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Abstract. This paper presents and proves totally correct a new algo-
rithm, called QSMA, for the satisfiability of a quantified formula modulo
a complete theory and an initial assignment. The optimized variant of
QSMA implemented in YicesQS is described and shown to preserve total
correctness. A report on the performance of YicesQS at the 2022 SMT
competition is included. YicesQS ran in the LIA, NIA, LRA, NRA, and BV
categories and ranked second for the “largest contribution” award (single
queries). It was the only solver to solve all LRA instances, where it was
about two orders of magnitude faster than the second best solver (Z3).

1 Introduction

Applications of automated reasoning generate formulas involving both quanti-
fiers and symbols defined in background theories. For example, software verifica-
tion needs reasoners that decide the satisfiability of quantified formulas modulo
theories such as data structures and arithmetic (e.g., [20]). Therefore, endowing
SMT solvers with quantifier reasoning (e.g., [3,9,11–14,22]), enriching first-order
theorem provers with built-in theories (e.g., [1, 2, 19]), and integrating provers
and solvers [7], are major research objectives.

If there is a single background theory T , the T -satisfiability of quantified
formulas can be reduced to that of quantifier-free formulas if T admits quantifier
elimination (QE): for every formula φ there exists a quantifier-free formula F
that is T -equivalent to φ. Since computing F can be prohibitively expensive
(e.g., exponential in linear rational arithmetic (LRA) and doubly exponential in
linear integer arithmetic (LIA) [8]), QE is not a practical solution.

In this paper we propose a practical solution in the form of a new algo-
rithm called QSMA. In QSMA the computation of quantifier-free model-based
under-approximations (MBU) and model-based over-approximations (MBO) of
quantified formulas embodies a lazy approach to QE, which is tailored for T -
satisfiability. MBU generates a quantifier-free implicant of the given formula
that is true in the given model. Model(-guided) generalization for linear [12] and
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nonlinear real arithmetic (NRA) [17] is an instance of MBU. MBO generates a
quantifier-free implied formula that is false in the given model. Model interpola-
tion for NRA [17] is an instance of MBO.

The QSMA algorithm assumes that the theory T is complete. By its recur-
sive nature, QSMA solves a generalized form of the satisfiability problem, called
quantified SMA (satisfiability modulo theory and assignment): given a formula φ
with arbitrary quantification, and an initial assignment to Boolean or first-order
subterms of φ, find a theory model of φ that extends the initial assignment, or
report that none exists. In addition to QSMA and its total correctness, we present
an optimized variant named OptiQSMA, which preserves total correctness and
is implemented in the YicesQS solver built on top of Yices 2. A report on exper-
imental results from the 2022 SMT competition and a discussion complete the
paper. We begin with a high-level view of QSMA.

1.1 High-Level View of the QSMA Algorithm

The QSMA algorithm works by progressively instantiating quantified variables.
Consider a formula φ of the form ∃x̄1.∀x̄2.∃x̄3 . . . F [x̄1, x̄2, x̄3, . . .] where F is
quantifier-free. For example, suppose the theory is LRA, φ = ∃x.∀y.∃z.F and
F = z ≥ 0 ∧ x ≥ 0 ∧ y + z ≥ 0. Say that QSMA assigns x←0. Whatever
value is chosen for y, the algorithm can show that φ is true in LRA by assigning
z←max(0,−y). If F = z ≥ 0∧x ≥ 0∧y+z ≤ 0, no matter which (non-negative)
value QSMA chooses for x, it can show that φ is false in LRA by picking y←1,
because there is no value for z that satisfies z ≥ 0 ∧ z ≤ −1.

For an example that is not in prenex normal form, consider a formula φ of
the form ∃x.((∀y1.F1[x, y1])⇒ (∀y2.F2[x, y2])), where F1 and F2 are quantifier-
free. QSMA sees the formula as ∃x.((∃y1.¬F1[x, y1]) ∨ (¬∃y2.¬F2[x, y2])), and
then as ∃x.(p1 ∨ ¬p2), where p1 and p2 are proxy Boolean variables for the
quantified subformulas. QSMA assigns values to x, p1, and p2. If p1 is assigned
true, the algorithm tries to extend the assignment with a value for y1 that satisfies
¬F1[x, y1]. If p2 is assigned false, the algorithm tries to show that there is no
value for y2 that satisfies ¬F2[x, y2].

Without loss of generality (¬¬ converts ∀ into ¬∃¬), we consider formulas

φ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1.

F [z̄, x̄, p̄] denotes a quantifier-free formula where the variables z̄, x̄, and p̄ occur.
Tuples z̄ and x̄ contain the first-order variables occurring free in F . Formula
F is quantifier-free because the quantified subformulas φi = ∃ȳi.Gi[z̄, x̄, ȳi] are
replaced by proxy Boolean variables p̄ = p1, . . . pk. Given an initial assignment
to the free variables z̄, we construct a QSMA-tree for φ. QSMA starts trying to
satisfy F [z̄, x̄, p̄]. If it fails, it means that φ is false under the initial assignment.
If it succeeds, there are two cases. If k = 0, formula φ is true under the initial
assignment. If k > 0, the algorithm descends recursively to consider the QSMA-
subtrees for the φi subformulas (1 ≤ i ≤ k). If QSMA assigned true to pi, it
tries to show that φi is true. If QSMA assigned false to pi, it tries to show that
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φi is false. If it succeeds for all QSMA-subtrees, formula φ is true under the
initial assignment. For this, the model built by QSMA should satisfy F [z̄, x̄, p̄]∧∧n

i=1(pi ⇔ φi). Otherwise, formula φ is false under the initial assignment.

2 Preliminaries

A signature Σ is given by a set S of sorts and a set of sorted symbols. Given
a class V = (Vs)s∈S of disjoint sets of sorted variables, Σ[V ]-formulas, Σ-
sentences, and Σ[V ]-interpretations are defined as usual. A Σ-structure is a
Σ[∅]-interpretation. We use x, y, z for first-order variables, p for Boolean ones,
and x̄, ȳ, z̄, and p̄ for tuples of such variables. We also use φ and ψ for formulas, F
and G for quantifier-free formulas,M for interpretations, |= for satisfaction and
entailment, = for identity, ⊎ for disjoint union, and \ for set difference. FV (φ) is
the set of the variables occurring free in φ. Slightly abusing the notation, FV (φ)
is also treated as a tuple. Implication is written ⇒ and logical equivalence is
written ⇔. If V1 ⊆ V2 (i.e., Vs

1 ⊆ Vs
2 for all s ∈ S), a Σ[V2]-interpretationM2 is

an extension of a Σ[V1]-interpretationM1 to V2, ifM2 interprets the variables
in Vs

2 \ Vs
1 for all s ∈ S and is otherwise identical toM1.

A theory T is defined by a signature Σ and a set of Σ-sentences called T -
axioms. A model of T , or T -model, is aΣ-structure that satisfies the T -axioms. A
T [V ]-model is a Σ[V ]-interpretation that is a T -model when the interpretation
of variables is ignored. A theory T is complete, if it is consistent, and for all
Σ-sentences F , either F or ¬F is provable from the T -axioms. In this paper
we deal with a single theory T that has a unique T -model M0, so that the
interpretation of everything except variables is fixed. Therefore T is complete,
for Σ-sentences T -validity, T -satisfiability, and truth in M0 coincide, all T [V ]-
models are extensions ofM0, and a T -satisfiability procedure is concerned only
with assignments to variables. Since there are one theory and one signature,
we write formula for Σ[V ]-formula and model for T -model or T [V ]-model. A
conservative theory extension T + of T adds to Σ special constants, called values,
to name elements in the domain of M0 as needed. Conservative means that a
T -satisfiable formula is also T +-satisfiable.

The quantified SMA problem for theory T asks whether M0 |= φ for an
arbitrary formula φ and an initial assignment of values to the variables in FV (φ).
Formulas have the form φ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1 described in
the introduction, where FV (φ) = z̄ and quantified variables are standardized
apart. If FV (φ) = ∅, we still have SMA problems when considering subformulas
under an assignment to existentially quantified variables.

3 The QSMA Framework

The QSMA algorithm works with a tree representation of a formula φ. A node n
in the tree is labeled with a pair (x̄, F ), where x̄ is a tuple of first-order variables,
called the local variables of n, and F is a quantifier-free formula. The local
variables are implicitly existentially quantified: they are existentially quantified



4 M. P. Bonacina et al.

variables whose quantifers have been stripped, so that they are locally free, so
to speak, and can be assigned by the algorithm. An arc from a node n to a child
node b is labeled with a Boolean variable p. This Boolean variable stands as a
proxy for the quantified subformula represented by the subtree rooted at node
b. Therefore, the Boolean variable p is also considered a proxy of b itself.

