is a functor |=:Der → Set associating to each morphism in Der an isomorphism in Set.

Proof:

⇒) Let d: (Sj ;ϕj) → (Sj+k;ϕj+k) be a morphism in Der, where Sj is (Θ0,Γj) and Sj+k is

(Θ0,Γj+k). By relevance, ϕj ∈ th(Sj) if and only if ϕj+k ∈ th(Sj+k). Then

• either both ϕj ∈ th(Sj) and ϕj+k ∈ th(Sj+k) are false and

|=((Sj ;ϕj)) = |=((Sj+k;ϕj+k)) = ∅

• or both ϕj ∈ th(Sj) and ϕj+k ∈ th(Sj+k) are true,

|=((Sj ;ϕj)) = {(Γj , ϕj)} and |=((Sj+k;ϕj+k)) = {(Γj+k, ϕj+k)}.

In the first case the two sets are equal and therefore trivially isomorphic. In the second case the

two sets are two singletons and the isomorphism |=(d) simply associates their two elements.

⇐) By the stated functoriality property, if there is a morphism d: (Sj ;ϕj) → (Sj+k;ϕj+k) in Der

then the two sets |=((Sj ;ϕj)) and |=((Sj+k;ϕj+k)) are isomorphic. Therefore it cannot be that

one is empty whereas the other one is not. By definition of |=, it follows that ϕj ∈ th(Sj) if and

only if ϕj+k ∈ th(Sj+k). 2
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3.5 Proof reduction

In this section we give the characterization of a theorem proving derivation as a process of target-

oriented proof reduction, which is the core of our approach to completion-based theorem proving.

First, we assume an underlying proof calculus PC. The choice of PC depends on the logic and

the theorem proving strategy one is interested in. Since in this work we are not considering

any specific logic or any specific strategy, we simply assume a proof calculus that describes the

structure of the proofs in the theories of Th. Second, we assume a proof ordering >p on the

proofs of PC. A proof ordering is a well-founded, partial ordering on proofs. Proof orderings were

introduced first in [2, 4] and have represented since then a fundamental element in several works

on completion procedures. Proof orderings play a key role in our approach to completion: we refer

to [8, 5] for comparisons and further references. Most proof orderings are based on well-founded

orderings on terms, atoms and clauses: several examples of such proof orderings may be found in

the referenced papers.

Definition 3.9 Given a proof calculus PC = (Sign, sen,⊢, P, Pr, theorem), we denote by Proofs

the set of all the proofs of PC and by ProofsSet the subcategory of Set whose set of objects is

P(Proofs). Given in addition a proof ordering >p, we denote by Proofs the category whose set

of objects is Proofs and whose morphisms are induced by >p as follows: for P,Q ∈ Proofs, there

is a morphism h:P → Q if and only if P <p Q.

We assume that Proofs has a bottom element, the empty proof, that we denote by ε. The proof

calculus PC provides us with the natural transformation theorem to extract theorems from proofs.

We introduce the symbol true to denote a trivially true theorem and we define theoremS(ε) = true

for all theories S. It is worth emphasizing that the introduction of the symbol true is not justified

only by the need for defining the unique image theoremS(ε), it also has a more subtle meaning.

For instance in equational logic a theorem s ≃ s is trivially true. However, it is not so in equational

theorem proving, since a procedure needs to check that the two sides of the equation are identical

before stating that the theorem is true. This is the purpose of an inference rule like Deletion,

(E; ŝ ≃ ŝ)
(E; true)

that appears in completion procedures for equational logic. Similarly, even the most trivial propo-

sitional tautology needs to be checked by a tautology checker before it can be declared to be a

tautology. Indeed, theorem proving itself consists in showing that a given theorem is valid, i.e. it

is a tautology, in the given theory. Thus we need the symbol true to represent the state where

the validity of the given target has been proved. A state (S; true) is a successful state.