A formula φ may have free variables FV (φ) = z̄, whose assignment is given
initially as part of the SMA problem instance. These variables are called rigid,
because their assignments do not change during the tree traversal. As the algo-
rithm traverses the tree, the local variables of a node n are rigid from the point
of view of a child node b: their assignments do not change during the traversal
of the subtree rooted at b. Therefore, we represent a formula φ as a pair formed
by a tuple of rigid variables and a labeled tree. Slightly abusing the terminology,
we call this pair a QSMA-tree. The root of a tree T is denoted root(T ).

Definition 1 (QSMA-tree). Given φ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1,
where FV (φ) = z̄ and φi = ∃ȳi.Gi[z̄, x̄, ȳi], 1 ≤ i ≤ k, the QSMA-tree for φ is
the pair G = (z̄, T ), where z̄ is called the tuple of the rigid variables of G, and T
is a labeled tree defined inductively as follows:

– If k = 0, T consists of a single node r labeled (x̄, F [z̄, x̄]);
– If k > 0, for all i, 1 ≤ i ≤ k, let Gi = ((z̄, x̄), Ti) be the QSMA-tree for φi,

where root(Ti) is a node bi labeled (ȳi, Gi[z̄, x̄, ȳi]). Then T is the tree with a
new node r labeled (x̄, F [z̄, x̄, p̄]) as root, k outgoing arcs labeled p1, . . . , pk,
and b1, . . . , bk as children.

If subformula φi occurs more than once in φ, the same proxy variable pi
is used for all occurrences. The ancestors of a node n in T are the nodes on
the unique path from root(T ) to n excluding n itself. If node n in T is labeled
(x̄, F ), its k outgoing arcs are labeled p1, . . . , pk, and x̄1, . . . , x̄m are the local
variables of the ancestors of n, then FV (F ) ⊆ {z̄, x̄1, . . . , x̄m, x̄, p1, . . . , pk}. The
set of the assignable variables at node n is Var(n) = x̄ ⊎ {p1, . . . , pk}. The
set of the rigid variables at node n is Rigid(n) = z̄ ⊎ x̄1 ⊎ . . . ⊎ x̄m. Thus,
FV (F ) ⊆ Rigid(n)∪Var(n), Rigid(root(T )) = z̄, and the QSMA-subtree rooted
at node n is Gn = (Rigid(n), Tn). For a node n with label (x̄, F ), the components
of the label are denoted n.x̄ and n.F . The label of the arc from n to a child b is
denoted b.p.

Example 1. Given ∃x.((∀y1.F1[x, y1]) ⇒ (∀y2.F2[x, y2])) from Sect. 1.1, let φ =
∃x.((∃y1.¬F1[x, y1])∨(¬∃y2.¬F2[x, y2])) = ∃x.(p1∨¬p2){pi ← ∃yi.¬Fi[x, yi]}2i=1.
The QSMA-tree for φ has root r labeled (x, p1 ∨ ¬p2) with left child b1 labeled
(y1,¬F1[x, y1]), right child b2 labeled (y2,¬F2[x, y2]), and arcs from r to b1 and
from r to b2 labeled p1 and p2, respectively. Note how FV (r.F ) ⊆ {x, p1, p2},
Var(r) = {x, p1, p2}, and Rigid(r) = ∅. Also, FV (b1.F ) ⊆ {x, y1}, FV (b2.F ) ⊆
{x, y2}, Var(b1) = {y1}, Var(b2) = {y2}, and Rigid(b1) = Rigid(b2) = {x}.

Example 2. Consider ∀x.((∃y1.(x ≃ 2·y1)) ⇒ (∃y2.(3·x ≃ 2·y2))). A double
negation eliminates the ∀, yielding ¬(∃x.((∃y1.(x ≃ 2·y1))∧ (∀y2.(3·x ̸≃ 2·y2)))).
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Again, a double negation eliminates the ∀, producing ¬(∃x.((∃y1.(x ≃ 2·y1)) ∧
(¬(∃y2.(3·x ≃ 2·y2))))). Let φ = ∃x.((∃y1.(x ≃ 2·y1))∧ (¬(∃y2.(3·x ≃ 2·y2)))) =
∃x.(p1∧¬p2){p1 ← ∃y1.(x ≃ 2·y1), p2 ← ∃y2.(3·x ≃ 2·y2)}. The original formula
is true in LRA iff φ is false in LRA. The QSMA-tree for φ has root r labeled
(x, p1 ∧ ¬p2) with left child b1 labeled (y1, x ≃ 2·y1), right child b2 labeled
(y2, 3·x ≃ 2·y2), and arcs from r to b1 and from r to b2 labeled p1 and p2,
respectively. The variable sets of this tree are as in Example 1.

Conversely, given a QSMA-tree G = (z̄, T ), we can associate a formula n.ψ
to any node n in T and hence to the QSMA-subtree Gn = (Rigid(n), Tn).

Definition 2 (Formula at a node). Given a QSMA-tree G = (z̄, T ), for all
nodes n of T , the formula n.ψ at node n is defined inductively as follows:

– If n is a leaf labeled (x̄, F [z̄, x̄]), then n.ψ = ∃x̄.F [z̄, x̄];
– If n has label (x̄, F [z̄, x̄, p̄]) and outgoing arcs labeled p1, . . . , pk, k > 0,

connecting n to children b1, . . . , bk, let b1.ψ, . . . , bk.ψ be the formulas at
b1, . . . , bk. Then n.ψ = ∃x̄.F [z̄, x̄, p̄]{pi ← bi.ψ}ki=1.

If G = (z̄, T ) is the QSMA-tree for φ and r = root(T ), then r.ψ = φ.

Example 3. For the QSMA-tree in Example 2, b1.ψ = ∃y1.(x ≃ 2·y1), b2.ψ =
∃y2.(3·x ≃ 2·y2), and r.ψ = ∃x.(p1∧¬p2){p1 ← ∃y1.(x ≃ 2·y1), p2 ← ∃y2.(3·x ≃
2·y2)} = ∃x.((∃y1.(x ≃ 2·y1)) ∧ ¬(∃y2.(3·x ≃ 2·y2))) = φ.

Since the input formula φ is represented as a QSMA-tree G = (z̄, T ), the
problem of satisfying φ becomes the problem of satisfying G. Therefore, we define
satisfaction of a QSMA-tree next. Slightly abusing the notation, we use |= also
for satisfaction of QSMA-trees.

Definition 3 (Satisfaction of a QSMA-tree). Given a QSMA-tree G = (z̄, T )
with r = root(T ), and an extension M of M0 to Rigid(r) = z̄, M |= G if there
exists an extension M′ of M to Var(r) such that (i) M′ |= r.F , and (ii) for all
children b of r, M′(b.p) = true iff M′ |= Gb.

The QSMA algorithm works by traversing the QSMA-tree G = (z̄, T ), and at
each node n in T it assigns the assignable variables in Var(n) = x̄⊎{p1, . . . , pk}.
This assignment corresponds to the extension M′ in Definition 3. Let b be a
child of n: the Boolean variable b.p labeling the arc from n to b is a proxy for
the quantified subformula b.ψ of the formula n.ψ. If M′(b.p) = true, the aim of
the algorithm is to show that b.ψ is true, and if M′(b.p) = false, the aim is to
show that b.ψ is false. Therefore Condition (ii) in Definition 3 says M′ |= Gb if
M′(b.p) = true and M′ ̸|= Gb if M′(b.p) = false. The next theorem shows that
satisfying a formula φ and satisfying the QSMA-tree for φ correspond.

Theorem 1. For all formulas φ with FV (φ) = z̄, for all models M extending
M0 to z̄, if G is the QSMA-tree for φ then M |= G iff M |= φ.
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Proof. The formula φ and the QSMA-tree G = (z̄, T ) are as in Def. 1. The proof
is by induction on the number k of the quantified subformulas φi of φ.
Base case: k = 0 and T consists of the single node r with label (x̄, F [z̄, x̄]). By
Def. 3, M |= G iff there exists an extension M′ of M to Var(r) = x̄ such that
M′ |= F [z̄, x̄], that is, iffM |= φ.
Induction hypothesis: k ≥ 0, and for all i, 1 ≤ i ≤ k, for all modelsM extending
M0 to Rigid(bi) = z̄ ⊎ x̄, M |= Gi iff M |= φi.
Induction step: we distinguish the two directions.
⇒) Let M be an extension of M0 to Rigid(r) = z̄, such that M |= G. By
Def. 3, there exists an extension M′ of M to Var(r) such that M′ |= F [z̄, x̄, p̄]
and for all i, 1 ≤ i ≤ k, M′(pi) = true iff M′ |= Gi. By induction hypothesis,
M′(pi) = true iff M′ |= φi. Therefore, M′ |= F [z̄, x̄, p̄] ∧

∧k
i=1 pi ⇔ φi, and

hence M |= φ.
⇐) Let M be an extension of M0 to Rigid(r) = z̄, such that M |= φ. Under
M’s interpretation of z̄ ⊎ x̄, φ is equisatisfiable to ψ = F [z̄, x̄, p̄]∧

∧n
i=1 pi ⇔ φi.