The key concept of our proof reduction based approach lies on the observation that proving ϕ

from S is a process of reducing ϕ to true and a proof of ϕ in S to ε. Since the ultimate goal is to

obtain the bottom element ε, at every stage (Si;ϕi) of a theorem proving derivation, we focuse

on the minimal proofs of ϕi in Si:

Definition 3.10 The function Π:States → ProofsSet associates to any state (S;ϕ), the set

Π(S;ϕ) of the minimal proofs of ϕ in S, according to the ordering >p.
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Clearly, if ϕ is not in th(S), Π(S;ϕ) = ∅. Note that we have defined ProofsSet to be a subcategory

of Set rather than a subcategory of the category of partially ordered sets. It is because the images

of Π are not ordered, since they are sets of minimal, un-orderable proofs. At every stage (Si;ϕi) of

a theorem proving derivation, the goal is to prove ϕi from Si or equivalently to reduce some proof

in Π(Si;ϕi). The theorem is proved when the derivation reaches a successful state (Sk; true),

where Π(Sk; true) = {ε}. Therefore the inferences in a derivation need to satisfy proof reduction

requirements. In the following, we recall such requirements and we show that they are equivalent

to functoriality properties for the function Π. We start by observing that since the purpose of a

derivation is to reach ε, an inference should not increase the complexity of proofs:

Definition 3.11 An inference step (S;ϕ) ⊢ (S′;ϕ′) is proof-reducing on ϕ if for all P ∈ Π(S,ϕ),

either P ∈ Π(S′, ϕ′) or there exists a Q ∈ Π(S′, ϕ′) such that P >p Q. If the latter holds for some

P ∈ Π(S,ϕ), then the step is strictly proof-reducing.

In other words, every proof which is minimal at a certain stage of the derivation can be replaced

only by a smaller proof. A target inference step modifies the target and therefore we require that

it is proof-reducing on the target itself:

Definition 3.12 A target inference step (S;ϕ) ⊢ (S;ϕ′) is (strictly) proof-reducing if it is

(strictly) proof-reducing on ϕ.

In order to characterize Π as a functor, we use the following:

Definition 3.13 Given a partially ordered set (U,<) and two subsets A,B ⊆ U , a function

f :A→ B is reducing if for all x in A,

f(x) =

{

x if x ∈ B

y for some y < x, otherwise.

Let S be a category and P(U) be the subcategory of Set whose set of objects is P(U), i.e. the set

of subsets of U . We say that a functor F :S → P(U) has reducing images if for all morphisms h

in S, F (h) is a reducing function.

We can then show that Π is a functor, which associates to proof-reducing steps in a derivation

reducing functions on the corresponding sets of minimal proofs:

Theorem 3.3 Let Der be a derivation made only of target inference steps. All the steps in Der

are proof-reducing if and only if the restriction of the function Π:States→ ProofsSet to Der is

a functor Π:Der → ProofsSet which has reducing images.

Proof:

⇒) If the derivation is proof-reducing, then for all morphisms d: (S0;ϕj) → (S0;ϕj+k) in Der it

is possible to define a function Π(d):Π(S0;ϕj) → Π(S0;ϕj+k) such that for all P in Π(S0;ϕj),

Π(d)(P ) =

{

P if P ∈ Π(S0;ϕj)

Q where Q <p P , otherwise.

The existence of a proof Q such that Q <p P , if P 6∈ Π(S0;ϕj), is guaranteed by proof reduction.

Then Π is a functor with reducing images:
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-

?

?

-

d

Π Π

(S0;ϕj+k)

Π(S0;ϕj) Π(S0;ϕj+k)

(S0;ϕj)

Π(d)

⇐) If for all morphisms d: (S0;ϕj) → (S0;ϕj+k) in Der, Π(d):Π(S0;ϕj) → Π(S0;ϕj+k) is reduc-

ing, then for all P ∈ Π(S0;ϕj) either P ∈ Π(S0;ϕj+k) or there exists a Q ∈ Π(S0;ϕj+k) such that

P >p Q, i.e. all steps in Der are proof-reducing. 2

For a presentation inference step we need to allow more flexibility, because an inference step on

the presentation may not immediately decrease the proof of the target and still be necessary

to decrease it eventually. We extend our attention from the given target ϕ and its proof to a

larger set of sentences and proofs. Namely, we define a subfunctor dom of sen, i.e. a functor

dom:Sign → Set, such that for all signatures Θ, dom(Θ) ⊆ sen(Θ). If Θ0 is the signature of a

derivation, we call dom(Θ0) the domain of the derivation. The set dom(Θ0) is the set of sentences

whose proofs may be reduced by the steps in the derivation. For example, dom(Θ0) = sen(Θ0)

for the Knuth-Bendix completion procedure [20] and dom(Θ0) is the subset of ground elements

in sen(Θ0) for the Unfailing Knuth-Bendix completion procedure [15]. Then, we establish that a

presentation step which reduces a proof of the target is proof-reducing, regardless of its effects on

the other theorems in the domain. Otherwise, a presentation step is proof-reducing if it does not

increase any proof of a theorem in the domain and strictly decreases at least one:

Definition 3.14 A presentation inference step (S;ϕ) ⊢ (S′;ϕ), where sign(S) = sign(S′) = Θ,

is proof-reducing on dom(Θ) if

1. either it is strictly proof-reducing on ϕ

2. or

(a) Π(S,ϕ) = Π(S′, ϕ),

(b) ∀ψ ∈ dom(Θ), (S;ψ) ⊢ (S′, ψ) is proof-reducing on ψ and

(c) ∃ψ ∈ T such that (S;ψ) ⊢ (S′, ψ) is strictly proof-reducing on ψ.

In order to extend Theorem 3.3 to derivations containing both target steps and presentation steps,

we introduce the subcategory induced by a presentation step:

Definition 3.15 Let (S;ϕ) ⊢ (S′;ϕ) be a presentation inference step where sign(S) = sign(S′) =

Θ and let d: (S;ϕ) → (S′;ϕ) be the corresponding morphism in States. The subcategory induced

by d is the subcategory Sidesd ⊂ States whose set of objects is

{(S;ψ) | ψ ∈ dom(Θ)}
⋃

{(S′;ψ) | ψ ∈ dom(Θ)}

and whose morphisms are all the arrows

dψ: (S;ψ) → (S′;ψ) for ψ ∈ dom(Θ).
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In other words, Sidesd contains all the inference steps that are identical to d except for the

choice of a different target in the domain. The purpose of Sidesd is to represent the effect of a

presentation inference step d on the other theorems in the domain.

Theorem 3.4 Let Der be a derivation with signature Θ0. All steps in Der are proof-reducing

on dom(Θ0) if and only if the function Π:States → ProofsSet has the following properties:

1. the restriction of Π to Der is a functor Π:Der → ProofsSet with reducing images,

2. for all one-step morphisms in Der, d: (Si;ϕi) → (Si+1;ϕi+1), such that ϕi = ϕi+1, if Π(d)

is the identity function, then

(a) the restriction of Π to the subcategory Sidesd induced by d is also a functor Π:Sidesd →

ProofsSet with reducing images and

(b) there exists at least a morphism dψ in Sidesd, for ψ ∈ dom(Θ0), such that Π(dψ) is

not the identity function.

Proof: the proof of part 1, i.e. the functoriality of Π, is as in Theorem 3.3, keeping into account

Conditions 1 and 2a in Definition 3.14. Part 2 mirrors Condition 2 of Definition 3.14. It focuses

on those morphisms d: (Si;ϕi) → (Si+1;ϕi+1) of Der which correspond to presentation inference

steps where no proof of the target is reduced. The condition ϕi = ϕi+1 says that d is a presentation

step. The condition that Π(d) is identity is equivalent to Π(Si;ϕi) = Π(Si+1;ϕi+1). These steps

are proof-reducing by Condition 2 of Definition 3.14. Condition 2b is equivalent to say that Π is

a functor Π:Sidesd → ProofsSet:

-

?

?

-

dψ

Π Π

(Si+1;ψ)

Π(Si;ψ) Π(Si+1;ψ)

(Si;ψ)

Π(dψ)

Condition 2c is equivalent to the additional property that Π(dψ) is not identity for at least one ψ

in the domain. 2

The notion of proof reduction developed so far applies to presentation inference steps that are

either expansion steps or contraction steps which replace some sentences by others. A contraction

step which deletes sentences does not modify any minimal proof. In order to characterize these

steps, we have introduced a notion of redundancy:

Definition 3.16 A sentence ϕ is redundant in S on ψ if Π(S,ψ) = Π(S∪{ϕ}, ψ); it is redundant

in S = (Θ,Γ) on dom(Θ) if it is redundant on all ψ ∈ dom(Θ).