Let M′ be a model of ψ: M′ is a model of F [z̄, x̄, p̄] such that M′(pi) = true
iff M′ |= φi. By induction hypothesis, M′(pi) = true iff M′ |= Gi. By Def. 3,
M |= G.

Checking whetherM |= G by testing all possible extensionsM′ would not do,
because for most theories (e.g., LRA) there is an infinite number of extensions.
We need a way to weed out large parts of the space of candidate models. Let
JφK denote the set of φ’s models. We introduce under-approximations and over-
approximations of φ in order to under-approximate and over-approximate JφK.

Definition 4 (Under- and over-approximation). Let φ be a formula with
FV (φ) = z̄. Quantifier-free formulas U and O with FV (U) = FV (O) = z̄ are,
respectively, an under-approximation and an over-approximation of φ, if for all
extensionsM ofM0 to z̄,M |= U impliesM |= φ andM |= φ impliesM |= O.

It follows that JUK ⊆ JφK ⊆ JOK. Let G = (z̄, T ) be the QSMA-tree for φ,
and U and O under- and over-approximations of φ, respectively. Then,M |= U
implies M |= φ which implies M |= G by Theorem 1. Thus, satisfying an
under-approximation is a sufficient condition to have a solution. On the other
hand, M |= ¬O implies M ̸|= φ which implies M ̸|= G by Theorem 1. By the
contrapositive, if M |= G then M ̸|= ¬O, that is, M |= O. Thus, satisfying
an over-approximation is a necessary condition to have a solution. In order to
construct such approximations, we assume to have a solver for theory T (and
modelM0) offering:

– Model extension: A function SMA such that for all formulas ∃x̄.F [z̄, x̄], where
F [z̄, x̄] is quantifier-free, and all extensionsM ofM0 to z̄, SMA(F [z̄, x̄],M)
returns either an extension M′ of M to x̄ such that M′ |= F [z̄, x̄], or nil if
there is no such extension.

– Model-based under-approximation: A function MBU such that for all formulas
∃x̄.F [z̄, x̄], where F [z̄, x̄] is quantifier-free, and all extensions M of M0 to
z̄ such that M |= ∃x̄.F [z̄, x̄], MBU(F [z̄, x̄], x̄,M) returns a quantifier-free
formula U [z̄] such thatM |= U [z̄] and T |= U [z̄]⇒ (∃x̄.F [z̄, x̄]).
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– Model-based over-approximation: A function MBO such that for all formulas
∃x̄.F [z̄, x̄], where F [z̄, x̄] is quantifier-free, and all extensions M of M0 to
z̄ such that M ̸|= ∃x̄.F [z̄, x̄], MBO(F [z̄, x̄], x̄,M) returns a quantifier-free
formula O[z̄] such thatM ̸|= O[z̄] and T |= (∃x̄.F [z̄, x̄])⇒ O[z̄].

MBU and MBO produce, respectively, an under-approximation and an over-
approximation. Formula U [z̄] is true in model M and implies ∃x̄.F [z̄, x̄], and
hence can be seen as an interpolant between model and formula. It was called
model generalization [12,17], because U [z̄] may have other models in addition to
M. Formula O[z̄] follows from ∃x̄.F [z̄, x̄] and is false inM, and hence can be seen
as a reverse interpolant between formula and model, called model interpolant [17].

4 The QSMA Algorithm and Its Total Correctness

Let G = (z̄, T ) be the QSMA-tree for input formula φ with FV (φ) = z̄. Given a
modelM extendingM0 to z̄, the QSMA algorithm determines whetherM |= G.
Suppose that U and O are under- and over-approximations of φ, respectively.
Picture JUK, JφK, and JOK as bubbles. The JUK bubble is inside the JφK bubble,
which is inside the JOK bubble. The idea of the algorithm is to zoom in on a
model of φ, by progressively weakening U , so that the JUK bubble inflates, and
progressively strengthening O, so that the JOK bubble deflates. The algorithm
operates in this manner for all subformulas of φ: for all nodes n of T it maintains
under and over-approximations n.U and n.O of n.ψ, progressively weakening
n.U and strengthening n.O. The weakening of n.U is done by introducing a
disjunction with an MBU. The strengthening of n.O is done by introducing a
conjunction with an MBO. The goal is thatM satisfies n.U ∨¬n.O. As soon as
M satisfies n.U , we know thatM |= Gn. As soon asM satisfies ¬n.O, we know
that M ̸|= Gn.

@pre: G = (z̄, T ): QSMA-tree for φ with FV (φ) = z̄; M: extension ofM0 to z̄
@post: rv iff M |= G (rv is “returned value”)
1: function QSMA(M, T )
2: for all nodes n in T do
3: n.U ←⊥
4: n.O ← ⊤
5: return subtreeIsSolved(root(T ),M)

Fig. 1. Pseudocode of the main function of the QSMA algorithm

The main function QSMA (Fig. 1) initializes n.U to ⊥ (under-approximation
of all formulas and identity for disjunction) and n.O to ⊤ (over-approximation
of all formulas and identity for conjunction) for all nodes n of T . Then QSMA
calls the function subtreeIsSolved (Fig. 2) with arguments root(T ) and M.
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@pre: M: extension ofM0 to Rigid(n), and I = ∀b ∈ T. Jb.UK ⊆ Jb.ψK ⊆ Jb.OK
@post: I and M |= (n.U ∨ ¬n.O) and (rv iff M |= Gn) and (rv iff M |=
n.U) and (¬rv iff M |= ¬n.O)

1: function subtreeIsSolved(n, M)
2: if M |= n.U then
3: return true
4: else if M |= ¬n.O then
5: return false
6: while true do
7: L← n.F ∧

∧
n→b((b.p⇒ b.O) ∧ (¬b.p⇒ ¬b.U))

8: M′ ← SMA(L, M)
9: if M′ = nil then

10: n.O ← n.O ∧MBO(L,FV (L) \ Rigid(n),M)
11: return false
12: else
13: if solutionForallChildren(n, M′) then
14: L′ ← n.F ∧

∧
n→b((b.p⇒ b.U) ∧ (¬b.p⇒ ¬b.O))

15: n.U ← n.U ∨MBU(L′,FV (L′) \ Rigid(n),M)
16: return true
17:
18: function solutionForallChildren(n, M)
19: for all children b of n do
20: if M(b.p) ̸= subtreeIsSolved(b, M) then
21: return false
22: return true

Fig. 2. Pseudocode of the auxiliary functions of the QSMA algorithm

Function subtreeIsSolved takes a node n and a modelM extendingM0 to
Rigid(n) and determines whetherM |= Gn. IfM |= n.U it returns true; ifM |=
¬n.O it returns false (lines 3-5 in Fig. 2). Otherwise (i.e.,M |= ¬n.U ∧ n.O), it
enters a loop whose body contains the following steps:

1. Build a formula L as the conjunction of n.F and a formula for every child
b of n, denoted n → b (line 7 in Fig. 2). The shape of the formula for b is
better explained by considering a model of L and hence in the next step.

2. Invoke the SMA function to search for an extensionM′ ofM to Var(n) such
thatM′ |= L (line 8). For all children b of n, b.p ∈ Var(n) andM′ assigns a
Boolean value to b.p. IfM′(b.p) = true, the subformula for b in L reduces to
b.O, so thatM′ |= L impliesM′ |= b.O. Since QSMA seeks to satisfy b.ψ and
Jb.ψK ⊆ Jb.OK, it starts at least from a model of b.O. If M′(b.p) = false, the
subformula for b in L reduces to ¬b.U , so thatM′ |= L impliesM′ |= ¬b.U .
Since QSMA seeks to falsify b.ψ and Jb.UK ⊆ Jb.ψK, it starts at least from a
model of ¬b.U . The proof of partial correctness of subtreeIsSolved shows
that the existence of an M′ such thatM′ |= L is necessary forM |= Gn.
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3. If SMA returns nil, then M ̸|= Gn; subtreeIsSolved updates n.O to its
conjunction with MBO(L,FV (L)\Rigid(n),M) (line 10). SinceM ̸|= L, by
MBO’s specification we know thatM ̸|= MBO(L,FV (L)\Rigid(n),M). This
update ensures thatM ̸|= n.O, so thatM |= ¬n.O. Then subtreeIsSolved
returns false (line 11).

4. Otherwise, we have an extension M′ that satisfies L and hence n.F , so
that there is potential for M |= Gn. Function solutionForallChildren is
invoked to determine whether this is the case.

5. The function solutionForallChildren calls subtreeIsSolved for every
child b of n. As soon as it finds a child b such that M(b.p) = true and
the call subtreeIsSolved(b,M) returns false, or M(b.p) = false and the
call subtreeIsSolved(b,M) returns true, it returns false, because it found
a QSMA-subtree where candidate model M fails. If this does not happen,
solutionForallChildren returns true.

6. If solutionForallChildren returns true, subtreeIsSolved builds a for-
mula L′ as the conjunction of n.F and a formula for every child b of n
(line 14). If M′(b.p) = true, the subformula for b in L′ reduces to b.U . If
M′(b.p) = false, the subformula for b in L′ reduces to ¬b.O. The proof of
partial correctness of subtreeIsSolved shows thatM′ |= L′ and thatM′ |=
L′ is a sufficient condition for M |= Gn. Then subtreeIsSolved updates
n.U to its disjunction with MBU(L′,FV (L′) \ Rigid(n),M) (line 15). Since
M′ |= L′, by MBU’s specification we know that M′ |= MBU(L′,FV (L′) \
Rigid(n),M). This update ensures thatM′ |= n.U . Then subtreeIsSolved
returns true (line 16).

7. If solutionForallChildren returns false, the control returns to line 7. Sup-
pose that solutionForallChildren returned false, because it found a child
b of n such that M(b.p) = true and subtreeIsSolved(b,M) returned false.
Then the call subtreeIsSolved(b,M) updated the formula b.O (line 10).
Suppose that solutionForallChildren returned false, because it found
a child b of n such that M(b.p) = false and subtreeIsSolved(b,M) re-
turned true. Then the call subtreeIsSolved(b,M) updated the formula b.U
(line 15). Either way the state has changed, variable L gets a new formula
on line 7, and the subsequent call to SMA will not produce the same model.

Example 4. Apply subtreeIsSolved to the root of the QSMA-tree in Example 1.
Formula L gets p1 ∨¬p2. SMA produces anM′ that assigns values to x, p1, and
p2. Suppose that M′ satisfies p1 ∨ ¬p2 by assigning true to p1. In the recursive
call on b1, formula L gets ¬F1[x, y1]. If SMA produces an M′′ that extends M′

with an assignment to y1 such thatM′′ |= ¬F1[x, y1], we have a model. Suppose
that M′ satisfies p1 ∨ ¬p2 by assigning false to p2. In the recursive call on b2,
formula L gets ¬F2[x, y2]. If SMA fails to produce anM′′ that extendsM′ with
an assignment to y2 such thatM′′ |= ¬F2[x, y2], we have a model.

Theorem 2. The function subtreeIsSolved is partially correct: if the precon-
ditions hold and the function halts, then the postconditions hold.

Proof. Consider a call subtreeIsSolved(n,M). We assume that the precondi-
tions hold and the call terminates, and we show that the postconditions hold.
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The proof is by structural induction on the tree Tn in Gn.
Base case: n is a leaf. If M |= n.U and the function returns true on line 3 in
Fig. 2, we have M |= (n.U ∨ ¬n.O), rv = true, and M |= Gn, since M |= n.U
implies M |= n.ψ. If M |= ¬n.O and the function returns false on line 5, we
have M |= (n.U ∨ ¬n.O), rv = false, and M ̸|= Gn, since M |= ¬n.O implies
M ̸|= n.ψ. Otherwise, L is assigned n.F since n has no children, and SMA is
invoked to find an extensionM′ of M to FV (n.F ) such thatM′ |= n.F .
If no such extension is found, MBO(n.F,FV (n.F )\Rigid(n),M) returns a quan-
tifier-free formula that is false inM, formula n.O is conjoined with this formula,
and the function returns false on line 11. Thus, M ̸|= n.O, M |= ¬n.O, M |=
(n.U ∨¬n.O), rv = false, andM ̸|= Gn, since n.F , and hence n.ψ, cannot be sat-
isfied. If SMA returns an extensionM′ ofM to FV (n.F ) such thatM′ |= n.F ,
solutionForallChildren(n,M′) returns true because n has no children, L′

is assigned n.F for the same reason, MBU(n.F,FV (n.F ) \ Rigid(n),M) re-
turns a quantifier-free formula that is true in M, formula n.U is disjoined
with this formula, and the function returns true on line 16. Thus, M |= n.U ,
M |= (n.U ∨¬n.O), rv = true, andM |= Gn, sinceM |= n.U impliesM |= n.ψ.
Induction hypothesis: for all children b of node n, if the preconditions are satisfied
and subtreeIsSolved(b,M) halts, the postconditions are satisfied.
Induction step: if subtreeIsSolved(n,M) returns on line 3 or on line 5, the
reasoning is the same as in the base case. Otherwise, L is assigned the formula
n.F ∧

∧
n→b((b.p⇒ b.O) ∧ (¬b.p⇒ ¬b.U)). This formula is constructed in such

a way that if M |= Gn then L is satisfied. Indeed, suppose that M |= Gn.
This means that there exists an extension M′ of M such that: (i) M′ |= n.F ;
(ii) for all children b of n with M′(b.p) = true, M′ |= Gb (by Def. 3), so that
M′ |= b.ψ (by Thm. 1), and by induction hypothesis (Jb.ψK ⊆ Jb.OK)M′ |= b.O;
and (iii) for all children b of n with M′(b.p) = false, M′ ̸|= Gb (by Def. 3), so
that M′ ̸|= b.ψ (by Thm. 1), and hence M′ |= ¬b.ψ, and by induction hypoth-
esis (Jb.UK ⊆ Jb.ψK) M′ ̸|= b.U , and hence M′ |= ¬b.U . By (i), (ii), and (iii),
M′ |= L.
Function SMA is invoked to find precisely an extensionM′ ofM to FV (L) such
that M′ |= L. If no such extension exists, MBO(L,FV (L) \ Rigid(n),M) re-
turns a quantifier-free formula that is false inM, formula n.O is conjoined with
this formula, and the function returns false on line 11. Therefore, M ̸|= n.O,
M |= ¬n.O,M |= (n.U ∨¬n.O), rv = false, andM ̸|= Gn, so that the postcon-
ditions of subtreeIsSolved(n,M) are satisfied. If there exists an extensionM′

such that M′ |= L, solutionForallChildren(n,M′) is invoked. If it returns
true, L′ is assigned the formula n.F ∧

∧
n→b((b.p⇒ b.U)∧ (¬b.p⇒ ¬b.O)). This

formula is constructed in such a way that it has two properties.
The first one is that M′ |= L′. Indeed, M′ |= n.F , because M′ |= L, and
from the knowledge that M |= Gn (solutionForallChildren returned true)
we know that for all children b of n, ifM′(b.p) = true, subtreeIsSolved(b,M′)
returned true, so thatM′ |= b.U by induction hypothesis, and ifM′(b.p) = false,
subtreeIsSolved(b,M′) returned false, so that M′ |= ¬b.O by induction hy-
pothesis.
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The second property is that M′ |= L′ is a sufficient condition for M |= Gn.
Indeed, M′ |= L′ implies (i) M′ |= n.F , and (ii) for all children b of n, if
M′(b.p) = true, then M′ |= L′ implies M′ |= b.U , and by induction hy-
pothesis M′ |= Gb, if M′(b.p) = false, then M′ |= L′ implies M′ |= ¬b.O,
and by induction hypothesis M′ ̸|= Gb. Then, MBU(L′,FV (L′) \ Rigid(n),M)
returns a quantifier-free formula that is true in M, formula n.U is disjoined
with this formula, and the function returns true on line 16. Thus, M |= n.U ,
M |= (n.U ∨ ¬n.O), rv = true, and M |= Gn, so that the postconditions are
satisfied.

For termination, we begin with the MBU and MBO functions. Let T be LRA
with a theory extension LRA+ that adds constant symbols q̃ for all rational num-
bers q. Consider an MBU function such that MBU(F [z̄, x], x,M) = F [z̄, x]{x←q̃}
andM |= F [z̄, q̃]. This kind of MBU is called generalization-by-substitution [12].
While F [z̄, q̃] is an under-approximation of ∃x.F [z̄, x], this MBU is not a good
choice for termination. By applying MBU repeatedly with an infinite enumeration
of rational constants, the QSMA algorithm could build an infinite sequence of
under-approximations (

∨n
i=1 F [z̄, x]{x←q̃i})n∈N none of which is LRA-equivalent

to ∃x.F [z̄, x]. The next definition excludes such MBU functions, by requiring that
for a given formula and variable tuple (that depends on the formula), MBU can
generate only finitely many formulas.

Definition 5 (Finite basis). An MBU function has finite basis if the set
{MBU(F [z̄, x̄], x̄,M) | M : extension of M0 to z̄ such that M |= ∃x̄.F [z̄, x̄]}
is finite for all quantifier-free formulas F [z̄, x̄] and tuples x̄.

The notion of an MBO function having a finite basis is defined in the same
way with ̸|= in place of |=.

Lemma 1. If MBU and MBO have finite basis, for all (possibly infinite) series
of calls {subtreeIsSolved(n,Mi)}i, all satisfying the preconditions and all ter-
minating, formulas n.U and n.O are updated only a finite number of times.