A sentence is redundant in a presentation on a specific target, if adding it to the presentation

does not affect any minimal proof of the target. If this holds on the entire domain, the sentence is

said to be redundant on the domain. Redundancy can be captured in categorical terms by using

the subcategory Sidesd:
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Theorem 3.5 Let d: (S ∪{ϕ};ψ) → (S;ψ) be the morphism corresponding to a presentation step

in a derivation Der. Then ϕ is redundant in S on ψ if and only if Π(d) is the identity function.

It is redundant in S = (Θ,Γ) on dom(Θ) if and only if the restriction of Π to Sidesd is a functor

Π:Sidesd → ProofsSet which associates to every morphism in Sidesd the identity function.

Proof: it follows immediately from the definitions of Sidesd and redundancy. 2

The following notion of reduction covers both proof-reduction and deletion of redundant sentences:

Definition 3.17 An inference step (S;ϕ) ⊢ (S′;ϕ′), where sign(S) = sign(S′) = Θ, is reducing

on dom(Θ) (on ϕ) if either it is proof-reducing on dom(Θ) (on ϕ) or it deletes a sentence which

is redundant in S on dom(Θ) (on ϕ).

Our definition of a completion procedure summarizes all the properties of theorem proving deriva-

tions described so far:

Definition 3.18 A theorem proving strategy C =< I; Σ; dom > is a completion procedure if for

all (S0;ϕ0) ∈ States, where sign(S0) = Θ0 and ϕ0 ∈ dom(Θ0), the derivation

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . .⊢C(Si;ϕi)⊢C . . .

is monotonic, has the relevance property and ∀i ≥ 0, the step (Si;ϕi)⊢C(Si+1;ϕi+1) is reducing

on dom(Θ0) or on ϕi.

We cannot conclude our presentation of theorem proving strategies in category theory without

mentioning the notion of completeness of a strategy. A strategy C is complete if whenever ϕ is

indeed a theorem of S, C derives from (S;ϕ) a successful state (Sk; true). In turn, completeness

is equivalent to the following two conditions, one for the inference mechanism I and one for the

search plan Σ: whenever ϕ is a theorem of S, the I-tree rooted at (S;ϕ) contains successful

nodes and whenever the I-tree rooted at (S;ϕ) contains successful nodes, the search plan Σ is

able to reach one such node. We have called these two properties refutational completeness of the

inference rules and fairness of the search plan. The definitions of completeness and fairness in

terms of proof reduction have been given in [8, 5, 6].

4 Discussion

We have applied category theory to formalize some fundamental ideas in our approach to theorem

proving. Category theory has turned out to be an extremely valuable tool in analyzing concepts

and in refining their definitions to a higher level of detail. Such refinement brings the theory

closer to the practice of theorem proving. We feel that our analysis of inference rules and search

plan contributes to fill the enormous gap between specifying a theorem proving strategy as a set

of inference rules and implementing a theorem prover. We can see this contribution both at the

level of the inference rules and at the level of the search plan.

Inference rules were traditionally described as functions. This is not practical, because it

does not cover contraction inference rules, which are crucial in keeping the size of the search
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space manageable. To solve this problem, the characterization of inference rules as rules to

transform sets has been proposed and has become a standard for completion-based theorem

proving strategies. However, this characterization is non-deterministic, because inference rules

are not functions of sets. This non-determinism is useful and elegant at the theoretical level,

but it is disappointing in practice, since it contrasts with the obvious experience that once the

premises have been selected, the inference rules behave indeed as functions, i.e. deterministically.

Since the search plan is the component that selects the premises, this problem can be solved only

by defining carefully the inference rules, the search plan and their interaction in determining the

relation ⊢C .

For the inference rules, we have given a characterization of inference rules as natural tran-

sformations. It is more practical than the characterizations of inference rules as functions or as

rules to transform sets, because it applies to contraction inference rules, while still maintaining

the functional character of inference rules. Also, it makes sense even when the applicability

conditions of inference rules fail, as it happens in any real execution of a theorem prover. For

the search plan, we have replaced the usually informal definition of search plan by the rigorous

definition of the two choice function ζ and ξ. For the relation ⊢C , we have decomposed the notion

of inference step (Si;ϕi)⊢C(Si+1;ϕi+1), usually considered an atomic one, into finer steps. First,