Proof. The proof is by structural induction on the tree Tn rooted at node n.
The base case (n is a leaf) is trivial. The induction hypothesis is that the claim
holds for all children b of n. For the induction step, given a series of calls as in
the claim, let (n.U)i and (n.O)i denote the values of n.U and n.O upon entering
call subtreeIsSolved(n,Mi). The same notation applies to all children b of n.
By induction hypothesis, for all children b of n, b.U and b.O are updated only a
finite number of times. Therefore, there exists an i0 such that for all i ≥ i0, for all
children b of n, (b.U)i+1 = (b.U)i and (b.O)i+1 = (b.O)i. Then for all i, i ≥ i0,
either (I) (n.O)i+1 = (n.O)i or (II) (n.O)i+1 = (n.O)i ∧ MBO(Li,FV (Li) \
Rigid(n),Mi) where Li = n.F ∧

∧
n→b((b.p⇒ (b.O)i) ∧ (¬b.p⇒ ¬(b.U)i)).

Case (II) applies only ifMi |= (n.O)i (if we enter the main loopMi |= ¬(n.U)i∧
(n.O)i),Mi |= ¬(n.O)i+1, and subtreeIsSolved(n,Mi) returns false (see lines
10-11 in Fig. 2 and Step (3) in the description of subtreeIsSolved). Since for
all i, i ≥ i0, (b.U)i+1 = (b.U)i and (b.O)i+1 = (b.O)i, it follows that for all i,
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i ≥ i0, Li+1 = Li. Therefore, for all i, i ≥ i0, whenever we hit Case (II), MBO is
applied to the same formula and variable tuple, while the third argument (the
model) may vary. By hypothesis, MBO has finite basis (see Def. 5) and hence
it can generate only finitely many formulas for a given formula. Thus, n.O is
updated only a finite number of times.
Similarly, for all i, i ≥ i0, either (I) (n.U)i+1 = (n.U)i or (II) (n.U)i+1 = (n.U)i∨
MBU(L′

i,FV (L′
i) \ Rigid(n),Mi) where L′

i = n.F ∧
∧

n→b((b.p ⇒ (b.U)i) ∧
(¬b.p⇒ ¬(b.O)i)). Case (II) applies only ifMi |= ¬(n.U)i,Mi |= (n.U)i+1, and
subtreeIsSolved(n,Mi) returns true (see lines 15-16 in Fig. 2 and Step (6) in
the description of subtreeIsSolved). Since for all i, i ≥ i0, (b.U)i+1 = (b.U)i
and (b.O)i+1 = (b.O)i, it follows that for all i, i ≥ i0, L′

i+1 = L′
i. Therefore, for

all i, i ≥ i0, whenever we hit Case (II), MBU is applied to the same formula and
variable tuple, while the third argument (the model) may vary. By hypothesis,
MBU has finite basis (see Def. 5) and hence it can generate only finitely many
formulas for a given formula. Thus, n.U is updated only a finite number of times.

Once nontermination due to MBU or MBO is excluded even for an infinite
series of halting calls, termination is proved by induction on the QSMA-tree.

Theorem 3. If the MBU and MBO functions have finite basis, whenever the
preconditions are satisfied the function subtreeIsSolved halts.

Proof. Consider a call subtreeIsSolved(n,M) for a node n in T . The base case
(n is a leaf) is trivial. The induction hypothesis is that the claim holds for all
children b1, . . . , bk of n. For the induction step, if subtreeIsSolved(n,M) does
not enter the main loop, it halts. Suppose that it enters the main loop. For this
case we reason by way of contradiction, assuming that subtreeIsSolved(n,M)
does not halt. This means that the SMA function produces an infinite series
of candidate models {Mi}i≥1 such that for all i, i ≥ 1, there exists a child
bj(i), 1 ≤ j(i) ≤ k, for which Mi(bj(i).p) ̸= subtreeIsSolved(bj(i),Mi) so that
solutionForallChildren returns false (lines 20-21 in Fig. 2). It follows that
subtreeIsSolved(n,M) generates an infinite series S of recursive calls.
LetW be a matrix with a row for eachMi, i ≥ 1, a column for each bh, 1 ≤ h ≤ k,
and such that Wi,h = 1 if Mi(bh.p) = subtreeIsSolved(bh,Mi), Wi,h = 0 if
Mi(bh.p) ̸= subtreeIsSolved(bh,Mi), and Wi,h = ⊥ if subtreeIsSolved is
not invoked on (bh,Mi). For all h, 1 ≤ h ≤ k, let Dh = {i | Wi,h = 0}. By
projecting on the node argument, we extract from S up to k (possibly infi-
nite) series of calls {subtreeIsSolved(bh,Mi)}i∈Dh

. Consider anyone of these
series and let us temporarily rename bh as b for simplicity. For all the calls
subtreeIsSolved(b,Mi) in the series, since Mi was produced by SMA (line 8
in Fig. 2), we know thatMi |= L, so that before the call

Mi |= (b.p⇒ b.O) ∧ (¬b.p⇒ ¬b.U).

If Mi(b.p) = true, then before the call Mi |= b.O, and since the call returns
false, it means that the call has updated b.O to ensure that Mi |= ¬b.O (line
10 in Fig. 2 and Step (3) in the description of subtreeIsSolved). Similarly,
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if Mi(b.p) = false, then before the call Mi |= ¬b.U , and since the call re-
turns true it means that the call has updated b.U to ensure that Mi |= b.U
(line 15 in Fig. 2 and Step (6) in the description of subtreeIsSolved). In
summary, at least one of b.U or b.O gets updated for each call in the series.
However, by induction hypothesis all the calls in all the possibly infinite series
{subtreeIsSolved(bh,Mi)}i∈Dh

are terminating. Therefore, Lemma 1 applies
to each of these series, establishing that bh.U and bh.O get updated only a finite
number of times. Therefore, all the series {subtreeIsSolved(bh,Mi)}i∈Dh

are
finite, which contradicts the existence of the infinite series S.

Example 5. Apply subtreeIsSolved to the root of the QSMA-tree in Example 2.
Formula L gets p1 ∧¬p2. SMA produces anM′ that assigns values to x, p1, and
p2. Suppose that M′ assigns 1 to x, while it must assign true to p1 and false to
p2. In the recursive call on b1, formula L gets x ≃ 2·y1. If SMA produces anM′′

that extends M′ with y1← 1
2 , we have a model of Gb1 . In the recursive call on

b2, formula L gets 3·x ≃ 2·y2. If SMA produces an M′′ that extends M′ with
y2← 3

2 , we have a model of Gb2 , but because M′(p2) = false, there is no model
of G. Indeed, formula φ of Example 2 is false as the original formula is true.

5 The OptiQSMA Algorithm and Its Total Correctness

YicesQS implements an optimized variant of QSMA, called OptiQSMA, that
reduces the number of recursive calls to subtreeIsSolved by entrusting more
work to each call to SMA. Reconsider the behavior of QSMA in Example 4.
We can avoid a recursive call to subtreeIsSolved by asking SMA to satisfy
(p1 ∨ ¬p2) ∧ (p1 ⇒ ¬F1[x, y1]) in lieu of p1 ∨ ¬p2. This way, if the candidate
model returned by SMA assigns true to p1, it also assigns to x and y1 values
that satisfy ¬F1[x, y1]. This means that ∃y1.¬F1[x, y1] is found true without
recursion. On the other hand, if p2 is assigned false, the algorithm still has to
make the recursive call to see if it can satisfy ∃y2.¬F2[x, y2].

The idea of OptiQSMA is to do a look-ahead on a path in the QSMA-tree,
doing the work in one shot rather then through recursive calls on all the nodes
in the path. The look-ahead applies to a path such that the Boolean labels of
all the arcs in the path are assigned true by the candidate model. The following
definition builds a formula to allow the look-ahead.

Definition 6 (Look-ahead formula). Given a QSMA-tree G = (z̄, T ), for all
nodes n of T the look-ahead formula of n is LF (n) = n.F ∧

∧
n→b(b.p⇒ LF (b)).

The next definition distinguishes the nodes that are handled together in one
shot without recursion and those where recursion is still needed. Nodes of the
first kind are called no alternation nodes, because such nodes are on a path as
described above, where all Boolean labels are assigned true and hence there is
no alternation between true and false. Nodes of the second kind are called first
alternation nodes, because they are the nodes reached by the first arc whose
Boolean label is assigned false.
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Definition 7 (No alternation nodes and first alternation nodes). Given
a QSMA-tree G = (z̄, T ) for all nodes n of T and extensions M of M0 to
FV (LF (n)), the set NAN(n,M) of the no-alternation nodes from n according
toM (resp. the set FAN(n,M) of the first-alternation nodes from n according to
M) contains all and only the nodes b such that: (i) b is a descendant of n through
a path n→ n1 → . . .→ nq → b (q ≥ 0), (ii) ∀i, 1 ≤ i ≤ q, M(ni.p) = true, and
(iii) M(b.p) = true (resp. M(b.p) = false).

A node b ∈ FAN(n,M) such that q = 0 in Condition (i) of Definition 7
is a child of n: for a child there is no optimization. The OptiQSMA algorithm
seeks a candidate modelM that satisfies LF (n) and recurses only on the nodes
in FAN(n,M). Therefore, the definition of satisfaction with look-ahead, denoted
|=la, follows the pattern of Definition 3, replacing r.F with LF (r) and Condi-
tion (ii) of Definition 3 with a condition for the nodes in the FAN set.