ζ is applied to choose an inference rule fn, second, ξ is applied to choose a tuple of premises

x̄, third, fnΘ0
is applied to x̄ to generate the two sets π21(f

n
Θ0

(x̄)) and π22(f
n
Θ0

(x̄)) and finally

π21(f
n
Θ0

(x̄)) is replaced by π22(f
n
Θ0

(x̄)) in the data base. If inference rules are presented as rules

to transform sets, this replacement is specified in the inference rules themselves. In our approach,

the replacement of π21(f
n
Θ0

(x̄)) by π22(f
n
Θ0

(x̄)) belongs to the definition of ⊢C rather than to the

definition of inference rule. Therefore, we no longer need to define inference rules on sets and we

can restore their functional nature by defining them as natural transformation.

In the second part of the paper we have shown that the properties of monotonicity, rele-

vance, proof reduction and redundancy are functoriality properties. In particular, proof reduction

and redundancy consist in the existence of a functor Π from the category Der of the states of

a derivation to the underlying category ProofsSet. In order to obtain this result, we have in-

troduced the elegant notion of the subcategory Sidesd induced by a presentation inference step

d. This subcategory allows us to treat a single, concrete inference step (Si;ϕi)⊢C(Si+1;ϕi+1) as

possibly infinitely many inferences (Si;ψ) ⊢ (Si+1;ψ), one for every element ψ in the domain of

the completion procedure. Therefore, we can analyze the effect of the derivation of Si+1 from Si

with respect to all the potential targets in the domain. This is necessary for proof reduction of

inferences on the presentation, because a presentation inference step is not guaranteed to reduce

the proof of the given target and therefore its proof reducing effect must be analyzed on Sidesd.

To summarize, the categories involved with a theorem proving derivation are States, with its

subcategories such asDer and Sidesd, and, at the proofs level, Proofs and ProofsSet. Our study

of inference rules, search plans and derivation relations ⊢C ultimately characterizes the structure

of States. The only structure imposed on Proofs is the proof ordering >p. The connection

between States and ProofsSet, and therefore Proofs, is given by the functor Π. It remains

open the problem of how to choose the proof calculus PC whose proofs are the objects of Proofs.

More precisely, one may investigate whether there exists a relation between the inference rules of
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the strategy and the proof calculus which provides the underlying proofs. Another, challenging

direction for further research is to start from our definition of search plan to propose an entire

theory of search plans for theorem proving.

We conclude this discussion with a comparison with related work. Our framework for com-

pletion-based theorem proving is closely related to the research of many other authors. Since a

comparison of approaches to completion procedures is beyond the scope of this paper, we refer

to [8, 5, 6] for complete references and comparisons in the area of completion procedures and we

limit ourselves to some comparison with [24].

We are indebted to [24] for several notions reported in this paper, such as those of entailment

system, institution and especially proof calculus. Even more importantly, the reading of [24] has

inspired us the idea of using category theory in the first place. This paper continues the work in

[24] in the direction of theorem proving. Indeed, most of the key issues in theorem proving do

not appear yet in [24]. The procedural part of theorem proving is absent, since there is no notion

of search plan and therefore no notion of derivation generated by a search plan. Also, the notion

of inference seems to be limited to expansion inference rules only. A tentative characterization of

Unfailing Knuth-Bendix completion as a functor KB:Th0 → Th0 is sketched in Example 19 of

[24]. This attempt is not satisfactory because it does not take into account contraction inference

rules such as simplification. Given an equational theory (Θ, E), KB is not guaranteed to preserve

the axioms in E, because they can be simplified. Thus, KB cannot preserve the axiom-preserving

morphisms H: (Θ, E) → (Θ′, E′) of Th0 and it cannot be a functor of theories. A theorem

proving strategy cannot be required to preserve theory morphisms: the properties of monotonicity,

relevance and proof reduction establish all that is preserved by a theorem proving derivation. As

we have already pointed out in the previous sections, some elements of the categorical approach in

[24] seem to be motivated by the applications to declarative programming languages and abstract

data types in the tradition of [11, 13, 19], rather than to theorem proving, and indeed they are

not ideal for theorem proving: see for instance the definition of theory morphisms and the use

of Th0. However, the generality of the approach and the power of category theory allow one to

choose how to apply the elements of the categorical framework to programming languages or to

theorem proving according to his/her motivation.
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