Definition 8 (Satisfaction with look-ahead). Given a QSMA-tree G = (z̄, T )
with r = root(T ) and an extensionM ofM0 to Rigid(r) = z̄,M |=la G if there
exists an extension M′ of M to FV (LF (r)) such that (i) M′ |= LF (r) and (ii)
for all nodes b ∈ FAN(r,M′), M′ ̸|=la Gb.

Since for the nodes b ∈ FAN(r,M′) it is M′(b.p) = false, the |=la relation is
negated in Condition (ii). The next theorem shows that the optimization does
not change the problem.

Theorem 4. Given a QSMA-tree G = (z̄, T ) and an extension M of M0 to z̄,
M |= G if and only if M |=la G.

Proof. The proof is by structural induction on the tree T . Let r = root(T ).
Base case: if r is the only node in T , the claim is trivially true, because LF (r) =
r.F and Condition (ii) in both Defs. 3 and 8 is vacuously true.
Induction hypothesis: the claim holds for all children b of r.
Induction step: we distinguish the two directions.
⇒) By hypothesis, M |= G, that is, there exists an extension M′ of M to
Var(r) that fulfills Def. 3. We build an extensionM′′ ofM′ to FV (LF (r)) that
fits Def. 8. First, FV (LF (r)) = FV (r.F ) ∪ {b.p | r → b} ∪

⋃
r→b FV (LF (b)).

Note that FV (r.F ) ⊆ Rigid(r) ∪ Var(r) and {b.p | r → b} ⊆ Var(r). Since
M interprets the variables in Rigid(r) and M′ extends M to interpret the
variables in Var(r), we need to consider only the variables in

⋃
r→b FV (LF (b)).

Since FV (LF (b)) may contain variables that are in Rigid(b) = Rigid(r)∪{x̄} for
x̄ the local variables of r and x̄ ⊆ Var(r),M′′ only needs to add interpretations
of the variables in FV (LF (b)) \ Rigid(b) for all children b of r. Let b be a child
of r such that M′(b.p) = false. Then, for all y ∈ FV (LF (b)) \ Rigid(b), let M′′

assign an arbitrary value to y. Let b be a child of r such that M′(b.p) = true.
Since M |= G, by Def. 3, M′ |= Gb, and by induction hypothesis M′ |=la Gb,
that is, there exists an extensionM′

b ofM′ fulfilling Def. 8 for Gb. Then, for all
y ∈ FV (LF (b)) \ Rigid(b), let M′′(y) =M′

b(y) (†).
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@pre: G = (z̄, T ): QSMA-tree for φ with FV (φ) = z̄; M: extension ofM0 to z̄
@post: rv iff M |=la G
1: function OptiQSMA(M, T )
2: for all nodes n in T do
3: n.U ←⊥
4: ans← optiSubtreeIsSolved(root(T ), M)
5: if ans = SAT(_) then
6: return true
7: else if ans = UNSAT(_) then
8: return false

Fig. 3. Pseudocode of the main function of the OptiQSMA algorithm

This construction ofM′′ does not assign two different values to the same variable,
because if b and b′ are distinct children of r, we have

FV (LF (b)) ∩ FV (LF (b′)) ⊆ Rigid(b) = Rigid(b′).

We show that M′′ fulfills Condition (i) in Def. 8. First, M′ |= r.F implies
M′′ |= r.F , since FV (r.F ) ⊆ Rigid(r) ∪ Var(r). Second, for all children b of r,
b.p ∈ Var(r) and hence M′′(b.p) = M′(b.p). For all children b of r such that
M′(b.p) =M′′(b.p) = true, we know thatM′

b |= LF (b) and henceM′′ |= LF (b)
by (†). Therefore, M′′ |= LF (r).
We show that M′′ fulfills Condition (ii) in Def. 8. Let b ∈ FAN(r,M′′) be a
descendant of r via a path r → n1 → . . . → nq → b. If q = 0, b is a child of r,
andM′′(b.p) =M′(b.p) = false. SinceM |= G with extensionM′, we have that
M′ ̸|= Gb. Since M′′ is an extension of M′, also M′′ ̸|= Gb holds. If q > 0, n1

is a child of r, and M′′(n1.p) =M′(n1.p) = true. Since M |= G with extension
M′, we have that M′ |= Gn1 . By induction hypothesis, M′ |=la Gn1 with some
extensionM′

n1
. By Def. 8 applied to n1, we have thatM′

n1
̸|=la Gb. By (†),M′′

is an extension ofM′ that interprets all the variables in FV (LF (n1))\Rigid(n1)
like M′

n1
does. Thus, alsoM′′ ̸|=la Gb holds as desired.

⇐) By hypothesis, M |=la G, that is, there exists an extension M′ of M to
FV (LF (r)) that fulfills Def. 8. We show thatM′ fulfills Condition (i) in Def. 3:
indeed,M′ |= LF (r) impliesM′ |= r.F . We show thatM′ fulfills Condition (ii)
in Def. 3. For all children b of r such that M′(b.p) = false, b ∈ FAN(r,M′),
and hence by Def. 8, M′ ̸|=la Gb. By induction hypothesis, M′ ̸|= Gb. For all
children b of r such that M′(b.p) = true, M′ |= LF (r) implies M′ |= LF (b),
so that Condition (i) in Def. 8 is satisfied. Since FAN(b,M′) ⊆ FAN(r,M′),
Condition (ii) in Def. 8 is satisfied by hypothesis. Thus,M′ |=la Gb. By induction
hypothesis, M′ |= Gb. Therefore, M′ fulfills Def. 3 andM |= G.

The OptiQSMA algorithm maintains under-approximations n.U of n.ψ for all
nodes n, but not over-approximations. Accordingly, the main function OptiQSMA
(Fig. 3) initializes only n.U for all nodes n, and then calls optiSubtreeIsSolved
(Fig. 4). This function returns SAT(U) if M |=la G and UNSAT(O) if M ̸|=la
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@pre: M is an extension ofM0 to Rigid(n), and I = ∀b ∈ T. Jb.UK ⊆ Jb.ψK
@post: I and
{rv = UNSAT(O) implies [(∀b ∈ T. Jb.ψK ⊆ JOK) and M ̸|= O]} and
{rv = SAT(U) implies [(∀b ∈ T. Jb.UK ⊆ Jb.ψK) and M |= U ]}
1: function optiSubtreeIsSolved(n, M)
2: while true do
3: L← LF (n) ∧

∧
n→+b(¬b.p⇒ ¬b.U)

4: M′ ← SMA(L, M)
5: if M′ = nil then
6: return UNSAT(MBO(L, FV (L) \ Rigid(n), M))
7: else
8: reasons← ⊤
9: if solutionForallDescendants(n, M′, reasons) then

10: L′ ← LF (n) ∧ reasons
11: return SAT(MBU(L′, FV (L′) \ Rigid(n), M))
12:
13: function solutionForallDescendants(n, M, reasons)
14: for all b ∈ FAN(n,M) do
15: ans← optiSubtreeIsSolved(b,M)
16: if ans = SAT(U) then
17: b.U ← b.U ∨ U
18: return false
19: else if ans = UNSAT(O) then
20: reasons← reasons ∧ (¬b.p⇒ ¬O)
21: for all b ∈ NAN(n,M) do
22: reasons← reasons ∧ b.p
23: return true

Fig. 4. Pseudocode of the auxiliary functions of the optiQSMA algorithm

G. The formula U is an under-approximation of r.ψ (r = root(T )) such that
M |= U . The formula O is an over-approximation of r.ψ such thatM ̸|= O. The
main function OptiQSMA has no usage for U and O and merely returns true
or false accordingly. Function optisubtreeIsSolved builds and returns under-
approximations and over-approximations recursively. The reason for saving only
under-approximations is practical, and will become clear after the illustration of
optisubtreeIsSolved. This function takes a node n and a modelM extending
M0 to Rigid(n) and determines whetherM |=la Gn, by executing a loop whose
body contains the following steps:

1. Build a formula L (line 3 in Fig. 4) as the conjunction of the look-ahead
formula LF (n) (in lieu of n.F in line 7 of Fig. 2) and a formula for every
descendant b of n, denoted n→+ b (in lieu of child as in Fig. 2).

2. Invoke the SMA function to search for an extension M′ of M to Var(n)
such that M′ |= L. For those descendants b for which M′(b.p) = false, the
subformula for b in L reduces to ¬b.U as in Step 2 of the description of
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subtreeIsSolved. For those descendants b for which M′(b.p) = true, the
subformula for b in L reduces to true, in agreement with the fact that over-
approximations are not kept.

3. If SMA returns nil, optiSubtreeIsSolved returns UNSAT(O), where O is
simply the outcome of applying MBO to L and M, as over-approximations
are not kept. Otherwise, there is potential for satisfaction with look-ahead.
Function optiSubtreeIsSolved initializes the formula reasons to ⊤ and
invokes solutionForallDescendants passing reasons by reference.

4. Function solutionForallDescendants considers first all descendants b in
FAN(n,M), and calls optiSubtreeIsSolved(b,M) for each of them. If this
call returns SAT(U), it means thatM |=la Gb; solutionForallDescendants
weakens b.U by disjunction with U and returns false.
If optiSubtreeIsSolved(b,M) returns UNSAT(O), it means that M ̸|=la

Gb, and we move on to the next descendant in FAN(n,M). Prior to that,
reasons is strengthened by conjunction with ¬b.p ⇒ ¬O. For all descen-
dants b in NAN(n,M), solutionForallDescendants strengthens reasons
by conjunction with b.p.

5. If solutionForallDescendants returns true, optiSubtreeIsSolved builds
formula L′ as LF (n) ∧ reasons, and returns SAT(U), where U is the out-
come of the application of MBU to L′ andM. Otherwise, the control returns
to line 3. Since solutionForallDescendants returned false, it means that
it found a node b in FAN(n,M) for which optiSubtreeIsSolved(b,M) re-
turned SAT(U) and the formula b.U was updated (line 17). Therefore the
state has changed, variable L gets a new formula on line 3, and the subse-
quent call to SMA will not produce the same model.

In the experiments it turned out that storing over-approximations for all
nodes is less efficient than using them to compute L′ and then forget them.
Thus, the over-approximation O encapsulated in the UNSAT(O) value returned
by a recursive call to optiSubtreeIsSolved is used to build the temporary
formula reasons, but it is not saved, and reasons is used to compute L′.

Theorem 5. The function optiSubtreeIsSolved is partially correct: if the pre-
conditions hold and the function halts, then the postconditions hold.

Proof. Consider a call optiSubtreeIsSolved(n,M). We assume that the pre-
conditions hold and the call terminates, and we show that the postconditions
hold. The proof is by structural induction on the tree Tn in Gn.
Base case: n is a leaf. Formula L is assigned LF (n) = n.F since n has no chil-
dren, and SMA is invoked to find an extensionM′ ofM to FV (n.F ) such that
M′ |= n.F . If no such extension is found, MBO(n.F,FV (n.F )\Rigid(n),M) re-
turns a quantifier-free formula O and the function returns UNSAT(O) on line 6
in Fig. 4. By Def. 2, n.ψ = ∃x̄.(n.F ). By the specification of MBO, we have
M ̸|= O and Jn.ψK ⊆ JOK, so that the postconditions hold.
If SMA returns an extensionM′ ofM to FV (n.F ) such thatM′ |= n.F , reasons
is assigned ⊤. Since n has no descendants, solutionForallDescendants re-
turns true leaving reasons unchanged. Thus, L′ is assigned LF (n) = n.F ,
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MBU(n.F,FV (n.F ) \ Rigid(n),M) returns a quantifier-free formula U and the
function returns SAT(U) on line 11. By the specification of MBU, we have
M |= U and JUK ⊆ Jn.ψK, so that the postconditions hold.
Induction hypothesis: for all descendants b of node n, if the preconditions are sat-
isfied and optiSubtreeIsSolved(b,M) halts, the postconditions are satisfied.
Induction step: By induction hypothesis, for all descendants b of n, formula b.U
is an under-approximation of b.ψ. Indeed, when b.U is updated on line 17 of
Fig. 4, it gets b.U ∨ U , where U is an under-approximation of b.ψ returned by
a recursive call optiSubtreeIsSolved(b,M′). We distinguish two cases for the
two exit points of optiSubtreeIsSolved (see Fig. 4).

– Suppose optiSubtreeIsSolved(n,M) returns UNSAT(O) on line 6, because
SMA could not extendM to a model of

L = LF (n) ∧
∧

n→+b

(¬b.p⇒ ¬b.U).

We must show that Jn.ψK ⊆ JOK and M ̸|= O. The latter is directly a con-
sequence of O being generated by MBO from L and M. For the former, let
MO be a model such thatMO |= n.ψ. It follows thatMO |= Gn by Thm. 1
and MO |=la Gn by Thm. 4. By Def. 8, MO can be extended into a model
M′

O of LF (n) such that for all b ∈ FAN(n,M′
O),M′

O ̸|=la Gb. It follows that
M′

O ̸|= b.ψ by Thm. 1, and hence M′
O ̸|= b.U by pre-condition I, so that

M′
O |= ¬b.U (*).

Now we have that M′
O |= LF (n) and we want to show that M′

O |= L. To
this end, we assume that M′

O(c.p) = true for all descendants c of n beyond
the first alternation nodes, that is, for all nodes c such that n →+ c and
c ̸∈ NAN(n,M′

O) ∪ FAN(n,M′
O) (†).

We show that this assumption causes no loss of generality. Indeed, forcing
M′

O(c.p) = true for such nodes affects neither NAN(n,M′
O), nor FAN(n,M′

O),
norM′

O(b.p) = false for all b ∈ FAN(n,M′
O). Also, this assumption does not

affect the fact thatM′
O |= LF (n). Indeed, LF (n) has the form:

n.F ∧
∧

n→+b

{n1.p⇒ · · · ⇒ nq.p⇒ b.F | n→ n1 → · · · → nq → b}.

Therefore, forcingM′
O(c) = true for every node c that is below some node b ∈

FAN(n,M′
O) does not affect the truth value of LF (n), because M′

O(b.p) =
false and hence any implication in LF (n) involving c necessarily evaluates
to true.
Next, M′

O satisfies L, because it satisfies LF (n) and also ¬b.p ⇒ ¬b.U for
all descendants b of n: if b ∈ FAN(n,M′

O) then M′
O(b.p) = false and we

know thatM′
O |= ¬b.U by (*); if b ∈ NAN(n,M′

O) thenM′
O(b.p) = true, so

thatM′
O(¬b.p⇒ ¬b.U) = true; and if b ̸∈ NAN(n,M′

O)∪FAN(n,M′
O), then

M′
O(b.p) = true by the assumption (†), so thatM′

O(¬b.p⇒ ¬b.U) = true.
Since O is generated by MBO from L and M, by the specification of MBO
we know that L implies O in the theory. SinceM′

O and henceMO satisfies
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L, it follows that MO also satisfies O. Therefore, also the postcondition
Jn.ψK ⊆ JOK holds.

– Suppose optiSubtreeIsSolved(n,M) returns SAT(U) on line 11. Function
SMA found an extension M′ satisfying L, and hence LF (n). Furthermore,
solutionForallDescendants returned true after constructing a formula

reasons = (
∧

b∈NAN(n,M′) b.p) ∧ (
∧

b∈FAN(n,M′)(¬b.p⇒ ¬Ob))

where, for all b ∈ FAN(n,M′), Ob is an over-approximation of b.ψ that was
returned as UNSAT(Ob) by a recursive call optiSubtreeIsSolved(b,M′).
By the post-condition of that recursive call,M′ ̸|= Ob. By Thm. 1,M′ ̸|= Gb.
Since this holds for all b ∈ FAN(n,M′), we have thatM′ fulfills Def. 8.
We show that this property holds in general: every model that satisfies
L′ = (LF (n) ∧ reasons) fulfills Def. 8. To this end, we show that every
model that satisfies reasons fulfills Condition (ii) in Def. 8. Let M′′ be a
model that satisfies reasons. It follows that NAN(n,M′′) = NAN(n,M′),
FAN(n,M′′) = FAN(n,M′), and for all b ∈ FAN(n,M′), M′′ |= ¬Ob. It
follows thatM′′ ̸|= Ob and henceM′′ ̸|= b.psi, so thatM′′ ̸|= Gb by Thm. 1.
Thus, M′ fulfills Condition (ii) of Def. 8.
By the specification of MBU, the application of MBU to L′ and M yields a
quantifier-free formula U such that M |= U , and for all models MU ∈ JUK,
MU can be extended into a model that satisfies L′, and hence fulfills Def. 8 by
the argument above. This means that for all modelsMU ∈ JUK,MU |=la Gn,
and hence by Thm. 4 MU |= Gn, and hence MU |= n.ψ by Thm. 1. This
shows that Jn.UK ⊆ Jn.ψK, so that the postconditions hold.

The proof of partial correctness of optiSubtreeIsSolved shows that every
model that satisfies L′ = (LF (n) ∧ reasons) fulfills Definition 8. In this sense,
reasons is an explanation of why a model is found with look-ahead.

Theorem 6. If the MBU and MBO functions have finite basis, whenever the
preconditions are satisfied the function optiSubtreeIsSolved halts.

Proof. For all nodes n in T , where z̄n = Rigid(n), we build
– A finite set Un = {Un

1 [z̄n], . . . , U
n
ln
[z̄n]} of under-approximations of n.ψ, and

– A finite set On = {On
1 [z̄n], . . . , O

n
mn

[z̄n]} of over-approximations of n.ψ,
such that
(i) The property “For all descendants b of n, b.U is the disjunction of a subset

of Ub” (*) is an invariant of optiSubtreeIsSolved(n,M), whereM extends
M0 to z̄n (see Fig. 4), and

(ii) If Property (*) holds as a pre-condition of optiSubtreeIsSolved(n,M),
then the call halts returning either SAT(U) for some U ∈ Un or UNSAT(O)
for some O ∈ On.

The construction of the sets Un and On and the proof are by induction on Tn.
Consider a call optiSubtreeIsSolved(n,M) with Property (*) holding as a
pre-condition. We show simultaneously that

1. Property (*) holds throughout the execution of both optiSubtreeIsSolved
and solutionForallDescendants, and
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2. Both functions terminate.

The first claim involves showing that Property (*) is an invariant for both
the while loop in optiSubtreeIsSolved and the for loop ranging over b ∈
FAN(n,M) in solutionForallDescendants.
Consider a call optiSubtreeIsSolved(b,M) in the for loop.
Assume that Property (*) holds at that point as a loop invariant and the pre-
conditions of optiSubtreeIsSolved(b,M) are satisfied. Then by induction hy-
pothesis optiSubtreeIsSolved(b,M) terminates, returning either SAT(U) for
some U ∈ Ub or UNSAT(O) for some O ∈ Ob. Whenever b.U is updated by
instruction b.U←b.U ∨ U (line 17 of Fig. 4), formula b.U remains a disjunction
of a subset of Ub, so that the loop invariant (*) is preserved. Therefore, (*) is
an invariant of solutionForallDescendants and solutionForallDescendants
terminates. Since no instruction in the body of the while loop modifies b.U ,
Property (*) is an invariant also for the while loop.
We prove next the termination of the while loop. The invariant (*) implies
that for all descendants b of n, formula b.U can be updated at most |Ub| times,
where |Ub| is the cardinality of the set Ub. By way of contradiction, suppose that
the while loop does not halt. This means that it generates an infinite series
of calls to solutionForallDescendants each returning false. Since each call to
solutionForallDescendants that returns false updates some b.U at least once,
such an infinite series contradicts the fact that for each node b only finitely many
updates to b.U are available.
To complete the proof, we observe that the space of possible values for b.U is
finite, because b.U is a disjunction of a subset of Ub. To be precise, if |Ub| = vb,
the number of possible values for b.U is

∑vb
i=0

(
vb
i

)
=

∑vb
i=0

vb!
i!·(vb−i)! . This implies

that also the space of possible values for L is finite. Therefore, MBO gets ap-
plied to finitely many formulas and for each of them it can produce only finitely
many formulas by the finite basis hypothesis. This guarantees the existence of
the finite set On.
By the finiteness of On, also the space of possible values for the variable reasons
is finite. This implies that also the space of possible values for L′ is finite. There-
fore, MBU gets applied to finitely many formulas and for each of them it can
produce only finitely many formulas by the finite basis hypothesis. This guaran-
tees the existence of the finite set Un and concludes the proof.

6 The YicesQS Solver and Experimental Results

The OptiQSMA algorithm is implemented in YicesQS to equip Yices 2 with
support for quantifiers for complete theories (unrelated to Yices 2 support for
quantifiers in UF).1 MBO is available as model interpolation from Yices’s MC-
SAT [10] solver for quantifier-free formulas, including theory-specific techniques
for bitvectors (BV) [15] and arithmetic. The latter are based on NLSAT [16] and
ultimately on Cylindrical Algebraic Decomposition (CAD). Basic MBU is done
1 See https://github.com/disteph/yicesQS and https://yices.csl.sri.com/.
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BV.
CVC5 854/970 25,584s
Q3B 835/970 13,510s
Z3 775/970 7,712s
Bitwuzla 759/970 15,572s
Q3B-pBDD 754/970 15,553s
YicesQS 708/970 3,862s
Ultim.Elim. 304/970 4,204s

Fig. 5. Plot for BV.

as generalization-by-substitution [12] and improved with model-based projection
(e.g., [18]) for arithmetic, and invertibility conditions [21], including ϵ-terms, for
BV. In YicesQS model-based projection also is based on CAD.

In the 2022 SMT competition, YicesQS entered the single-query, non-incre-
mental tracks of BV, LRA, LIA, NRA, and NIA (nonlinear integer arithmetic). The
experiments were run on the Starexec cluster with a 20 min timeout per bench-
mark and 60GB of memory. The benchmarks were a subset of the SMT-LIB
collection. The results presented below were computed by running the compe-
tition script join.sh on the raw data from StarExec,2 sorting the data, and
producing the plots that are available online.3 A description of the participating
solvers can be found on the competition website.4

Figure 5 shows the results for BV, where YicesQS solved quickly a high num-
ber of benchmarks (compared for example with CVC5), but was not outstanding,
possibly because YicesQS 2022 makes a limited use of invertibility conditions
for model interpolation. Figure 6 shows the results for the four arithmetics. The
columns on the left list number of solved instances and time to solve them for
each logic and solver. In the plot on the right, each color corresponds to a solver
and point (x, y) of that color means that the xth fastest-solved benchmark was
solved by that solver in time y (log scale). 2021 Z3 is included because in some of
these logics it performed slightly better than 2022 Z3. The logic where YicesQS
performed best is LRA: it was the only solver to solve all 1,003 benchmarks. Z3
2021 was second best, solving 948 benchmarks with a total runtime about 100
times higher. YicesQS has neither a special treatment (e.g., simplex-based) of lin-
ear problems, nor integer-specific techniques: it relies on CAD-based techniques
for MBU and MBO also for integer problems. Thus, it is somewhat average
on LIA and NIA. These two theories are undecidable (NRA due to division by
0) and hence they lie outside of the theoretical framework of QSMA. YicesQS
answers should still be correct, but termination can be lost. With Z3 being a
2 https://github.com/SMT-COMP/smt-comp/tree/master/2022/results
3 http://www.csl.sri.com/users/sgl/Work/Cade2023-data/index.html
4 https://smt-comp.github.io/2022/participants.html



22 M. P. Bonacina et al.

LRA.
YicesQS 1003/1003 414s
Z3 2021 948/1003 41,068s
Z3 936/1003 41,240s
Ultim.Elim. 847/1003 16,136s
CVC5 834/1003 21,197s
Vampire 484/1003 45,326s
SMTInterpol 164/1003 2,584s

NRA.
YicesQS 94/99 165s
Z3 2021 94/99 315s
Z3 90/99 294s
CVC5 86/99 672s
Vampire 83/99 73s
Ultim.Elim. 6/99 33s

LIA.
Z3 300/300 11s
CVC5 300/300 78s
Z3 2021 292/300 10s
Ultim.Elim. 230/300 11,789s
YicesQS 182/300 750s
Vampire 157/300 985s
SMTInterpol 97/300 134s
VeriT 75/300 1s

NIA.
CVC5 190/208 3,642s
Ultim.Elim. 129/208 701s
Z3 88/208 317s
Z3 2021 87/208 53s
YicesQS 80/208 290s
Vampire 66/208 13,744s

Fig. 6. Plots for the four arithmetics.



QSMA: A New Algorithm for Quantified Satisfiability 23

non-competing participant in the SMT 2022 competition, YicesQS came second
for Largest Contribution (single queries), because of its overall performance in
the four arithmetics, where it also came first for satisfiable instances and in the
24 sec timeout setup (instead of 20 min).

7 Discussion: Related Work and Future Work

Quantified SMT was approached by a procedure with an ∃-solver and a ∀-solver
for prenex normal form formulas with ∃∀ prefix [12]. A formulation as a game
between an ∃-player and a ∀-player appeared with the QSAT algorithm [3] for
prenex normal form formulas with (∃∀)+ prefix. QSMA accepts arbitrary formu-
las with quantifiers in arbitrary positions.

Both QSAT and QSMA work for a generic theory T over basic T -specific com-
ponents. QSAT uses model-based projection [3,18] and a solver for quantifier-free
satisfiability that supports UNSAT cores. Model-based projection is an instance
of MBU. An UNSAT core (as a conjunction) is an MBO in the special case
where the input assignment is Boolean. While MBO can produce UNSAT cores,
MBO generalizes the concept of UNSAT core with theory-specific reasoning when
there are non-Boolean input assignments, as it is the case in QSMA. It is unclear
whether the combination of UNSAT cores and theory-specific MBU can emulate
MBO or provide the same benefits. QSAT is implemented in Z3 and it is the
default solver for LIA, LRA, and NRA.

YicesQS is a recent implementation that only participated in the SMT com-
petition in 2021 and 2022. Directions for further development include augmenting
integer reasoning, and improving model interpolation in BV by a better usage of
invertibility conditions. Another lead for future work is to compose QSMA within
the CDSAT framework for conflict-driven reasoning in unions of theories [4–6].
For this, one may need to drop the assumption that there is a unique model
M0 and only its extensions need to be considered, which will be a generalization
also in the single theory case. As most known MBU and MBO functions are for
single theories, one may have to study how to get MBU and MBO functions
for a union of theories from such functions for the component theories. Another
issue is the interplay between QSMA’s recursive descent over the QSMA-tree for
the formula and CDSAT’s conflict-driven search.
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